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we propose helps explain how agents form their belief sets. It allows us to study constructiveways in which belief sets can be approximated and leads to a comprehensive and precise accountof the relationship between the two logics in question.The default logic introduced by Reiter [Rei80] and the autoepistemic logic introduced byMoore [Moo84, Moo85] are among the most widely studied nonmonotonic knowledge represen-tation systems. Research monographs [Bes89, MT93, Ant97] provide extensive presentationsof these two logics, and of their properties. The default and the autoepistemic logics weredesigned to model commonsense forms of reasoning, in particular, reasoning patterns of theform \in the absence of any information to the contrary infer ...". Such patterns were seenas a basic reasoning mechanism in the context of partial knowledge. Reiter referred to suchpatterns as defaults.In the default logic of Reiter, a default is represented as a non-standard inference rule� : M�1; : : : ;M�k ;where �, �i, 1 � i � k, and  are propositional formulas (we limit our attention to thepropositional case only). Speaking informally, the intended meaning of a default is: if � canbe derived and if for every i, 1 � i � k, �i is consistent, then derive . This intuition pointsto the key idea behind a default. It has premises of two di�erent types. The premise � iscalled the prerequisite of a default and is treated just like premises of standard (monotone)inference rules. Premises �i are called justi�cations. The symbol M that pre�xes justi�cationsis commonly used in modal logic to denote the modality of \being consistent". Reiter used itto emphasize the way in which justi�cations are interpreted. In order to apply the rule, theyjust need to be consistent (rather than derived). To formally de�ne the semantics of defaultlogic, Reiter provided a precise mathematical interpretation for the phrases \� can be derivedand \�i is consistent" and de�ned the notion of an extension as a formal representation of abelief set that an agent might adopt when reasoning on the basis of a default theory.Though Reiter used the modal notation M� for justi�cations to emphasize the intendedmeaning of justi�cations, he did not use the syntax of modal logic nor the semantic techniquesdeveloped there. In fact, in current literature dealing with default logic, the letter M isdropped from the notation of justi�cations. We will also do so throughout the paper. Theidea to use a modal language and modal logic techniques in the area of nonmonotonic logicsis due to McDermott and Doyle [MD80, McD82]. For the primary modality in the languagethey chose the modality of consistency which, as we mentioned earlier, is commonly denotedby M . McDermott and Doyle [MD80] and, later, McDermott [McD82] introduced severalnonmonotonic semantics for the operator M . They suggested that an inference rule of theform \infer  if in the absence of any information contradicting �" should be represented bythe modal formula M� ) .Moore [Moo85] developed autoepistemic logic departing from the nonmonotonic logics ofMcDermott and Doyle. Moore pointed out some technical problems arising in the contextof the original modal nonmonotonic logic described in [MD80], observing that the notion ofconsistency proposed there was too weak. He also discarded a more re�ned approach from[McD82], where modal nonmonotonic logics based on monotone modal systems T, S4 and S5were studied. Moore suggested to use the modality of belief as the primary modality in thelanguage. This modality is usually denoted by K and is related to M through the identityM = :K:. Further, and more importantly, Moore suggested that the semantics of a modal2



nonmonotonic logic be designed so that to model reasoning of a rational agent reecting onher own beliefs. Moore postulated that such a rational agent should have perfect introspectioncapabilities. That is, if ' is in the agent's belief set then K' should be a belief too (the agentbelieves in her own beliefs) and if ' is not in the agent's belief set then :K' should be in thebelief set (the agent disbelieves her non-beliefs). Moore proposed a way to complete collectionsof base facts about the world (possibly referring to agent's beliefs or disbeliefs) to belief sets,called expansions, that the agent might hold given the base theory.This brief overview points to similarities in motivations and intuitions behind default andautoepistemic logics. These similarities drew attention to the issue of a formal account ofthe relationship between the two logics, which quickly became a subject of active research.Konolige [Kon88] proposed to translate a default� : �1; : : : ; �k ;into the autoepistemic formula:K� ^ :K:�1 ^ : : : ^ :K:�k ! :The translation was an attempt to reect the intuition that in order to apply a default, itsprerequisite must be derived and its justi�cations must be consistent. To model the statement\� is derived", Konolige used the formulaK�. To model the statement that \�i are consistent",Konolige used the formula :K:�i (which is equivalent to M�i).There was, however, a problem. It turned out that, while seemingly well motivated, thetranslation does not relate extensions and expansions. Speci�cally, modal counterparts (underKonolige's translation) of default theories could have expansions not corresponding to exten-sions. That discovery suggested a possibility that the autoepistemic logic may not be the rightmodal counterpart to the default logic or that the modal reading of a default proposed byKonolige is not appropriate. Thus, researchers began to look for other modal logics and forother translations. Konolige related default logic to a version of autoepistemic logic basedon the notion of a strongly grounded expansion [Kon88]. Marek and Truszczy�nski [MT89b]proposed an alternative translation and represented extensions as expansions of a modal non-monotonic logic constructed by the method of McDermott from the weakest modal logic N .Truszczy�nski [Tru91] found that the G�odel translation of intuitionistic logic to modal logic S4could be used to translate the default logic into the nonmonotonic modal logic S4F.Gottlob [Got95] returned to the original problem of relating default and autoepistemiclogic. He described a mapping translating default theories into modal ones so that extensionscorrespond precisely to expansions. The problem is that his translation is not modular. Theautoepistemic representation of a default theory depends on the whole theory and cannot beobtained as the union of independent translations of individual defaults. Thus, the approachof Gottlob does not provide an autoepistemic reading of an individual default. In fact, in thesame paper Gottlob proved that a modular translation from default logic with the semantics ofextensions to autoepistemic logic with the semantics of expansions does not exist. In conclusion,there is no modal interpretation of a default under which extensions would correspond toexpansions.Results of Gottlob provided strong evidence that extensions and expansions are, in somesense, essentially di�erent. A careful examination of intuitions as well as of formal de�nitions3



of extensions and expansions provides some further evidence to this e�ect. Moore's logic some-times sanctions unsupported beliefs. For example, the theory fKp ) pg has two expansions.One of them is generated by the set of all tautologies, the other one is generated by p. Pres-ence of p in this latter expansion is justi�ed only by the belief in p (by the formula Kp). Inother words, the belief in p is self-supporting. In contrast, belief sets containing self-supportingbeliefs are not sanctioned by the default logic. Even if a defaultp :p ;providing self-supporting evidence for p, is included in the theory, the semantics of defaultlogic does not make any use of it. The default theory (fp:p g; ;) has only one extension andit consists of tautologies only. Thus, the autoepistemic logic of Moore could be viewed as anonmonotonic logic of belief and the default logic of Reiter could be viewed as a nonmonotoniclogic of justi�ed belief.As for the translation proposed by Konolige, it is clear that it does not relate extensionsand expansions. It does, however, provide some link between default logic and autoepistemiclogic. Marek and Truszczy�nski [MT89a] proposed the concept of a weak extension of a defaulttheory and proved that under the translation of Konolige, weak extensions and expansionscoincide. In other words, they proposed an alternative semantics for default theories thatcould be viewed as the semantics of belief, yielding a default version of the logic of belief.Thus, the Konolige's translation might be the right one, once proper semantics on each sideare identi�ed and correctly aligned.The picture that emerges is that of a substantial research e�ort and several signi�cantresults but with no de�nite systematic account of semantics for default and autoepistemictheories and with no clear understanding of constructive principles behind the process of ar-riving at a belief set. There has been no satisfactory solution to the matter of the relationshipbetween the two logics and there have been questions concerning the adequacy of the modalreading of defaults that was proposed by Konolige. In this paper we resolve all these issues.We propose a unifying semantic treatment of default and autoepistemic logics in termsof possible-world structures. A possible-world structure is a collection of two-valued proposi-tional interpretations each representing a state of the world that is possible according to theagent. Possible-world structures can be seen as special Kripke structures [HC84]. They are offundamental importance in semantic studies of the modalities of knowledge and belief.Possible-world structures were used in the study of autoepistemic logic. Moore describeda possible-world characterization of expansions in [Moo84]. They also �gured prominently inLevesque's studies of autoepistemic logic as the logic of \only knowing" [Lev90]. Possible-worldstructures appeared in the study of default logic but only marginally. Guerreiro and Casanova[GC90] found a characterization of extensions in terms of possible-world structures. Their workwas later further expanded by Lifschitz [Lif90]. Possible-world structures in default logic werealso studied by Besnard and Schaub [BS94].In this paper, we propose a comprehensive semantic framework based on the concept of apossible-world structure and on the intuition that belief sets can be obtained in a constructiveprocess of building their increasingly more precise approximations. To formally represent anapproximation to a possible-world structure we use the concept of a belief pair, that is, a pairof possible-world structures one of which provides a conservative and the other one a liberal4



estimate. We introduced this notion [DMT99] and used it there to study ways to approximatethe semantics of expansions.Belief pairs form a complete lattice. We model the process of revising one approximation(belief pair) to obtain another approximation (that is, another belief pair) in default and au-toepistemic logics as monotone operators on the lattice of belief pairs. By selecting di�erent�xpoints of these operators we obtain structured families of semantics for default and autoepis-temic logics. Some of these semantics are appropriate to model the notion of belief. Othersare well suited to model the concept of justi�ed belief. Still others have a strong constructiveavor | the corresponding �xpoints can be obtained by iterating the operators over the leastprecise approximation. Our main contributions can be summarized as follows:� With every modal theory T we associate an operator DT de�ned on the lattice of be-lief pairs. Applying purely algebraic means to the operator DT , we obtain a family ofsemantics for T . These semantics capture di�erent modes of reasoning in autoepistemiclogic. One of them corresponds to the semantics of expansions as introduced by Moore.Another one is the semantics of justi�ed belief that eliminates expansions containingself-supporting beliefs.� The same approach works for the default logic! With every default theory � we associatean operator E� de�ned on the lattice of belief pairs. We apply to E� the same algebraictechniques we used in the study of the operator DT and obtain a family of semantics for�. Among these semantics there are the semantics of weak extensions and the semanticsof extensions capturing within default logic the concepts of belief and justi�ed belief,respectively.� The semantic operator of a default theory � and of the autoepistemic theory obtainedby applying to � the translation of Konolige are identical. This fact has far reachingconsequences. Konolige's translation establishes an isomorphism between the two familiesof semantics of default and autoepistemic logics. In particular, the meaning of a defaulttheory under a particular semantics of default logic is identical to the meaning of itstranslation in the corresponding semantics of the autoepistemic logic.In this way, we resolve the issue of the relationship between default and autoepistemiclogics and the question why Konolige's translation did not work. Default logic underthe semantics of extensions and autoepistemic logic under the semantics of expansionsmodel di�erent modes of autoepistemic reasoning and occupy di�erent locations in theirrespective families of semantics. This fact is responsible for Gottlob's result that defaultscannot be translated to autoepistemic formulas one by one. However, once we properlyalign di�erent semantics of default and autoepistemic logics, we �nd that Konolige'stranslation is correct! Viewed in the context of a family of semantics, rather than in thecontext of a single one, default logic turns out to be just a fragment of autoepistemic logic.The original default logic with extensions can be seen as a fragment of the autoepistemiclogic of justi�ed belief. The default logic with weak extensions (expansions) is a fragmentof the autoepistemic logic of belief (the original autoepistemic logic with expansions).� We identify two di�erent constructive semantics describing how to approximate theknowledge in an autoepistemic or default theory. They are obtained by iterating cer-tain monotone operators on the lattice of belief pairs (operators DT , E� and two other5



