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Abstract. We investigate a generalization of weight-constraint programs
with stable semantics, as implemented in the ASP solver smodels. Our
programs admit atoms of the form 〈X,F〉 where X is a finite set of
propositional atoms and F is an arbitrary family of subsets of X. We
call such atoms set constaints and show that the concept of stable model
can be generalized to programs admitting set constraints both in the
bodies and the heads of clauses. Natural tools to investigate the fixpoint
semantics for such programs are nondeterministic operators in complete
lattices. We prove two fixpoint theorems for such operators.

1 Introduction

This paper is concerned with extensions of the Answer Set Programming (ASP)
paradigm [SK92,CMT96,NS97,ELM+98,KS99,MT99,NS00,ASP01,Ba03]. These
extensions allow a programmer to use various type of aggregation expressions in
both the head and the body of clauses of a program. Under the ASP paradigm,
a problem is encoded as a program in a declarative language so that the pre-
ferred models of the program encode the solutions to the problem. A typical
example of an ASP formalism is DATALOG¬ where the set of preferred models
is the set of stable models of the program. In this case, one can use a solver such
as smodels [NS00] to compute the preferred answers. In [MR02], we studied an
extension of DATALOG¬ called cardinality constraint programming developed
by Niemelä, Simons, and Soininen in [NSS99,NS00]. In cardinality constraint
(CC) programming one allows atoms of the form kXl, where k ≤ l are non-
negative integers and X is a finite set of atoms, to appear in both the head and
the body of clauses. The meaning of the atom kXl is “at least k but not more
than l of atoms from X belong to the intended model M”. In fact, the work of
[NSS99,NS00] allows for more general weight constraint atoms. That is, if wt(·)
is a nonnegative rational valued function on the underlying set of literals of a
logic program, then we interpret kXl to mean that in an intended model M of P ,
k ≤ [

∑
a∈X∩M wt(a)+

∑
a∈X\M) wt(¬a)] ≤ l. These extensions have been imple-

mented in smodels, see [NS00]. The main purpose of this paper is to introduce



an extension of DATALOG¬ which we call set constraint programming which
incorporates both cardinality constraint atoms and weight constraint atoms as
a special case.

In [NSS99], Niemelä, Simons, and Soininen defined a natural analogue of sta-
ble models for CC-logic programs which we called CC-stable models in [MR02].
The construction of [NSS99] significantly generalizes an older proposal due to
Sakama and Inoue [SI94] of stable semantics for programs admitting (in mod-
ern notation) constraints of the form 1X in the heads of the clauses. Niemelä,
Simons, and Soininen used a modification of the Gelfond-Lifschitz transform
[GL88], which we called the NSS transform in [MR02], to define CC-stable mod-
els. However, the presence of expressions of the form kXl in cardinality constraint
programs forces one to abandon one of fundamental properties of stable models
of normal logic programs, namely, that stable models of a normal program are
minimal and hence form an antichain with respect to set inclusion. Once atoms
of the form kXl are allowed, even CC-programs in which all clauses have empty
bodies can have collections of CC-stable models that do not form an antichain
and hence not all CC-stable models are minimal. The results of [MR02] show
that there is a direct connection between stable models of normal logic programs
and CC-stable models of CC-logic programs. That is, CC-stable models are pro-
jections of a stable models of a suitably chosen normal program in an extended
language with a larger set of atoms. This means that the computation of CC-
stable models of [NSS99] can be viewed as computing the stable model semantics
for that extended program but then one hides all the atoms that do not occur in
the original program. A similar result, but with respect to a different formalism,
the so called answer sets with nested expressions, has been obtained by Ferraris
and Lifschitz [FL01].

The main purpose of this paper is to define an extension of CC-logic pro-
grams, called SC-logic programs where one replaces atoms of the form kXl by a
more general set constraint of the form 〈X,F〉 where F is an arbitrary family of
subsets of X. Here the intended meaning of 〈X,F〉 is that in an intended model
M , M ∩X ∈ F . We will call such atoms set-constraint atoms or SC-atoms and
the corresponding programs SC-logic programs. It is easy to see that a CC-atom
kXl is just a SC-atom 〈X,Fk,l〉 where Fk,l is a family of subsets of X

Fk,l = {Y ⊆ X : k ≤ |Y | ≤ l}.

We shall show that results of [NSS99] and the results of [MR02] can be ex-
tended to the setting of SC-logic programs. For example, we shall show that one
can extend the ideas of [NSS99] to define a natural notion of SC-stable models.
Moreover, while the complexity of various problems associated with SC-stable
models may be high due to the fact that the Kolmogorov complexity of F in
a SC-atom 〈X,F〉 may be large, the basic interpretation result that SC-stable
models of SC-programs are traces of stable models of normal logic programs over
an extended language continues to hold. We shall show that SC-atoms can incor-
porate arbitrary aggregation functions and that SC-atoms allow one to express
other classes that may be important in applications. We should note that the



SAT community has studied similar issues such as considering pseudo-Boolean
constraints [ARMS02]. Various applications such as wire outlay on the chips,
model checking, and timing of chips motivate the study of such extensions. In
the ASP community, more limited extensions of DATALOG¬ have been studied
in [ET01] and other papers.

While there seems to be a natural notion of stable models for SC-programs,
the notion of a supported model for SC-programs is not so straightforward.
One immediate problem is that the natural extension of the one-step provability
operator TP for a normal logic program P leads to a non-deterministic operator.
For example, even for the simple program P which consists of a single clause

〈X,F〉 ←

one would naturally define TP (A) to be {Y : Y ∈ F} for any A which is a
nondeterministic operator. We shall show that one can define a natural notion
of SC-supported model for SC-logic programs as a model of P which is a fixed
point of an appropriate one-step provability operator. However this approach will
force us to investigate nondeterministic operators which have not been previously
considered in the logic programming literature. As we shall see the properties
of nondeterministic operators are very different from the properties of deter-
ministic operators. For example, there are natural notions of fixed points and
monotonicity for nondeterministic operators which reduce to the usual notions of
fixed points and monotonicity if the operator is deterministic. However, we shall
give an example of a monotone nondeterministic operator that does not have a
fixed point. Thus the straightforward generalization of the Tarski-Knaster the-
orem fails for nondeterministic operators. Instead, we prove two generalizations
of Knaster-Tarski theorem that are applicable to nondeterministic operators.
One of these generalizations can be applied to show that a SC-stable model of
a SC-logic program P is always a SC-supported model.

2 Set constraints and logic programs

Let X be a set. The power set of X, P(X), is the collection of all subsets of X.
A set constraint atom for a set X of atoms is a pair 〈X,F〉 where F ⊆ P(X).
Given a set of atoms M and a set constraint atom 〈X,F〉, we say that M

satisfies 〈X,F〉, in symbols M |= 〈X,F〉, if M ∩X ∈ F . We say that M satisfies
a collection B of set constraint atoms if M satisfies all set constraint atoms in
B. A set constraint clause (SC-clause for short) is an expression of the form

s← s1, . . . sk (1)

where s and each si are set constraint atoms. The body of the clause (1) is the
set of set constraint atoms {s1, . . . , sk}. A set constraint logic program (SC-logic
program for short) is a collection P of set constraint clauses.

We can now introduce a notion of a model of a SC-logic program. A set of
atoms M satisfies a clause C = s ← s1, . . . sk if the fact that all set constraint



atoms in the body of C are satisfied by M implies that M satisfies s as well. A
set of atoms M satisfies a SC-logic program P if it satisfies all clauses of P .

We note that the satisfaction of atoms can be easily expressed in terms of the
satisfaction of set constraints. Namely, M |= a if and only if M |= 〈{a}, {{a}}〉.
Similarly, satisfaction of negated atoms can also be expressed in terms of the
satisfaction of set constraints. Namely, M |= ¬a if and only if M |= 〈{a}, {∅}〉.
Thus we could write each literal a or ¬a in a normal logic program P as a
set constraint atom and hence we can consider each normal logic program as a
special case of a SC-logic program. However such a translation makes normal
logic programs much harder to read. Thus, in what follows, we shall simply write
a for the set constraint atom 〈{a}, {{a}}〉 and ¬a for the set constraint atom
〈{a}, {∅}〉.

As we mentioned in the introduction, set constraint atoms can express general
aggregation functions.