operators that are derived from them). This constructive process provides insights onhow agents can gain information about an unknown belief set by starting with the weak-est approximation possible (the bottom of the lattice of belief pairs) and by using theirbase theory to iteratively improve upon this approximation until further improvementsare no longer possible. We show how these semantics can be used to obtain su�cient con-ditions for the existence of a single belief set. We also study the complexity of computingthese approximation semantics and show that it is lower than the complexity of com-puting individual belief sets. This result may have implications for building automatedreasoning systems for default and autoepistemic logics.� Our investigations are based on algebraic considerations concerning �xpoints of operatorson lattices. In that we follow the approach developed by Fitting [Fit02] and furtherextended in [DMT00b] to study semantics for logic programs with negation. Connectionsbetween logic programming with negation and autoepistemic and default logics wereestablished a long time ago [Gel87, MT89b, BF91]. It turns out that the structure ofmost important semantics for logic programs revealed by Fitting's work is isomorphic tothe structure of the semantics for autoepistemic and default logics that we derive in thispaper.The paper is organized as follows. First, in Section 2, we introduce basic logic terminologyand review the semantic approach to autoepistemic logic proposed by Moore [Moo84]. InSection 3, we introduce and study the operator DT , de�ned on the lattice of belief pairs.Fixpoints of the operator DT give rise to the semantics of partial expansions and expansionsfor autoepistemic logic. The least �xpoint of DT yields the Kripke-Kleene semantics. In Section4, we introduce stable operators associated with the operator DT . Fixpoints of these operatorsde�ne several new semantics for the autoepistemic logic. In Section 5, we study semanticalfoundations of Reiter's default logic. We de�ne an operator E� on the lattice of belief pairs,which is a default-logic counterpart of the operator DT . As in the case of autoepistemiclogic, we derive from E� several other operators and show how their �xpoints describe majorsemantics of default theories. Exploiting the relationship between the operators DT and E�(under the Konolige's modal interpretation of defaults), we establish in Section 6 a precisecorrespondence between default and autoepistemic logics and explain earlier problems withrelating the two logics. In Section 7, we study the complexity of computation of suitably chosenrepresentations of Kripke-Kleene and well-founded �xpoints and show that the correspondingdecision problems are in the class �P2 . The last section contains additional discussion of theresults and conclusions.2 Autoepistemic logic | preliminariesIn this section, we introduce basic logic terminology that we will use in the paper. We alsorecall the semantic treatment of autoepistemic logic proposed by Moore [Moo84] and studiedby Levesque [Lev90].In the paper, we consider the language of propositional logic determined by a set of propo-sitional atoms At . We denote this language by L. We also consider the language of modalpropositional logic obtained by extending L with a modal operator K. We denote this lan-guage by LK . We call formulas in LK that do not contain any occurrences of K modal-free6



or propositional formulas. Of particular interest in the paper are modal formulas of the formK'. We call them modal atoms. We refer to collections of modal formulas (that is, subsets ofLK) as modal theories.A two-valued interpretation assigns to each atom from At a truth value t or f. These twotruth values, together with the ordering f � t, form the standard Boolean lattice of truthvalues. The set of all two-valued interpretations of At will be denoted by A.Any set Q � A is called a possible-world structure and can be viewed as a universal Kripkemodel with a total accessibility relation [Che80, HC84]1. Possible-world structures constitutea basic tool in semantic studies of modal logics. As we stated earlier, they represent the agent'sknowledge about the world. Possible-world structures were used by Moore [Moo84] and laterby Levesque [Lev90] in the investigations of autoepistemic logic.We denote the collection of all possible-world structures (with respect to the set of atomsAt) by W. This set can be ordered by the reverse set inclusion v: for Q1; Q2 2 W, Q1 v Q2if Q2 � Q1. The reason for the choice of this ordering is that if Q1 v Q2, and Ti; i = 1; 2,are the sets of sentences of L true in Qi, then T1 � T2. The ordering v can be thought ofas a knowledge ordering. As we move up in the lattice, more and more interpretations areexcluded from possible-world structures. Thus, our knowledge of the interpretation describingthe actual world improves. Clearly, hW;vi is a complete lattice.Example 2.1 As a running example, to illustrate concepts in the paper, we will consider thelanguage over the set of atoms Atp = fpg. We will denote this language as Lp. The set ofinterpretations A (denoted Ap, in this special case) consists of two interpretations, say Ip andJp, where Ip(p) = t and Jp(p) = f. The setW (denoted byWp) has four elements: ;, Ip = fIpg,Jp = fJpg and Ap. The lattice (Wp;v) is shown in Figure 1. 2;Ip @I JpAp�� ��@IFigure 1: Lattice (Wp;v)To study formalisms based on the modal language, we study operators on the lattice Wand their �xpoints. We start by de�ning the truth function HQ;I (Q � A is a possible-worldstructure, I 2 A is an interpretation). The de�nition is inductive and proceeds as follows:1. HQ;I(p) = I(p), if p is an atom.2. HQ;I('1 ^ '2) = t if HQ;I('1) = t and HQ;I('2) = t. Otherwise, HQ;I('1 ^ '2) = f.1Usually, the universe of a Kripke model is required to be nonempty. The empty set of worlds satis�es allformulas, and thus corresponds to the inconsistent theory. At times, autoepistemic expansions are inconsistent,and allowing for an empty set of worlds, as we do in this paper, captures this case.7



3. HQ;I('1 _ '2) = t if HQ;I('1) = t or HQ;I('2) = t. Otherwise, HQ;I('1 _ '2) = f.4. HQ;I(:') = t if HQ;I(') = f. Otherwise, HQ;I(') = f.5. HQ;I(K') = t, if for every interpretation J 2 Q,HQ;J(') = t. Otherwise,HQ;I(K') = f.Let us note that the value of a modal atom K' given by HQ;I does not depend on I. Thus, it isentirely determined by the possible-world structure Q. We will denote this value by HQ(K').We de�ne the theory of a possible-world structure Q as the setTh(Q) = f' : HQ(K') = tg:It is clear that every modal atom K' is either true or false with respect to Q. In other words,for every formula ' 2 LK , its epistemic status is fully determined: it is either known in Q orit is not known in Q.For every modal theory T , Moore [Moo84] de�ned an operator DT on W by:DT (Q) = fI : HQ;I(') = t; for every ' 2 Tg:The intuition behind this de�nition is as follows. The possible-world structure DT (Q) is arevision of a possible-world structure Q. This revision consists of the worlds that are acceptablegiven the constraints on agent's beliefs captured by T . That is, the revision consists preciselyof these worlds that make all formulas in T true (in the context of Q | the current beliefstate). Fixpoints of the operator DT represent \stable" belief sets | they cannot be revisedany further. Moore called the theory of a �xpoint of DT a stable expansion of T and proposedit as a basis of autoepistemic logic: a formal description of a belief set of a rational agent withfull introspection powers reasoning from a base theory T . In this paper, we will use the term\expansion" instead of the original term \stable expansion". Somewhat abusing the notation,we will use the term \expansion" also to refer to �xpoints of the operator DT (and not onlyto their theories).Example 2.1 (cont'd). Let us consider a theory Tp = fKp ) pg in the language Lp (weregard � ) � as an abbreviation of :� _ �). We will determine the operator DTp . To thisend, we will �rst determine the truth function HQ;I for all possible-world structures Q 2 Wpand all interpretations I 2 Ap. Because of the form of the theory Tp, it is enough to establishthe values of HQ;I for p, Kp and Kp) p, only. Table 1 lists for each pair Q; I, those formulasamong p, Kp, Kp) p and their negations that are true under HQ;I .; Ip Jp ApIp p;Kp;Kp) p p;Kp;Kp) p p;:Kp;Kp) p p;:Kp;Kp) pJp :p;Kp;Kp) p :p;Kp;:(Kp) p) :p;:Kp;Kp) p :p;:Kp;Kp) pTable 1: Truth assignment HQ;I(').The operation of DTp can be readily obtained from this table. In particular, for eachpossible-world structure Q, DTp(Q) is the set of interpretations I for which the table entry(I;Q) contains Kp) p. Table 2 lists the values of the operator DTp . It follows that the theoryTp has two expansions: Ip and Ap. Let us note that Ap is the least expansion in the knowledgeordering. 28



X ; Ip Jp ApDTp(X) Ip Ip Ap ApTable 2: The operator DTp .3 Autoepistemic logic | a multivalued generalizationIn [DMT99], we generalized Moore's approach to the three-valued case, in which we allow forthe possibility that the truth value of some modal atoms is neither t nor f but, instead, it iscaptured by a new truth value, unknown or u. In this section, we recall essential elements ofour approach from [DMT99] and extend it to the four-valued case.Let us consider a modal theory T . We are interested in ways to form a belief set corre-sponding to T or its representation in terms of some possible-world structure, say Q. However,instead of searching for direct ways to �nd Q, we exploit the idea of an approximation. Anunderestimate (or a conservative view) of Q is given by any superset P of Q. Indeed, any suchsuperset bounds Q from below in the lattice W (with respect to the knowledge ordering v).Similarly, an overestimate (or a liberal view) of Q is provided by any subset S of Q, as subsetsof Q are upper bounds for Q in the lattice W. Interpretations in P can be thought of as thosethat are still regarded by the agent as possible (we do not have reasons to eliminate any ofthem yet). Interpretations in S are those that are surely in Q | we already have establishedthat they need to be included in the possible-world structure describing the agent's belief set.Together, P and S form an approximation to Q.To study approximations we introduce the concept of a belief pair. A belief pair is anypair (P; S) of possible-world structures. The structure P is intuitively regarded as an under-estimation, S is regarded as an overestimation. Consequently, we say that a belief pair (P; S)approximates a possible-world structure Q if S � Q � P (or, in terms of the knowledge or-dering, if P v Q v S). Clearly, the set of possible-world structures approximated by a beliefpair (P; S) is not empty if and only if S � P (equivalently, P v S). We call such beliefpairs consistent (intuitively, their conservative perspective is consistent with the liberal one).All other belief pairs are called inconsistent | they do not approximate any possible-worldstructures.In [DMT99], we considered consistent belief pairs only. As a result we obtained a three-valued concept of belief set (beliefs could be true, false or unde�ned). In this paper we allowinconsistent belief pairs. First, the ways in which the agent establishes estimates P and Smay be independent of each other and, at least at an abstract level, inconsistent belief pairsmay arise. Second, admitting inconsistent belief pairs simpli�es mathematical arguments andyields more elegant algebraic structures. Working in this extended setting, we propose four-valued semantics for autoepistemic logics and show that they generalize two- and three-valuedsemantics that were known before.Belief pairs can be ordered by a precision ordering �pr. Namely, given two belief pairs(P; S) and (P 0; S0) we de�ne:(P; S) �pr (P 0; S0) if P 0 � P; and S � S0;or, equivalently, (P; S) �pr (P 0; S0) if P v P 0; and S0 v S:9



Let us denote by [P; S] the set fQ 2 W:P v Q v Sg. Clearly, if (P; S) �pr (P 0; S0) then[P 0; S0] � [P; S]:In other words, larger (in the ordering �pr) belief pairs provide more precise approximations| the sets of approximated possible-world structures get smaller. This property motivates ourchoice of terminology.We denote the set of all belief pairs by B. Together with the precision ordering, the set Bforms a complete lattice. Thus, by the theorem of Tarski and Knaster, monotone operators onB are guaranteed to have a least �xpoint. The lattice (Bp;�pr) of belief pairs over the languageLP (Example 2.1) is shown in Figure 2.
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Figure 2: Lattice (Bp;�pr)We will mention in passing that the set of all belief pairs can also be ordered by anotherordering, v, de�ned as follows:(P; S) v (P 0; S0) if P v P 0 and S v S0:We refer to this ordering as the knowledge ordering of B as it is a component-wise extension ofthe knowledge ordering v of possible-world structures (moreover, we use the same symbol todenote it). This ordering plays only a limited role in our considerations (it de�nes the conceptof minimality used in Theorems 4.4 and 5.9) thus, we do not discuss its properties in anysigni�cant detail.With a belief pair (P; S) and a two-valued interpretation I we associate a two-valued truthfunction H2(P;S);I de�ned on the set of all formulas of the modal language. Our intention isto de�ne H2(P;S);I(') so that it provides a conservative estimate to the truth value of ' withrespect to a belief pair (P; S). The de�nition follows a standard recursive pattern and the onlymore subtle point concerns the de�nition of H2(P;S);I for modal atoms K'.Before we give a formal de�nition, let us �rst consider a modal atom K', where ' does notcontain any other occurrences of K. In the belief pair (P; S), P represents the conservativepoint of view. Thus, the conservative estimate for the truth value of K' will be obtained if10



the set P is used in the evaluation: K' should be true according to the conservative point ofview if ' is true in all valuations in P . The situation changes in the case of the formula :K'where, as before, ' is modal-free. To compute the conservative estimate for the truth valueof this formula, we need to negate the liberal estimate for the truth value of K'. This liberalestimate can be computed with the help of S: K' is true if ' is true in all interpretationsfrom S.This discussion can be generalized to arbitrary formulas and suggests the following ap-proach. To obtain the conservative estimate for the truth value of a formula, modal atomsthat appear positively in the formula must be evaluated with respect to the conservative pointof view (that is with respect to the set of interpretations P ). On the other hand, modal atomsthat appear negatively must be evaluated according to the liberal perspective (that is withrespect to the interpretations in S). Formally, we have the following inductive de�nition ofH2(P;S);I .1. H2(P;S);I(p) = I(p), for every atom p.2. H2(P;S);I('1 ^ '2) = t if H2(P;S);I('1) = t and H2(P;S);I('2) = t. Otherwise, H2(P;S);I('1 ^'2) = f.3. H2(P;S);I('1 _ '2) = t if H2(P;S);I('1) = t or H2(P;S);I('2) = t. Otherwise, H2(P;S);I('1 _'2) = f.4. H2(P;S);I(:') = :H2(S;P );I(').5. H2(P;S);I(K') = t if H2(P;S);J(') = t for all J 2 P . Otherwise, H2(P;S);I(K') = f.Step (4) is the key. It ensures that when evaluating the negation of a formula the rolesof P and S are switched. Consequently, modal atoms appearing positively in a formula areevaluated with respect to the belief pair (P; S) and modal atoms that appear negatively areevaluated with respect to the belief pair (S; P ).Clearly, to construct a liberal estimate for the truth value of ' with respect to a belief pair(P; S) we can proceed similarly and use S (respectively, P ) to evaluate modal literals appearingpositively (negatively) in '. It is easy to see, however, that the resulting truth function canbe expressed as H2(S;P );I (we reverse the roles of P and S).Conservative and liberal estimates of truth values of formulas can be combined into a singleestimate from a four-valued Belnap's lattice of truth values. The elements of the Belnap'slattice are: t4 = (t; t) (true), f4 = (f; f) (false), u = (f; t) (unknown) and i = (t; f). Thesevalues are related by the following lattice order �pr (the precision ordering in Belnap's lattice):(u; v) �pr (u0; v0) if u � u0 and v � v0(let us recall that � is the ordering of truth values f and t, and that f � t). The Belnap'slattice is shown in Figure 3.An element of the Belnap's lattice can be viewed as an approximation to an unknowntwo-valued truth value. Clearly, the higher we are in the Belnap's lattice, the more precise isthe approximation. At the bottom both t and f are possible (thus, the term \unknown" forthe truth value u). Each of the approximations at the second level represent exactly one truth11



i = (t; f)f4 = (f; f)@I t4 = (t; t)u = (f; t)�� ��@IFigure 3: The Belnap's latticevalue. Lastly, no two-valued truth value is represented by the top element. It is due to these\precision of approximation" intuitions (similar to intuitions underlying the precision orderingof belief pairs), that we refer to the ordering �pr as the precision ordering2.On the elements of the Belnap lattice one can de�ne the negation operator::f4 = t4; :t4 = f4; :u = u; :i = i:Under this de�nition, for every element (x; y) of the Belnap's lattice we have::(x; y) = (:y;:x);where the negation operator on the right-hand side is the standard two-valued negation oper-ator.Using the Belnap lattice of truth values, we now de�ne the four-valued truth functioncombining lower and upper estimates H2(P;S);I(') and H2(S;P );I(') as follows:H4(P;S);I(') = (H2(P;S);I(');H2(S;P );I(')):Directly from this de�nition, it follows thatH4(P;S);I(:') = :H4(P;S);I(');where the negation operator on the right-hand side is the negation operator in the Belnap'slattice.It is clear that for a modal atom K', the logical values H2(P;S);I(K') and H4(P;S);I(K')do not depend on the interpretation I. Therefore, we will denote them by H2(P;S)(K') andH4(P;S)(K'), respectively.Example 2.1 (cont'd). To illustrate the concepts we just introduced we will now evaluateH4(P;S);Ip(Kp ) p) and H4(P;S);Jp(Kp ) p) for all belief pairs (P; S) 2 Bp. First, let us noticethat for every interpretation I,H4(P;S);I(Kp) p) = (H2(P;S);I(:Kp _ p); H2(S;P );I(:Kp _ p)) =(H2(P;S);I(:Kp) _ I(p); H2(S;P );I(:Kp) _ I(p)) =(:H2(S;P )(Kp) _ I(p); :H2(P;S)(Kp) _ I(p)):2As in the case of belief pairs, there is an alternative ordering of the elements in the Belnap's lattice. It is acomponent-wise extension of the standard ordering of the truth values f and t.12



Since Ip(p) = t, it follows that for every belief pair (P; S),H4(P;S);Ip(Kp) p) = (t; t) = t4:Similarly, since Jp(p) = f, we haveH4(P;S);Jp(Kp) p) = (:H2(S;P )(Kp);:H2(P;S)(Kp)) = :H4(P;S)(Kp):Let us consider the belief pair (Ap;Ip). Since Ap contains worlds in which p is false, aconservative estimate (an underestimate) for the truth value of Kp is given by f. On theother hand, since p is true in all worlds in Ip, the liberal estimate (an overestimate) for thistruth value is t. Thus, H4(Ap;Ip)(Kp) = (f; t) = u. Consequently, H4(Ap;Ip);Jp(Kp ) p) =:H4(Ap;Ip)(Kp) = u. ; Ip Jp Ap; f4 f4 i iIp f4 f4 i iJp u u t4 t4Ap u u t4 t4Table 3: The truth values H4(P;S);Jp(Kp) p).The values H4(P;S);Jp(Kp) p) for the remaining belief pairs can be computed in the sameway by computing :H4(P;S)(Kp). They are all listed in Table 3. The value H4(P;S);Jp(Kp) p)is given at the intersection of the row labeled with P and the column labeled with S. 2Using the truth function H4(P;S) we can associate with each belief pair (P; S) its epistemiccontent. We de�ne the knowledge of (P; S), denoted kn(P; S), bykn(P; S) = f' 2 LK :H4(P;S)(K') = t4g:Similarly, we de�ne the ignorance of (P; S), denoted ig(P; S), byig(P; S) = f' 2 LK :H4(P;S)(K') = f4g:The set kn(P; S) can be viewed as the set of formulas that are known in the belief pair (P; S).The set ig(P; S) can be regarded as the set of formulas that are unknown in the belief pair(P; S).By the meta-knowledge of a belief pair (P; S) we mean the set of those formulas whoseepistemic status is determined: the corresponding belief is either true or false (as opposed tounknown or inconsistent). These are precisely the formulas in kn(P; S) [ ig(P; S). We callthe set of all other formulas, LK n (kn(P; S) [ ig(P; S)), the meta-ignorance of (P; S) as theirepistemic status is not clear.The concept of a belief pair generalizes that of a possible-world structure and the truth func-tion H4(P;S);I is a four-valued generalization of the two-valued truth function HP;I . Moreover,the concept of knowledge of a belief pair generalizes the notion of the theory of a possible-worldstructure. We de�ne a complete belief pair to be any belief pair of the form (P; P ). We havethe following result (the proof is self-evident and we omit it).13