Example 1. (Cardinality and Weight Constraint Atoms) As described in
the introduction a CC-atom kXl can be expressed as the SC-atom 〈X,Fk,l〉
where Fk,l = {Y ⊆ X : k ≤ |Y | ≤ l}. Similarly if we have a weight function wt

on literals, the more general weight constraint kXl considered [NS00] where a
model M satisfies kXl if and only if

k ≤ [
∑

a∈X∩M

wt(a) +
∑

b∈X−M

wt(¬b)] ≤ l

can be expressed as the SC-atom 〈X,F〉 where

F = {Y ⊆ X : k ≤ [
∑

a∈Y

wt(a) +
∑

b∈X−Y

wt(¬b)] ≤ l}.

2

Example 2. (SQL Aggregate Atoms) Let X be a finite set of atoms and let
µ : X → R be a real function. Each such function µ allows us to construct a
variety of set constraint atoms. For example, to each Y ⊆ X, we can assign the
following functions that are used in SQL queries: |Y |, sum(Y ) =

∑
y∈Y µ(y),

min(Y ) = miny∈Y µ(y), max(Y ) = maxy∈Y µ(y), avg(Y ), where avg assigns to

Y the real number 0 if Y = ∅ and assigns the real number sum(Y )
|Y | , otherwise.

For every two real numbers a, b such that a ≤ b, we define the following families
of sets:

1. C
a,b
X = {Y : a ≤ |Y | ≤ b}

2. S
a,b
X = {Y : a ≤ sum(Y ) ≤ b}

3. Maxa,b
X = {Y : a ≤ max(Y ) ≤ b}

4. Mina,b
X = {Y : a ≤ min(Y ) ≤ b}

5. avga,b
X = {Y : a ≤ avg(Y ) ≤ b}

For each family F described in (1)-(5), we obtain a set constraint 〈X,F〉. 2



Example 3. (Programs with External Modules) In [EGV97], Eiter, Gottlob
and Veith studied logic programs whose clauses contain modules in their bodies.
Modules are programs π (written in some fixed programming language) that
return subsets of some finite set of atoms X. Let us define Rπ as the set of
those subsets of X that can be returned by π. Eiter, Gottlob and Veight show
how a stable semantics can be assigned to programs that contain atoms of the
form 〈X,Rπ〉 in the body of clauses. Our construction of SC-stable models below
extends the work of [EGV97] in that SC-logic programming allows modules to
occur both in the heads and in the bodies of clauses. 2

It should be however clear, that there are other families of subsets of a set
that are of interest.

Example 4. Given a finite set of atoms, let Feven = {Y ⊆ X : |Y | is even} and
Fodd = {Y ⊆ X : |Y | is odd}. Then 〈X,Feven〉 and 〈X,Fodd 〉 are set constraint
atoms. 2

Clearly, the notion of satisfaction defined above generalizes the usual notion
of satisfaction for Horn logic programming clauses and programs. Unlike Horn
logic programs, SC-logic programs do not have to have models even in the case
where the body of each SC-clause in empty.

Example 5. Consider the SC-logic program P which consisting of the following
two clauses. 〈{a, b},FEven〉 ← 〈{a, b},FOdd 〉 ←. It is easy to see that P has
no model M since to be a model of P would require that |M ∩ {a, b}| is both
even and odd. 2

We can, however, prove the following.

Proposition 1. If a SC-logic program P possesses a model, then it possesses
an inclusion-minimal model.

3 Stable Models of Set Constraint Logic Programs

In this section, we shall generalize the notion of CC-stable models introduced
by Niemelä, Simons and Soininen [NSS99] to the class of SC-logic programs. To
understand our extension, we first formally define cardinality constraint logic
programs (CC-logic programs). The syntax of CC-logic programs admits two
types of atoms: (i) ordinary atoms from a set At and (ii) atoms of the form kXl

where X is a finite set of atoms from At , k is a natural number (i.e. k ∈ ω),
l ∈ ω ∪ {∞} and k ≤ l. When l = ∞, we abbreviate kXl as kX. Such new
atoms will be called cardinality constraints. The intended meaning of an atom
kXl is “out of atoms in X at least k but not more than l belong to the intended
model.” Notice that the meaning of the negated atom, ¬p is precisely the same
as that of 0{p}0. Therefore we shall assume that the bodies of rules of CC-logic
programs contain only atoms of the form kXl and atoms from At . That is, a
CC-clause is either a clause of the form

p← q1, . . . , qm, k1X1l1, . . . , knXnln (2)



or

kXl← q1, . . . , qm, k1X1l1, . . . , knXnln. (3)

We note that either m or n can be zero. Thus the head of CC-clauses is either
of the form p where p is an atom from At or kXl where k, X, and l satisfy the
conventions described above. We say that a set of atoms M ⊆ At satisfies the
cardinality constraint kXl, in symbols M |= kXl, if k ≤ |X ∩M | ≤ l. Similarly
we say that M |= p where p ∈ At, if p ∈M . By treating the commas in the bodies
of clauses as conjunctions, we say that M |= body(C) if all atoms occurring in
body(C) belong to M and all cardinality constraints occurring in body(C) are
satisfied by M . Finally, we say that M satisfies a clause C, M |= C, if either M

does not satisfy the body of C or M satisfies the head of C.
A CC-logic program is a set of CC-clauses of the form (2) or (3). We say that

M is model of P , M |= P , if M satisfies all CC-clauses C ∈ P .
A class of programs called Horn CC-programs play a role similar to that

of Horn programs in ordinary logic programming. A Horn CC-clause is a CC-
clause where the head of the clause is an ordinary atom and all the cardinality
constraint atoms kiXili in the body have li =∞, i.e., it is of the form

H = p← q1, . . . qm, k1X1, . . . , knXn

Niemelä, Simons and Soininen observe that the one-step provability operator
associated with a Horn CC-program is monotone and hence a Horn CC-program
P has a least fixed point, MP . Moreover, they show that MP is the least model
of P .

Next we introduce the analogue of the Gelfond-Lifschitz reduct for CC-logic
logic programs which we call the NSS-reduct. The NSS-reduct of a CC-logic
program P with respect to a set M of ordinary atoms is defined as follows. First
we eliminate all clauses D of P such that M does not satisfy the body of D. For
the remaining clauses C of P , replace C by CM where

1. CM = p ← q1, . . . , qm, k1X1 . . . , knxn if C = p ← q1, . . . , qm, k1X1l1, . . . ,

knXnln and

2. CM is a collection of Horn constraint clauses of the form p← q1, . . . , qm, k1X1,

. . . , knXn for each p ∈ X∩M if C = kXl← q1, . . . , qm, k1X1l1, . . . , knXnln.

We let PM denote the Horn CC-program consisting of the set of all CM such
that C ∈ P and M satisfies the body of C. Following [NSS99], we say that M

is a CC-stable model of P if (i) M is a model of P and (ii) M is the least model
of the Horn CC-program PM .

To define the notion of a SC-stable models for a SC-logic program, we first
must define an extension of the NSS-reduct. Our first step is to define an appro-
priate analogue of clauses of the form kX∞. To this end, define the upper-closure
of F with respect to X to be the family FX where

FX = {Y ⊆ X : ∃Z(Z ∈ F ∧ Z ⊆ Y )}.



We will drop the subscript X when it is determined by the context. A family of
subsets of X is closed if F = F . A closed family is nothing more than an upper
ideal in the partially ordered set 〈P(X),⊆〉. Notice that closure of a closed family
F of subsets of X is F itself.

Example 6. The closure kXl is kX∞ (that is, kX), i.e. family {Y ⊆ X : k ≤
|Y |}. The closure of Feven is the entire powerset of X (recall that X is finite).
The closure of Fodd is the set of all non-empty subsets of X.

Observe that an atom a is shorthand for the SC-atom 〈{a}, {{a}}〉 which
is automatically closed. However the atom ¬a is shorthand for the SC-atom
〈{a}, {∅}〉 whose closure is 〈{a}, {∅, {a}}〉. 2

Clearly, different families of sets may generate the same closure. However,
closure of a family F , F , has precisely the same inclusion-minimal elements as
F . We define the closure of an SC-atom 〈X,F〉 to be 〈X,F〉.

This given, we can now define the analogue of Horn program. A Horn SC-
clause is a SC-clause where the head of the clause is an ordinary atom and all
SC-atoms in the body are closed, i.e. a clause of the form

H = p← q1, . . . qm, 〈X1,F1〉, . . . , 〈Xn,Fm〉.

where Fi = Fi for all i. A Horn SC-logic program is a SC-program consisting
entirely of Horn SC-clauses. As in [NSS99], one can show that the one-step
provability operator associated with a Horn SC-program is monotone and hence
a Horn SC-program P has a least fixed point, MP , which is a unique minimal
model of P . Thus we have the following.