Proposition 3.1 Let P be a possible-world structure. Then1. For every formula ' 2 LK and every interpretation I 2 A, H2(P;P );I(') = HP;I(') andH4(P;P );I(') = (HP;I(');HP;I(')).2. kn(P; P ) = f':HP (K') = tg = Th(P).3. kn(P; P ) [ ig(P; P ) = LK.The last assertion of Proposition 3.1 states that the meta-knowledge of a complete beliefpair is complete | the epistemic status of each formula ' is fully determined: the logical valueof knowing the formula (the logical value of the modal atom K') is either t4 or f4.We will now study some basic properties of the truth functions H2(P;S);I and H4(P;S);I in-volving the orderings of truth values in the Boolean and Belnap lattices.Proposition 3.2 Let (P; S) and (P 0; S0) be belief pairs from B such that (P; S) �pr (P 0; S0).Then, for every interpretation I 2 A and for every modal formula ' we have:1. H2(P;S);I(') � H2(P 0;S0);I(').2. H4(P;S);I(') �pr H4(P 0;S0);I(').Proof: It is clear that statement (1) implies statement (2). So, we prove statement (1) only.We proceed by induction on the complexity of the formula '. The induction base is obvious.The cases of ' =  1 ^ 2 and ' =  1 _ 2 follow immediately from the fact that the operators^ and _ are monotone with respect to �.Next, we will consider the case ' = K . If H2(P;S);I(K ) = f, the inequality (1) follows.So, let us assume that H2(P;S);I(K ) = t. Let J 2 P 0. Since (P; S) �pr (P 0; S0), we have thatP 0 � P . Thus, J 2 P and, consequently, H2(P;S);J( ) = t. By the induction hypothesis itfollows that H2(P;S);J( ) � H2(P 0;S0);J( ). Hence, H2(P 0;S0);J( ) = t. Since J is an arbitraryelement of P 0, we obtain that H2(P 0;S0);I(K ) = t. Thus, the inequality (1) follows in the caseH2(P;S);I(K ) = t, too.Finally, we will consider the case when ' = : . As before, it is enough to consider thecase when H2(P;S);I(') = t. In this case, we have that H2(S;P );I( ) = f. Moreover, since(P; S) �pr (P 0; S0), we also have that (S0; P 0) �pr (S; P ). Thus, by the induction hypoth-esis, H2(S0;P 0);I( ) � H2(S;P );I( ) = f. It follows that H2(S0;P 0);I( ) = f and, consequently,H2(P 0;S0);I(') = t. Hence, the inequality (1) holds for ' = : . 2This result has several interesting corollaries. The �rst of them is that for a consistentbelief pair (P; S), the truth function H4(P;S);I assigns only consistent truth values.Corollary 3.3 If (P; S) is a consistent belief pair then for every interpretation I 2 A andevery formula ', H4(P;S);I(') is consistent (that is, H4(P;S);I(') 6= i).Proof: It is easy to see that if (P; S) is consistent, then:(P; S) �pr (S; P ):14



By Proposition 3.2(1), H2(P;S);I(') � H2(S;P );I('), and hence H4(P;S);I(') is consistent. 2The next corollary is concerned with the concept of the epistemic content of a belief pair.We show that, under the restriction to consistent belief pairs, the notion is monotone withrespect to the ordering �pr.Corollary 3.4 Let B and B0 be consistent belief pairs. If B �pr B0 thenkn(B) � kn(B0) and ig(B) � ig(B0):Proof: Let us consider a formula ' 2 kn(B). Then, we have that H4B(K') = t4. Since B0 isconsistent, H4B0(K') 6= i (Corollary 3.3). Further, since B �pr B0, H4B(K') �pr H4B0(K').Thus, H4B0(K') = t4 and, consequently, ' 2 kn(B0). The proof in the case when ' 2 ig(B) issimilar. 2We will now study operators on the lattice (B;�pr) and their properties. We will focuson operators that are monotone with respect to �pr (�pr-monotone, for short). Each suchan operator has a �pr-least �xpoint by the theorem of Tarski and Knaster. In addition tomonotonicity, we will impose on operators one more condition, symmetry. An operator O onB is symmetric if for every belief pairs (P; S) and (P 0; S0)O(P; S) = (P 0; S0) if and only if O(S; P ) = (S0; P 0):Proposition 3.5 Let O be an operator on the lattice B that is �pr-monotone and symmetric.1. For every consistent belief pair B, O(B) is consistent.2. The least �xpoint of O is consistent. Moreover, if it is complete, it is a unique �xpointof O.Proof: (1) Let B = (P; S) be a consistent belief pair. Then, P v S and, consequently,(P; S) �pr (S; P ). By the �pr-monotonicity of O, O(P; S) �pr O(S; P ). Let O(P; S) = (P 0; S0).By the symmetry of O, O(S; P ) = (S0; P 0). Thus, (P 0; S0) �pr (S0; P 0) and, consequently,P 0 v S0. That is, O(P; S) is consistent.(2) Let us denote the least �xpoint of O by (P; S). Since O is symmetric, (S; P ) is also a�xpoint of O. Thus, (P; S) �pr (S; P ). Consequently, P v S and (P; S) is consistent.Let us now assume that (P; S) is complete. Let (P 0; S0) be a �xpoint of O. By the symmetryof O, (S0; P 0) is also a �xpoint of O. Since (P; S) is the least �xpoint of O and since P = S(by the completeness of (P; S)), we obtain(P; P ) �pr (P 0; S0) and (P; P ) �pr (S0; P 0):The �rst relation implies that P 0 � P and P � S0. The second relation implies that S0 � Pand P � P 0. Thus, P 0 = S0 = P or, equivalently, (P 0; S0) = (P; S). 2The next result concerning �xpoints of �pr-monotone and symmetric operators on B showsthat the knowledge and ignorance of the least �xpoint of an operator can be used to approxi-mate the knowledge and ignorance of any other �xpoint.Proposition 3.6 Let B be the least �xpoint of a �pr-monotone and symmetric operator Ode�ned on the lattice (B;�pr). For every �xpoint B0 of O we have:kn(B) � kn(B0) and ig(B) � ig(B0):15



Proof: Let us assume that B = (P; S) and B0 = (P 0; S0). Let us consider a formula ' 2 kn(B)and an interpretation I 2 P . We have H4(P;S);I(') = t4. Since (P; S) is the least �xpoint of O,(P; S) �pr (P 0; S0). By Proposition 3.2, it follows that H4(P 0;S0);I(') = t4 or H4(P 0;S0);I(') = i.Let us assume that H4(P 0;S0);I(') = i. Then, H4(S0;P 0);I(') = u. However, by the symmetry ofO, (S0; P 0) is also a �xpoint of O. It follows that (P; S) �pr (S0; P 0) andt4 = H4(P;S);I(') �pr H4(S0;P 0);I(') = u;a contradiction. Consequently, H4(P 0;S0);I(') = t4. Since I is an arbitrary element of P andP 0 � P , it follows that H4(P 0;S0)(K') = t4. Thus, ' 2 kn(B0) and kn(B) � kn(B0), as claimed.The other inclusion can be proved in a similar fashion. 2This result is related to Corollary 3.4. We do not require here that belief pairs B and B0 beconsistent. Instead, we require that one of them is a least �xpoint (and so, it is consistent), andanother one is an arbitrary �xpoint (possibly inconsistent) of a �pr-monotone and symmetricoperator on the lattice (B;�pr).Let T be a modal theory. We will now associate with T an operator on the lattice B. Let(P; S) be a belief pair. Extending the de�nition from [DMT99], we setDT (P; S) = (DlT (P; S);DuT (P; S));where DlT (P; S) = fI:H2(S;P );I(T ) = tg and DuT (P; S) = fI:H2(P;S);I(T ) = tg;and where H2B;I(T ) stands for the greatest lower bound of the set fH2B;I('):' 2 Tg (in otherwords, H2B;I(T ) = t if and only if H2B;I(') = t for every ' 2 T ). We refer to �xpoints of theoperator DT as partial expansions.Intuitively, the operator DT describes how an agent might revise a belief pair (P; S). Theobjective is to obtain a new underestimate P 0 and a new overestimate S0. Given the currentbelief pair (P; S), the agent can exclude from P 0, as de�nitely impossible, all these interpreta-tions in which at least one formula in T is false even according to the liberal estimate of truthvalues. All other must still be regarded as possible and included in P 0. Thus, P 0 consists of allthose interpretations for which all formulas from T are true according to the liberal estimatesof truth values (given the current approximation (P; S)). To construct S0 (an overestimate)the agent includes in S0 only those interpretations that the agent is certain should be included,given the knowledge captured by the current belief pair (P; S). Thus, the agent includes inS0 all those interpretations which make all formulas in T true even according to conservativeestimates.Example 2.1 (cont'd). We will compute DlTp(X;Ip) for all possible-world structuresX 2 Wp.Let us observe that H2(Ip;Ap)(:Kp) = :H2(Ap;Ip)(Kp) = t:Thus, DlTp(Ap;Ip) = fI:H2(Ip;Ap);I(:Kp _ p) = tg = Ap:Similarly, H2(Ip;;)(:Kp) = :H2(;;Ip)(Kp) = f:16