Proposition 2. Let P be a Horn SC-logic program. Then:

1. There is a least model of P , MP .
2. There is a deterministic monotone operator SP such that MP is the least fixed

point of SP . The fixed point of SP is reached in at most ω steps regardless
of the size of P .

We will now define the NSS transform of a SC-logic program P with re-
spect to a set of atoms M . Let P be a SC-logic program and let M be a
subset of At . The NSS transform , NSS(P,M), of P with respect to M is de-
fined in two steps. First, eliminate from P all clauses whose bodies are not
satisfied by M . In the second step, in each remaining clause we execute the
same operations as in the original NSS transform, except that the closure of
the atoms in the bodies of clauses is as defined above. That is for each clause
〈X,F〉 ← q1, . . . , qm, 〈X1,F1〉, . . . , 〈Xk,Fk〉, and for each a ∈ X ∩M , we gener-
ate the clause a← q1, . . . , qm, 〈X1,F1〉, . . . , 〈Xk,Fk〉.

It is easy to see that the resulting program NSS(P,M) is a Horn SC-logic
program. Consequently, NSS(P,M) has a least model NP,M . We then say that
M is an SC-stable model of P if (I) M is a model of P and (II) M = NP,M .

We note that the first condition that M is model of P need not to be required
for normal logic program P because the least model of the Gelfond-Lifschitz
transform of P is automatically a model of P . This is not true for SC-logic
programs as our next example will show.



Example 7. Let P be a SC-logic program consisting of the following two clauses:

1{a, b, c, d}2← 3{a, b, c, d}4←

Note that M = {a, b, c, d} is not a model of P . In fact, it is easy to see that P

has no models. However NSS(P,M) consists of four atomic clauses:
a ← b ← c ← d ←. Thus M = NP,M . However, since M is not a model
of P , M is not a stable model of P . 2

We note that pruning process for the NSS-transform is more extensive than in
the case of Gelfond-Lifschitz (GL) transform of normal logic programs. That is,
for the GL-transform, we prune those clauses where M contradicts the negative
part of the body, while for the NSS-transform, we eliminate clauses with bodies
not satisfied by M . As shown by Truszczynski [MT95], this stronger Gelfond-
Lifschitz-like transformation leads to the same class of stable models.

Let P be a normal logic program. We identify P with a SC-logic program
where each atom and each negated atom are expressed by set constraints (a
is expressed by 〈{a}, {{a}}〉, ¬a is expressed by 〈{a}, {∅}〉). We then have the
following result which is essentially the same result that Niemelä, Simons and
Soininen established for CC-logic programs.

Proposition 3. Let P be a normal logic program and let M be a set of atoms.
Then M is a stable model of P in the sense of Gelfond and Lifschitz if and only
if M is a stable model of P viewed as a SC-logic program.

We end this section with an analogue of the main result of [MR02] for SC-
logic programs.

Theorem 1. Let P be a SC-logic program over a language L. Then there is a
normal logic program P over a extended language L of L such that

(i) For each SC-stable model M of P , there is a unique stable model M of P

such that M is the restriction of M to the language L.
(ii) For each stable model M of P , the restriction of M to the language L is a

SC-stable model of P .

4 Nondeterministic lattice operators

We observed that introduction of set constraints leads naturally to investigation
of non-deterministic operators in complete lattices. Consequently, in this sec-
tion, we will investigate nondeterministic operators and establish some of their
properties.

Let 〈L,≤L〉 be a complete lattice. A (nondeterministic) operator in L is
any function O from L to the powerset of L. We say that an operator O is
deterministic, if for every x ∈ L, the size of O(x), |O(x)|, is equal to 1. If the
operator O is deterministic, we can identify O with a mapping from L to L,
namely, assigning to x ∈ L the unique element of O(x). Conversely, a mapping



Q from L to L can be identified with a nondeterministic operator OQ from L to
P(L) by assigning to every x the set consisting of a single lattice element Q(x).

Nondeterministic operators naturally occur in the context of set constraint
programs as our next example will show.

Example 8. Let P consist of a single clause

1{p1, p3}2← 2{p2, p4, p5}3

It is natural to assign to M = {p1, p2, p5} each of the following values {p1}, {p3},
and {p1, p3}. Unless additional criteria are used, each of these values is a correct
value because the intention of the programmer described in this clause is that
any of these values is acceptable. 2

We say that a nondeterministic operator O : L → P(L) is monotone if for
every x, y ∈ L such that x ≤L y, it is the case that for every z ∈ O(x), there is
t ∈ O(y) such that z ≤L t. A fixed point of an operator O : L→ P(L) is any x

such that x ∈ O(x).

Proposition 4. If O : L → L is a monotone operator, then its interpretation
as a nondeterministic operator from L to P(L) is also monotone.

Thus a monotone deterministic operator always possesses a fixed point. It
is tempting to conjecture that a nondeterministic monotone operator always
possesses a fixed point. However, this is not always the case as our next example
will show.

Example 9. Let L be the Boolean lattice P(N) where N is the set of non-negative
integers. The structure 〈L,⊆〉 forms a complete lattice. Define a nondeterministic
operator O from P(N) to P(P(N)) as follows.

(a) If X ⊆ N is finite set of cardinality n, then O(X) is a family consisting of
a single set {0, . . . , n}.

(b) If X ⊆ N is an infinite set, then O(X) is the family of all finite subsets of
N , Pfin(N).

First, observe that O is a monotone nondeterministic operator. Indeed, assume
X ⊆ Y .
Case 1. Both X and Y are finite. If X ⊆ Y so that |X| ≤ |Y |, then O(X) =
{{0, . . . , |X|}}, O(Y ) = {{0, . . . , |Y |}} and every element of O(X) is contained
in every element of O(Y ) and hence the monotonicity condition holds.
Case 2. Both X and Y are infinite. Then every element of O(X) belongs to
O(Y ), thus the monotonicity condition holds.
Case 3. X is finite and Y is infinite. Then since O(Y ) = Pfin(N), the only
element of O(X), being finite, belongs to O(Y ). Thus again the monotonicity
condition holds.

However, O has no fixed point. For let X be a subset of N . If X is finite, then
the only element of O(X) has size bigger than that of X, and thus X cannot be
a fixed point. When X is infinite, X does not belong to O(X) at all. 2



A close look at Example 9 will show that there are two reasons for the lack
of fixed points. First, we allowed O(X) be infinite when X is infinite. Second,
the limit of the values of O of a directed family is not a value of O. We will now
state two results on the existence of fixed points of monotonic nondeterministic
operators.

Proposition 5. Let O be a monotone nondeterministic operator from a com-
plete lattice L to P(L) such that O(⊥) is nonempty, and for every X, O(X) is
finite. Then O possesses a fixed point.

Proposition 6. Assume that L is a complete lattice and O : L → P(L) is a
nondeterministic operator satisfying following two properties:

1. O is monotone
2. For every x ∈ L, the family O(x) has a maximum element

Then O possesses a fixed point.

Notice that both Propositions 5 and 6 are generalizations of Knaster-Tarski
theorem in that monotone deterministic operators automatically satisfy the hy-
potheses of the each theorem.

5 Generalization of van Emden-Kowalski operator

In this section, we develop an analogue of the one-step provability operator for
SC-logic programs. This operator is a generalization of the familiar van Emden
Kowalski operator [AvE82].

Let P be a SC-logic program. If M be a set of atoms, then we let SatP,M =
{C ∈ P : M |= body(C)}. Thus SatP,M consists of those SC-clauses in P such
that M satisfies the body of C. Fix a SC-logic program P . An M -satisfier is any
function from SatP,M to P(At) which assigns to each clause C ∈ SatP,M , an
element of the family F for which 〈X,F〉 is the head of C. Thus an M -satisfier
provides values to satisfy the heads of clauses whose bodies are satisfied by M .

Example 10. Let P be this SC-logic program:

C1 : 〈{a, b, c},Feven〉 ← a

C2 : 2{a, b, c, d}3← 1{b, c, d}3
C3 : c← b

Take as M the set {b, d}. It satisfies the second and the third clauses, but not the
first one. There are several M -satisfiers for M . Clearly every M -satisfier must
assign {c} to clause C3. However for clause C2, an M -satisfier can assign any
two or three element subset of {a, b, c, d}. 2

Now, we are ready to define the nondeterministic operator TP associated
with the program P . Specifically, we define

TP (M) = {
⋃

Rng(f) : f is an M -satisfier}

Thus the value of the TP operator on M is the collection of “candidates”, each
candidate being the union of the range of some M -satisfier.