Thus, DlTp(;;Ip) = fI:H2(Ip;;);I(:Kp _ p) = tg = Ip:The remaining values DlTp(X;Ip) can be computed in the same fashion. They are all are shownin Table 4. X ; Ip Jp ApDlTp(X;Ip) Ip Ip Ap ApTable 4: The operator DlTp(�;Ip).Proceeding in a similar way, we can also compute values DuTp(X;Ip). First, it is easy to seethat for every X 2 Wp, H2(X;Ip)(:Kp) = :H2(Ip;X)(Kp) = f:Thus, for every X 2 Wp, DuTp(Xp;Ip) = Ip (Table 5). 2X ; Ip Jp ApDuTp(X;Ip) Ip Ip Ip IpTable 5: The operator DuTp(�;Ip).The operator DT plays a fundamental role in our study of autoepistemic logic. It allows usto derive all major semantics of autoepistemic theories in two-valued, three-valued and four-valued settings. We will �rst briey discuss how one can reconstruct from the operator DT thetwo-valued approach of Moore and his semantics of expansions.Proposition 3.7 Let T be a modal theory. Then, for every possible-world structure P , wehave DT (P; P ) = (DT (P );DT (P )). Consequently, a complete belief pair (P; P ) is a �xpoint ofDT if and only if P is a �xpoint of DT .Proof: The equality DT (P; P ) = (DT (P );DT (P )) follows directly from Proposition 3.1 andthe de�nitions of the operators DT and DT .Let us assume that DT (P ) = P . ThenDT (P; P ) = (DT (P );DT (P )) = (P; P ):Conversely, if DT (P; P ) = (P; P ), then (DT (P );DT (P )) = DT (P; P ) = (P; P ). Thus, DT (P ) =P . 2Example 2.1 (cont'd). Since Ip and Ap are �xpoints of the operator DTp , by Proposition3.7 the belief pairs (Ip;Ip) and (Ap;Ap) are �xpoints of the operator DTp . From the resultssummarized in Tables 4 and 5, it follows that DTp has two more �xpoints: (Ap;Ip) and (Ip;Ap).These �xpoints are not complete. The �rst of them is consistent, the other one is not. 2Next, we observe that two belief pairs that de�ne the same truth value for all modal atomsoccurring in theory T , that is, are epistemically equivalent, are revised by the operator DTinto the same belief pair. Formally, we have the following result.17



Proposition 3.8 Let T be a modal theory and let (P; S) and (P 0; S0) be belief pairs such thatfor every modal atom K of T , H4(P;S)(K ) = H4(P 0;S0)(K ). Then, DT (P; S) = DT (P 0; S0).Proof: Clearly,H2(P;S)(K ) = H2(P 0;S0)(K ) and H2(S;P )(K ) = H2(S0;P 0)(K ):Thus, for every interpretation I and every formula ' 2 T ,H2(P;S);I(') = H2(P 0;S0);I(') and H2(S;P );I(') = H2(S0;P 0);I('):Therefore, DlT (P; S) = DlT (P 0; S0) and DuT (P; S) = DuT (P 0; S0):Consequently, DT (P; S) = DT (P 0; S0). 2The next result is of fundamental importance. It asserts that the operator DT is �pr-monotone and symmetric. Thus, by the theorem of Tarski and Knaster, it has a unique least�xpoint. In addition, Propositions 3.5 and 3.6 apply to DT .Proposition 3.9 The operator DT is symmetric and �pr-monotone.Proof: Directly from the de�nitions it follows that DlT (P; S) = DuT (S; P ), hence DT is sym-metric.To prove the monotonicity part of the claim, let us consider two belief pairs (P; S) and(P 0; S0) such that (P; S) �pr (P 0; S0). We need to prove thatDlT (P 0; S0) � DlT (P; S) and DuT (P; S) � DuT (P 0; S0)Let I 2 DlT (P 0; S0). Then, H2(S0;P 0);I(T ) = t. Since (P; S) �pr (P 0; S0), (S0; P 0) �pr (S; P ).Thus, by Proposition 3.2, H2(S;P );I(T ) = t and, consequently, I 2 DlT (P; S). The secondinclusion can be proved in the same manner. 2Corollary 3.3 and Propositions 3.5 and 3.9 provide a connection between the approach inthis paper and our earlier work [DMT99]. Corollary 3.3 shows that for a consistent belief pair(P; S), the truth function H4(P;S);I is three-valued. In fact, one can check that if (P; S) is aconsistent belief pair, then the truth function H4(P;S);I coincides with the three-valued truthfunction considered in [DMT99]. Proposition 3.5 implies that the operator DT maps consistentbelief pairs into consistent belief pairs. One can check that the restriction of DT to consistentbelief pairs coincides with the operator on consistent belief pairs considered in [DMT99]. Thus,the approach developed in this paper, admitting the possibility of inconsistent belief pairs, isa generalization of the approach from [DMT99].As we noticed earlier, Proposition 3.9 implies that the operator DT has a unique �pr-least�xpoint. We denote it by KK (T ) and refer to it as the Kripke-Kleene �xpoint for T . Similarly,we call the semantics it de�nes Kripke-Kleene semantics for T . In this semantics a formula 'has logical value v (where v is from the Belnap lattice) if H4KK(T )(K') = v. This choice ofterms is motivated by a close analogy between the least �xpoint of the operator DT and theKripke-Kleene semantics for logic programs (see Section 8).The Kripke-Kleene �xpoint has a clear constructive avor. It can be obtained by iteratingthe operator DT , starting at the least informative belief pair, (A; ;).18



Example 2.1 (cont'd). We will now �nd the least �xpoint of the operator DTp (the leastpartial expansion of Tp). We start by computing DTp(Ap; ;). Let us observe thatH2(;;Ap);I(:Kp) = :H2(Ap;;);I(Kp) = t:Thus, DlTp(Ap; ;) = fI:H2(;;Ap);I(:Kp _ p) = tg = Ap:In a similar fashion, H2(Ap;;);I(:Kp) = :H2(;;Ap);I(Kp) = f:Consequently, DuTp(Ap; ;) = fI:H2(Ap ;;);I(:Kp _ p) = tg = Ip:Thus, DTp(Ap; ;) = (Ap;Ip). We already showed earlier that DTp(Ap;Ip) = (Ap;Ip) (seeTables 4 and 5). Thus, (Ap;Ip) is the least �xpoint (Kripke-Kleene �xpoint) of DTp . 2We now summarize basic properties of the �xpoint KK (T ) as a corollary to Propositions3.5, 3.6, and 3.9.Corollary 3.10 Let T be a modal theory.1. The �xpoint KK (T ) is consistent.2. For every partial expansion B of T , KK (T ) �pr B.3. For every partial expansion B of T ,kn(KK (T )) � kn(B) and ig(KK (T )) � ig(B):4. If KK (T ) is a complete belief pair, then it is the unique consistent partial expansion ofT . Moreover the possible-world structure P such that KK (T ) = (P; P ) is the uniqueexpansion of T .Corollary 3.10 has important epistemological consequences. It states that the Kripke-Kleene �xpoint is a consistent belief pair that approximates belief sets that are formalized as�xpoints of the operator DT . In other words, the iterative approximation process is sound.Next, it demonstrates how the knowledge and ignorance of the Kripke-Kleene �xpoint approx-imates that of all other partial expansions of T . Lastly, it implies that the Kripke-Kleenesemantics provides su�cient conditions for the uniqueness of an expansion of T . Corollary3.10 has also computational implications. We discuss them later in Section 7.4 Autoepistemic logic | extensions and the well-founded se-manticsIn this section we show that the theory of belief pairs allows us to introduce new semantics forautoepistemic logic. Given a modal theory T , we use the operator DT to de�ne two additionaloperators: the operator DstT de�ned on the latticeW, and the operator DstT de�ned on the latticeB. They give rise to semantics for autoepistemic logic that are closely related to the semantics19



of extensions for default logic. One of them, the semantics obtained by means of �xpoints ofthe operator DstT , is a perfect match to Reiter's semantics of extensions for default logic, anobject long sought after in the autoepistemic logic. The operator DstT is �pr- monotone, andits least �xpoint gives rise to the well-founded semantics for autoepistemic logic.Let S be a possible-world structure, that is, S 2 W. For a possible-world structure P 2 Wwe de�ne DS;T (P ) = DlT (P; S):The operator DS;T is a monotone operator on the lattice (W;v). Indeed, if P1 v P2, then(P1; S) �pr (P2; S). By the �pr-monotonicity of DT , DT (P1; S) �pr DT (P2; S). Thus,DS;T (P1) = DlT (P1; S) v DlT (P2; S) = DS;T (P2):By the theorem of Tarski and Knaster, the operator DS;T has a least �xpoint. We de�neDstT (S) = lfp(DS;T ) = lfp(DlT (�; S)):Intuitively, DstT (S) can be viewed as a preferred conservative estimate of what is believed givena �xed S (that is, given a �xed liberal estimate on beliefs)3.In a similar way as for lfp(DuT (�; S)), we argue that lfp(DuT (P; �)) can be regarded as apreferred liberal estimate of what is believed, given a �xed conservative point of view. Let usnotice that by the symmetry of the operator DT ,DuT (P; S) = DlT (S; P ):Thus, lfp(DuT (P; �)) = lfp(DlT (�; P )) = DstT (P ):Having de�ned the operator DstT on possible world structures, we now de�ne an operatorDstT on belief pairs as follows: DstT (P; S) = (DstT (S);DstT (P )):From our earlier discussion it follows that the operator DstT provides yet another way of revisingbelief pairs: A belief pair (P; S) is replaced by the belief pair DstT (P; S) = (P 0; S0), where P 0 isa conservative estimate of what is believed given an old liberal estimate S, and S0 is a liberalestimate on what is believed given an old conservative estimate P .Clearly, DstT is an operator on the lattice (W;v). We refer to possible-world structuresthat are �xpoints of the operator DstT (and also to their theories) as extensions. The choiceof the term is not arbitrary. We show in Section 6 that extensions of modal theories can beregarded as generalizations of extensions of default theories. We call �xpoints of the operatorDstT , de�ned on the lattice (B;�pr) of belief pairs, partial extensions, as they can be viewed as\belief-pair" versions of extensions. Indeed, we have the following property relating �xpointsof the operators DstT and DstT .Theorem 4.1 For every modal theory T , a possible-world structure P is a �xpoint of DstT ifand only if a belief pair (P; P ) is a �xpoint of DstT .3A similar construction, in the context of logic programming, was introduced by Przymusinski [Prz90].20



Proof: The statement follows immediately from the de�nition of the operator DstT . 2Example 2.1 (cont'd). We will determine the operator DstTp . Let us �rst observe that forevery S 2 Wp and each I: H2(S;Ap);I(:Kp) = :H2(Ap;S);I(Kp) = tand hence, H2(S;Ap);I(Kp) p) = t:Consequently, for each S, it holds thatDlTp(Ap; S) = fI:H2(S;Ap);I(Kp) p) = tg = Ap:It follows that for every S 2 Wp, DlTp(Ap; S) = Ap. Thus, Ap is the least �xpoint of theoperator DlTp(�; S) (let us recall that Ap is the least element of the lattice (Wp;v) on whichthe operator DlTp(�; S) is de�ned). That is,DstTp(S) = Ap;for every S 2 Wp.It follows that the theory Tp has exactly one extension, Ap (operator DstTp has exactly one�xpoint). It is also easy to see that (Ap;Ap) is the only partial extension of Tp (the only�xpoint of the operator DstTp). 2The circular dependence allowing the agent to accept p to the belief set just on the basis ofthis agent believing in p, allowed under the semantics of expansions, is eliminated in the caseof extensions. For instance, as we observed before, the theory fKp) pg has two expansions.One of them is determined by the possible-world structure consisting of all interpretations,the other one | by the possible-world structure consisting of all interpretations in which p istrue. It is this second expansion that su�ers from the circular-argument problem: the beliefin p is the only justi�cation for having p in this expansion. At the same time, the theoryfKp) pg has exactly one extension, the one given by the possible-world structure consistingof all interpretations. The atom p is not known in it and, hence, circular arguments are notused in the construction of this expansion.The following result collects most important properties of the operators DstT and DstT .Theorem 4.2 Let T be a modal theory. The operator DstT is v-antimonotone. The operatorDstT is �pr-monotone and symmetric. Moreover, for every consistent belief pair B, DstT (B) isalso consistent.Proof: We will use the following additional basic property of operators on lattices. An elementx of a lattice L is a pre�xpoint of an operator O : L! L if O(x) � x. A proof of the theoremby Tarski and Knaster shows that on a complete lattice L the least pre�xpoint of a monotonicoperator O exists and, in fact, is equal to the least �xpoint of O. Thus for each pre�xpoint xof O, lfp(O) � x.Let us consider two possible-world structures P; S 2 W such that P v S. We set P 0 =DstT (P ) and S0 = DstT (S). We have that P 0 = DstT (P ) = lfp(DlT (�; P )). Therefore, P 0 =21



DlT (P 0; P ). Since (P 0; S) �pr (P 0; P ), by �pr-monotonicity of DT we obtain that DlT (P 0; S) vDlT (P 0; P ) = P 0. Consequently, P 0 is a pre�xpoint of DlT (�; S). By our earlier remarks, S0 =DstT (S) = lfp(DlT (�; S)) v P 0.The�pr-monotonicity of the operator DstT is an immediate consequence of thev-antimonoto-nicity of DstT . The symmetry of the operator DstT follows directly from its de�nition.The last part of the assertion follows from Proposition 3.5. 2Theorem 4.2 implies, in particular, that the operator DstT has a least �xpoint with respect tothe ordering �pr. We will refer to this �xpoint as the well-founded �xpoint of T or well-foundedpartial extension of T . We will denote this �xpoint by WF (T ). Our choice of the term again isnot accidental. The semantics speci�ed by the well-founded �xpoint WF (T ) is closely relatedto the well-founded semantics for default logic [BS91] and logic programming [VRS91].The well-founded partial extension for a modal theory can be used to approximate allpartial extensions of T . It also provides a su�cient condition for the uniqueness of an extension.We have the following result, analogous to Corollary 3.10. It follows from Theorem 4.2 andPropositions 3.5 and 3.6.Corollary 4.3 Let T be a modal theory.1. The �xpoint WF (T ) is consistent.2. For every partial extension B of T , WF (T ) �pr B.3. For every partial extension B of T ,kn(WF (T )) � kn(B) and ig(WF (T )) � ig(B):4. If WF (T ) is a complete belief pair, then it is the unique partial extension of T . Moreoverthe possible-world structure P such that WF (T ) = (P; P ) is the unique extension of T .Well-founded semantics has a constructive avor. It can be obtained by iterating theoperator DstT over the belief pair (A; ;). We will discuss an algorithm for computing WF (T ) inSection 7. We will also show there that the problem of computing the well-founded semanticsis in the class �2P .The next result connects expansions and the Kripke-Kleene semantics with extensions andthe well-founded semantics. It shows that the well-founded semantics is stronger than theKripke-Kleene semantics and that (partial) extensions of T are (partial) expansions of T .Moreover extensions satisfy an additional minimality condition with respect to the ordering vin B.This minimality condition is expressed in terms of the following order on belief pairs: wede�ne (P; S) v (P 0; S0) if P v P 0 and S v S0. We briey mentioned it in Section 3 and referredto it as the knowledge ordering.Theorem 4.4 Let T be a modal theory. Then:1. KK (T ) �pr WF (T ).2. Every extension of T is a v-minimal expansion of T .22



AE logic of Mooreexpansions -
partial expansionsKripke-Kleene �xpoint @R DTDT partial extensionswell-founded semantics

� extensions@I DstTDstT��	 �����	@@R
Figure 4: Operators associated with autoepistemic logic3. Every partial extension (P; S) of T is a v-minimal partial expansion of T : for everypartial expansion (P 0; S0), if P 0 v P and S0 v S, then P = P 0 and S = S0.Proof: (1) Since KK (T ) is the �pr-least �xpoint of DT , it su�ces to show that each �xpointof DstT is a �xpoint of DT . Let (P; S) be a �xpoint of DstT . Then P = DstT (S) = lfp(DlT (�; S))and consequently, DlT (P; S) = P . Similarly, S = lfp(DlT (�; P )) and, hence, S = DlT (S; P ) =DuT (P; S). It follows that DT (P; S) = (P; S).Since (2) is a special case of (3), it su�ces to prove (3). Let (P; S) be a partial extensionof T . Let us assume that (P 0; S0) is a �xpoint of DT such that (P 0; S0) v (P; S). Since P 0 v P ,it follows that (S0; P ) �pr (S0; P 0). The �pr-monotonicity of DT implies that DlT (S0; P ) vDlT (S0; P 0) = S0. Thus, S0 is a pre�xpoint of the operator DlT (�; P ). Since S is the least�xpoint of DlT (�; P ), it follows that S v S0 (we refer the reader to the comment we made in theproof of Theorem 4.2). Now, however, due to the assumption that (P 0; S0) v (P; S), it followsthat S0 v S. Consequently, S and S0 are identical. By a similar argument, we prove that Pand P 0 are identical. Thus, (P 0; S0) = (P; S) which, in turn, implies that (P; S) is a v-minimal�xpoint of DT . 2Example 2.1 (cont'd). In the case of the theory Tp, KK (Tp) = (Ap;Ip) and WF (Tp) =(Ap;Ap). Thus, we indeed have KK (Tp) �pr WF (Tp) (see Figure 2). Let us also note thatthe partial extension (Ap;Ap) is indeed a v-minimal partial expansion of Tp. 2We can give now a schematic illustration of the panorama of semantics for autoepistemiclogic (Figure 4). The central position is occupied by the operator DT . Its �xpoints yieldthe semantics of partial expansions and its least �xpoint yields the Kripke-Kleene semantics.Restriction of the operator DT to complete belief pairs leads to the operator DT , originallyintroduced by Moore, and results in the semantics of expansions. The operator DT alsogives rise to the operators DstT and DstT that yield new semantics for autoepistemic logic: thesemantics of extensions, the semantics of partial extensions and the well-founded semantics.
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5 Default logicWhile possible-world semantics played a prominent role in the study of autoepistemic logics[Moo84, Lev90, DMT99] it has not, up to now, had a similar impact on default logic. Inthis section we will introduce a comprehensive semantic treatment of default logic in terms ofpossible-world structures and belief pairs. Our approach will follow closely that used in thepreceding sections.We observed earlier that autoepistemic logic can be viewed as the logic of the operator DT .Its �xpoints, and �xpoints of the operators that can be derived from DT , determine all majorsemantics for autoepistemic logic. We will now develop a similar treatment of default logic.We start by recalling basic concepts in default logic. For more details we refer the readerto [MT93]. A default is an expression of the form�:�1; : : : ; �k ;where �, �1; : : : ; �k and  are propositional formulas from the language L. The formula �is called the prerequisite of the default. The formulas �1; : : : ; �k are called its justi�cations.Finally, the formula  is called the consequent of the default.A default theory is a pair (D;W ), where D is a set of defaults and W is a set of formulasfrom L. To de�ne a semantics for a default theory � = (D;W ), Reiter introduced an operator�� on sets of propositional formulas [Rei80]. Given a set of formulas X, we say that a default dis X-applicable if for every justi�cation � of d, X 6` :� (intuitively, a default is X-applicable ifnone of its justi�cations is outright contradicted by X). For a set X of propositional formulas,Reiter de�ned ��(X) to be a least set of formulas Y such that:1. Y is closed under propositional provability.2. W � Y .3. For every X-applicable default d 2 D, if the prerequisite of d is in Y then so is theconsequent of d.It is easy to see that the least set of formulas satisfying conditions (1) - (3) exists. Thus,the operator �� is well de�ned. A set of formulas E is an extension of a default theory � ifE = ��(E) [Rei80].While the notion of an extension received most attention, over the years several otherclasses of theories were proposed as alternative semantics of default theories. One of them,the semantics of weak extensions [MT89b], is especially relevant to our considerations. Let usde�ne �w�(X) to be a least set of formulas Y such that:1. Y is closed under propositional provability.2. W � Y .3. For every X-applicable default d 2 D, if the prerequisite of d is in X then the consequentof d is in Y . 24