Example 11. In our previous example there are 7 possible values for TP ({b, d}).
Each of those contains c. When we inspect N = {b, c, d}, we again find the same
7 values in TP (N). It is easy to see that the set N is a fixed point for the operator
TP . 2

We note that the nondeterministic operator TP for SC-logic programs P is,
in fact, a generalization of the familiar van Emden-Kowalski operator. Indeed, if
P is a normal logic program and M is a subset of the set of atoms At , then there
is just one M -satisfier. Specifically, it is a unique function f : SatP,M → P(At)
such that f(C) = {head(C)} where head(C) is the head of C. Thus for normal
logic programs, the operator TP is deterministic.

Recall that an atom 〈X,F〉 closed, if F is an upper ideal in P(X), that is, if

∀Y,Z(Y ∈ F ∧ Y ⊆ Z ⊆ X ⇒ Z ∈ F).

An SC-logic program P is closed if all the SC-atoms which occur either in the
head or the body of a clause P are closed. Observe that if the atom 〈X,F〉 is
closed, M |= 〈X,F〉 and M ⊆ M ′, then M ′ |= 〈X,F〉. In fact, this property
characterizes the closed SC-atoms. Specifically, if for all M ⊆ M ′ ⊆ At, M |=
〈X,F〉 implies M ′ |= 〈X,F〉, then F must be closed.

We now have the following result.

Proposition 7. If P is a closed SC-logic program, then TP possesses a fixed
point M . Moreover M can be chosen to be a model of P .

Unlike the situation for normal logic programs, it is not the case that every
fixed point of TP is a model of P as our next example will show.

Example 12. Let P be this program:

1{p, q, r}2← p

2{p, q, r}3← p

This program has four fixed points: ∅, {p, q}, and {p, r} and {p, q, r}. It is easy
to see that first three are models of P while the last one is not.

Clearly, it is even easier to find a model which is not a fixed point. Any
non-supported model of a normal logic program induces such example.

We call a set M of atoms a supported model of a SC-logic program P if M

is a model of P and M is a fixed point of the nondeterministic operator TP .
Our final result of this section shows that stable models of SC-logic programs

are fixed points of the nondeterministic operator TP considered in Section 5.
This generalizes the result of Gelfond and Lifschitz which is that stable models
of normal logic programs are always supported models.

Proposition 8. Let P be a SC-logic program and let M be a set of atoms. If M

is a stable model of P then M is a fixed point of the nondeterministic operator
TP .



6 Conclusions and further research

We discuss some issues related to the research presented in this paper. The first
question is: “What families are representable as families of stable models of a
program?” In the case of a finite collection of finite sets, the answer is obvious.
Each such family X is representable. Indeed, if X is empty, then any inconsistent
program is appropriate. If X is nonempty, then two cases are possible. If X
consists of an empty set, then ¬p ← is the appropriate program. Otherwise,
take X =

⋃
X and let P consist of a single clause 〈X,X〉 ←. It is easy to see

that P can be used to represent F .
It turns out that the assumption that all sets in the family F are finite is

immaterial. That is, we can prove if F is any finite collection of sets of atoms,
then there is a SC-logic program PF such that the family of SC-stable models
of PF is F .

Unfortunately, these results tell us nothing about what infinite families sets
can form the set of SC-stable models of some SC-logic program. In the case stable
models of normal logic programs, two characterizations are available. A topolog-
ical characterization of the families representable as the set of stable modes of
a logic program has been found by A. Ferry [Fe94]. An alternative solution, in
recursion-theoretic terms, has been found in [MNR90]. No corresponding result
for SC-logic programs, or even CC-logic programs, are known.

Another problem which awaits settlement is the problem of well-founded
semantics [VRS91] for SC-logic programs. It is clear that some form of well-
founded semantics can be obtained by the reduction to the stable semantics of
normal logic program. We believe, though, that a more direct construction via
approximation of the nondeterministic operator in the spirit of [DMT02] exists.
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[NS00] I. Niemelä and P. Simons. Extending Smodels System with Cardinality
and Weight Constraints. In J. Minker, editor, Logic-Based Artificial Intel-

ligence, pages 491–521. Kluwer Academic Publishers, 2000.
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