As before, it is easy to see that the operator �w� is well de�ned. A set of formulas E is a weakextension of a default theory � if E = �w�(E). The concepts of extension and weak extensionare closely related (not surprisingly, given that their de�nitions are so similar, di�ering only inthe third condition). We refer the reader to [MT93] for a detailed discussion of default logicand properties of extensions and weak extensions.We will introduce now an approach to default logic based on the semantic notions of apossible-world structure and of a belief pair. As before, we start with a two-valued truthfunction that gives a conservative estimate of the logical value of a formula or a default withrespect to a belief pair (P; S) and an interpretation I.For a propositional formula ', we de�neHdl(P;S);I(') = I('):For a default d = �:�1;:::;�k , we set Hdl(P;S);I(d) = tif at least one of the following conditions holds:1. There is J 2 S such that J(�) = f.2. There is i, 1 � i � k, such that for every J 2 P , J(�i) = f.3. I() = t.We set Hdl(P;S);I(d) = f, otherwise. Clearly, the de�nition of Hdl(P;S);I(d) agrees with the intuitivereading of a default d: it is true (according to a conservative point of view) if its prerequisiteis false (even with respect to a liberal view captured by S) or if at least one of its justi�cationsis perceived as impossible (it is false according to a conservative point of view captured by P )or if its consequent is true (with respect to I). As before, we can also argue that Hdl(S;P );I(d)provides a liberal estimate for a truth value of d with respect to (P; S) (the roles of P and Sare reversed).This truth function Hdl(P;S);I satis�es a monotonicity property analogous to that satis�edby the truth function H2(P;S);I in the case of autoepistemic logic (see Proposition 3.2).Proposition 5.1 Let (P; S) and (P 0; S0) be belief pairs from B such that (P; S) �pr (P 0; S0).Then, for each default d, for each propositional formula ' and for each interpretation I 2 A,Hdl(P;S);I(d) � Hdl(P 0;S0);I(d) and Hdl(P;S);I(') = Hdl(P 0;S0);I(').Proof: To prove the �rst part of the assertion let us consider a default d = �:�1;:::;�k and letus assume that Hdl(P;S);I(d) = t (the case when Hdl(P;S);I(d) = f is trivial). By the de�nition ofHdl(P;S);I(d), there are three cases to consider.1. There is J 2 S such that J(�) = f. Since S � S0, it follows that Hdl(P 0;S0);I(d) = t.2. There is i, 1 � i � k, such that for every J 2 P , J(�i) = f. Since P 0 � P , it again followsthat Hdl(P 0;S0);I(d) = t.3. We have I() = t. In this case, clearly, Hdl(P 0;S0);I(d) = t, as well.25



The second part of the assertion is straightforward as Hdl(P;S);I(') = I(') = Hdl(P 0;S0);I('). 2Let � = (D;W ) be a default theory. We use the truth function Hdl(P;S);I to de�ne anoperator E� on the lattice B of belief pairs:E�(P; S) = (E l�(P; S); Eu�(P; S));where E l�(P; S) = fI:Hdl(S;P );I(�) = tg and Eu�(P; S) = fI:Hdl(P;S);I(�) = tg(HdlB;I(�) = t stands for the statement that HdlB;I(d) = t for every element (formula or default)d 2 D [W ). This de�nition can be justi�ed similarly as that of the operator DT in Section 4.We now have the following key property of the operator E�.Proposition 5.2 The operator E� is �pr-monotone and symmetric.Proof: By the de�nition, we have E l�(P; S) = Eu�(S; P ). Thus, E� is a symmetric operator.To prove the �pr-monotonicity of the operator E�, let us consider two belief pairs (P; S) and(P 0; S0) such that (P; S) �pr (P 0; S0). We need to prove thatE l�(P 0; S0) � E l�(P; S) and Eu�(P; S) � Eu�(P 0; S0):Let I 2 E l�(P 0; S0). Then, Hdl(S0;P 0);I(�) = t. Since (P; S) �pr (P 0; S0), it follows that(S0; P 0) �pr (S; P ). Thus, by Proposition 5.1, Hdl(S;P );I(�) = t and, consequently, I 2 E l�(P; S).The second inclusion can be proved in the same manner. 2Let Q be a possible-world structure. We de�neE�(Q) = E l�(Q;Q)(or, equivalently, E�(Q) = Eu�(Q;Q)). Clearly,E�(Q;Q) = (E�(Q); E�(Q)):As we will show later, �xpoints of the operators E� and E� correspond to �xpoints ofthe operators DT and DT . Thus, we will call them expansions and partial expansions of �,respectively. It is clear thatQ = E�(Q) if and only if (Q;Q) = E�(Q;Q):Thus, those partial expansions of � that are complete correspond precisely to expansions of�. To the best of our knowledge, the operator E� has not appeared explicitly in the literaturebefore. Its �xpoints, however, did. It turns out that they correspond to weak extensions[MT89a]. Hence, the semantics given by the operator E� (by its �xpoints, to be precise) isthe semantics of weak extensions.Theorem 5.3 Let � be a default theory. If a possible-world structure Q is an expansion of �then f' 2 L: I(') = t; for every I 2 Qg is a weak extension of �. Conversely, if E is a weakextension of � then Q = fI 2 A: I(') = t; for every ' 2 Eg is an expansion of �.26



Proof: Let us assume that � is of the form (D;W ). Let Q be an expansion of �. Directlyfrom the de�nition of an expansion it follows thatQ = fI 2 A:Hdl(Q;Q);I(�) = tg: (1)Let us set YQ = f' 2 L: I(') = t; for every I 2 Qg:We will show that YQ is a weak extension of (D;W ). To this end, we will show that YQ =�w�(YQ).First, it follows from the de�nition of YQ that it is closed under propositional provability.Further, from (1) it follows that for every I 2 Q and for every ' 2 W , I(') = t. Hence,W � YQ.Next, let us consider a YQ-applicable defaultd = �:�1; : : : ; �kand let us assume that � 2 YQ. Let I 2 Q. The equation (1) implies that Hdl(Q;Q);I(d) = t.Since � 2 YQ, there is no J 2 YQ such that J(�) = f. By YQ-applicability of d, for every i,1 � i � k, YQ 6` :�i. Since YQ is closed under propositional provability, we have that :�i 62 YQ.Thus, for every i, 1 � i � k, there is a valuation J 2 Q such that J(�i) = t. Consequently, itfollows that I() = t. Since I is an arbitrary valuation from Q, we �nd that  2 YQ.To summarize, we proved that YQ satis�es all three conditions on a set Y in the de�nitionof �w�(X), with X = YQ. Since �w�(YQ) is the least of all sets satisfying these conditions, itfollows that �w�(YQ) � YQ.To prove the converse inclusion, let us consider a valuation I 2 A such that for every' 2 �w�(YQ), I(') = t. We will show that I 2 Q. By (1), it will su�ce to show thatHdl(Q;Q);I(�) = t. Since W � �w�(YQ), it follows that for every ' 2W , Hdl(Q;Q);I(') = I(') = t.Thus, let us consider a default d = �:�1; : : : ; �kfrom D. Let us assume that(i) for every J 2 Q, J(�) = t, and(ii) for every i, 1 � i � k, there is Ji 2 Q such that Ji(�i) = t(if any of these two assumptions does not hold, we obtain right away Hdl(Q;Q);I(d) = t). From(i), it follows that � 2 YQ. Furthermore, (ii) and the de�nition of YQ imply that for every i,1 � i � k, YQ 6` �i. Consequently, d is YQ-applicable and, by the de�nition of �w�(YQ), we getthat  2 �w�(YQ). Hence, I() = t and Hdl(Q;Q);I(d) = t.We proved that I 2 Q. That is, we have thatfI 2 A: I(') = t; for every ' 2 �w�(YQ)g � Q:By the de�nition of YQ, we have that for every I 2 Q and for every ' 2 YQ, I(') = t.Consequently, Q � fI 2 A: I(') = t; for every ' 2 YQ:g27



Thus, fI 2 A: I(') = t; for every ' 2 �w�(YQ)g � fI 2 A: I(') = t for every ' 2 YQgor, equivalently, YQ � �w�(YQ) (this last step depends on the fact that YQ and �w�(YQ) areclosed under propositional provability).The second part of the assertion can be proved by means of a similar argument and so weomit it. 2The key property of the operator E� is its �pr-monotonicity. In particular, E� has a least�xpoint. We call it the Kripke-Kleene �xpoint or Kripke-Kleene expansion of �. We denote itby KK (�). We refer to the corresponding semantics as the Kripke-Kleene semantics for �.As in the case of the autoepistemic logic, the Kripke-Kleene semantics approximates theskeptical reasoning with partial expansions and provides a test for uniqueness of a partialexpansion. Indeed, we have the following corollary4 to Propositions 5.2, 3.5 and 3.6. Thisresult is a counterpart to Corollary 3.10.Corollary 5.4 Let � be a default theory.1. The �xpoint KK (�) is consistent.2. For every partial expansion B of �, KK (�) �pr B.3. For every partial expansion B of �,kn(KK (�)) � kn(B) and ig(KK (�)) � ig(B):4. If KK (�) is a complete belief pair, then it is a unique consistent partial expansion of�. Moreover the possible-world structure P such that KK (�) = (P; P ) is the uniqueexpansion of �.So far we have not yet reconstructed the concept of an extension. In order to do so, we willnow derive from E� two other operators related to default logic. Let us consider a belief pair(P; S). We want to revise it to a belief pair (P 0; S0). We might do it by �xing S and takingfor P 0 a preferred revision of P , and by �xing P and taking for S0 a preferred revision of S.It is easy to see that �pr-monotonicity of E� implies that the operator E l�(�; S) is v-monotone operator on W. Consequently, it has a least �xpoint. This �xpoint can be taken asthe preferred way to revise P given S. Thus, we de�neEst�(S) = lfp(E l�(�; S)):As in the case of autoepistemic logic, one can see that Est� also speci�es the preferred way torevise S given P . Combining these two revisions, we de�ne the operator on B as follows:Est� (P; S) = (Est�(S); Est�(P )):The operator Est� describes a way to revise belief pairs.We start our discussion of the properties of the operators Est� and Est� with the followingstraightforward result relating their �xpoints.4As a matter of fact, the proof of part (3) requires additional arguments. However, it is easy to derive thisclaim from Corollary 3.10 and Theorem 6.3, proved in the next section. Thus, we omit the direct argumenthere. 28



Proposition 5.5 Let � be a default theory. For every possible-world structure P , P is a�xpoint of Est� if and only if (P; P ) is a �xpoint of Est� .The operator Est� allows us to reconstruct the notion of an extension as de�ned by Reiter.Namely, we have the following theorem.Theorem 5.6 Let � be a default theory. If a possible-world structure Q is a �xpoint of Est�then the theory E = f' 2 L: I(') = t; for every I 2 Qg is an extension of �. Conversely, ifa theory E is an extension of � then Q = fI 2 A: I(') = t; for every ' 2 Eg is a �xpoint ofEst� .Proof: The proof is very similar to that of Theorem 5.3. Let us recall that we proved therethe �rst assertion (a counterpart of the �rst assertion of the present theorem) and omitted theproof of the second statement. Here we proceed the other way around. We omit the proof ofthe �rst assertion and provide an argument for the second assertion only.In the proof, we will use the concept of a generating default [Rei80, MT93]. Let E be atheory closed under propositional consequence. A default d = �:�1;:::;�k is generating for E if� 2 E and for every i, 1 � i � k, :�i =2 E. Extensions can be characterized by means ofgenerating defaults. Namely, we have the following result [Rei80]: if E is an extension of adefault theory (D;W ) then E = Cn(W [CGDE); (2)where CGDE is the set of the consequents of all those defaults in D that are generating for E.Let us consider an extension E of a default theory � (we will assume that � = (D;W )).We de�ne Q = fI 2 A: I(') = t; for every ' 2 Eg (in other words, Q is the set of all models ofE). Since E is closed under propositional provability, E = f' 2 L: I(') = t; for every I 2 Qg.Therefore, to prove the second assertion it su�ces to show that Q = Est�(Q). To this end wewill prove that Q is the least �xpoint of the operator E l�(�; Q). We will do so by showing thatQ is a pre-�xpoint of E l�(�; Q) (that is, satis�es E l�(Q;Q) v Q) and that for any �xpoint Q0 ofthe operator E l�(�; Q), Q v Q0.We will �rst prove that E l�(Q;Q) v Q. Let us recall that E l�(Q;Q) = fI 2 A:Hdl(Q;Q);I(�) =tg. Let us consider a valuation I 2 Q. Since E is an extension of (D;W ), W � E. Thus,for every ' 2 W , Hdl(Q;Q);I(') = I(') = t. Next, let us consider a default d = �:�1;:::;�k fromD. If d is a generating default for E, then  2 E and I() = t. Thus, Hdl(Q;Q);I(d) = t. If dis not a generating default or E, then either we have (1) � =2 E, or (2) there is i, 1 � i � k,such that J(�i) = f, for every J 2 Q. In either case, it follows that Hdl(Q;Q);I(d) = t, as well.Consequently, Hdl(Q;Q);I(�) = t and I 2 E l�(Q;Q). Thus, we get Q � E l�(Q;Q), or equivalentlyE l�(Q;Q) v Q.Let us now consider a �xpoint Q0 of E l�(�; Q) and let us de�ne E0 = f' 2 L: I(') =t; for every I 2 Q0g. Clearly, E0 is closed under propositional provability. Since Q0 is a �xpointof E l�(�; Q), Q0 = E l�(Q0; Q) = fI 2 A:Hdl(Q;Q0);I(�) = tg:Thus, for every ' 2 W and for every I 2 Q0, I(') = t. In other words, W � E0. Next, letus consider a default d = �:�1;:::;�k from D. Let us assume that � 2 E0 and that for every i,29



1 � i � k, E 6` :�i. It follows that for every J 2 Q0, J(�) = t and, since E is closed underpropositional provability, that for every i, 1 � i � k, there is Ji 2 Q such that Ji(�i) = t. LetI 2 Q0. Since Hdl(Q;Q0);I(d) = t, it follows that I() = t. Thus,  2 E0.We have just proved that E0 satis�es the three requirements from the de�nition of ��(E).Thus, E = ��(E) � E0. Consequently, Q0 � Q or, equivalently, Q v Q0. We proved that Q isa pre-�xpoint of E l�(�; Q) and that Q v Q0 for any �xpoint Q0 of E l�(�; Q). It follows that Q isthe least �xpoint of E l�(�; Q) 2In view of Theorem 5.6, we refer to the �xpoints of the operator Est� as extensions of �.Further, in view of Proposition 5.5, we call �xpoints of the operator Est� , partial extensions of�. One can show that consistent partial extensions of a default theory � are in one-to-onecorrespondence with stationary extensions of � de�ned in [PP94].We also note that the operator Est� coincides with the operator �� de�ned on sets ofinterpretations and proposed by Guerreiro and Casanova [GC90, Lif90, MT93]. Guerreiro andCasanova simply rephrased the original de�nition of the operator �� (which works on theoriesand can be restricted, without the loss of generality, to theories closed under propositionalprovability) in terms of sets of interpretations (possible-world structures) that are models ofsuch theories. One of our contributions is that we derive this operator in a systematic andpurely algebraic (thus, not relying on any particular properties of defaults) fashion from anoperator E� de�ned on the lattice of belief pairs.Our next result describes monotonicity properties of the operators Est� and Est� . It isanalogous to Theorem 4.2 and can be proved in the same way.Theorem 5.7 Let � be a default theory. Then, the operator Est� is v-antimonotone and theoperator Est� is �pr-monotone and symmetric.Theorem 5.7 implies that the operator Est� has a least �xpoint. We will denote it by WF (�)and refer to it as the well-founded �xpoint (or the well-founded extension) of �. We will callthe semantics it implies the well-founded semantics of �. One can show that the well-foundedsemantics of �, as we introduced it here, coincides with the well-founded semantics of defaultlogic introduced in [BS91].The well-founded semantics allows us to approximate skeptical reasoning with extensionsand yields a su�cient condition for the uniqueness of an extension. As before, the followingresult is a simple corollary to the fact that Est� is symmetric and �pr-monotone (Theorem 5.7),and to Propositions 3.5 and 3.6. We also note that, as in the case of Corollary 5.4, part (3) ofthe assertion requires additional arguments and can be derived, for instance, from Corollary4.3 and Theorem 6.3.Corollary 5.8 Let � be a default theory.1. The �xpoint WF (�) is consistent.2. For every partial extension B of �, WF (�) �pr B.3. For every partial extension B of �,kn(WF (T )) � kn(B) and ig(WF (T )) � ig(B):30
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Figure 5: Operators associated with default logic4. If WF (T ) is a complete belief pair, then it is the unique consistent partial extension of�. Moreover the possible-world structure P such that WF (T ) = (P; P ) is the uniqueextension of �.Finally, let us note connections between (partial) expansions and (partial) extensions, andbetween the Kripke-Kleene and well-founded semantics for default logic. The proof of thisresult follows closely the lines of the proof of Theorem 4.4.Theorem 5.9 Let � be a default theory. Then:1. KK (�) �pr WF (�).2. Every extension of � is a v-minimal expansion of �.3. Every partial extension (P; S) of � is a v-minimal partial expansions of �: for everypartial expansions (P 0; S0), if P 0 v P and S0 v S, then P = P 0 and S = S0.In summary, default logic can be viewed as the logic of the operator E�. That is, the�xpoints of E� de�ne the semantics of partial expansions. The least �xpoint of E� de�nesthe Kripke-Kleene �xpoint. The operator E� gives rise to the operator E�, whose �xpointsare expansions (also referred to as weak extensions). Kripke-Kleene semantics provides anapproximation for the skeptical reasoning under the semantics of expansions. The operatorE� also leads to the operator Est� . Consistent �xpoints of this operator yield partial extensions(stationary extensions in the terminology of [PP94]). Fixpoints of the related operator Est�correspond to extensions by Reiter. The least �xpoint of the operator Est� results in thewell-founded semantics for default logic and approximates the skeptical reasoning under thesemantics of extensions. The relationships between the operators of default logic are illustratedin Figure 5. They are parallel to those for the autoepistemic logic (Figure 4).6 Default logic versus autoepistemic logicThe results of this paper shed new light on the relationship between default and autoepistemiclogics. The nature of this relationship was the subject of extensive investigations since the31



time both systems were introduced in the early 80s. Konolige [Kon88] proposed to encode adefault d = �:�1;:::;�k by the modal formulam(d) = K� ^ :K:�1 ^ : : ::K:�k ) ;and to represent a default theory � = (D;W ) by a modal theorym(�) = W [ fm(d): d 2 Dg:Despite the fact that the encoding is intuitive it does not provide a correspondence betweendefault logic as de�ned by Reiter and autoepistemic logic as de�ned by Moore. Let us considera default theory � with W = ; and D = fp:qp g, where p and q are two di�erent atoms. Then �has exactly one extension, Cn(;). Applying the translation of Konolige to � yields the theorym(�) = fKp^ :K:q) pg. The theory m(�) has two expansions. One of them is generatedby the theory Cn(;) (equivalently, it is the possible-world structure A) and corresponds to theonly extension of �. The other expansion is generated by the theory Cn(fpg) (equivalently, itis the possible-world structure that consists of just one valuation of fp; qg, the one in which p istrue and q is false). Thus, the Konolige's translation does not give a one-to-one correspondencebetween extensions of default theories and expansions of their modal encodings. Anotherexample can be obtained from the default theory � = (D;W ) where W = ;, and D = fp:p g(yielding the modal theory fKp ) pg that we used as a running example). Our concept ofextension of an autoepistemic theory eliminated the unwanted expansion of �, leaving onlythe desired modal theory that corresponds to Reiter's extension.This mismatch can now be explained within the semantic framework introduced in thispaper. Konolige's translation does not establish a correspondence between extensions andexpansions because they are associated with di�erent operators. Expansions are associatedwith �xpoints of the operator DT . Its counterpart on the side of default logic is the operatorE�. Fixpoints of this operator are not extensions but expansions (weak extensions, in theterminology of [MT89a]) of �. Extensions of � are associated with the operator Est� . Itscounterpart on the side of autoepistemic logic is the operator DstT , introduced in Section 4.This operator, to the best of our knowledge, has not appeared in the literature.In this section, we show that once we properly align concepts from default logic with thosefrom autoepistemic logic, Konolige's translation works! This alignment is illustrated in Figure6 and is formally described by Theorem 6.3. To prove it, we will need the following lemma.Lemma 6.1 Let (P; S) be a belief pair. For every interpretation I 2 A and every default dwe have Hdl(P;S);I(d) = H2(P;S);I(m(d)):Proof: Let us assume that d = � : �1; : : : ; �k :The modal translation m(d) of d can be equivalently written as:K� _K:�1 _ : : : _K:�k _ :We now show the desired equality.Hdl(P;S);I)(d) = f if and only if the following three conditions hold:32



1. For every J 2 S, J(�) 6= f.2. For every i, 1 � i � k, there exists J 2 P , J(�i) 6= f.3. I() 6= t.These three conditions are equivalent to the conjunction of the following three conditions:1. H2(P;S);I(:K�) = f.2. For every i, 1 � i � k, H2(P;S);I(K:�i) = f.3. H2(P;S);I() = f.This latter set of conditions is equivalent to H2(P;S);I(m(d)) = f. Thus, Hdl(P;S);I)(d) = f if andonly if H2(P;S);I(m(d)) = f, and the argument is complete. 2Corollary 6.2 Let � = (D;W ) be a default theory. Then, for every belief pair (P; S),fI : Hdl(P;S);I(�) = tg = fI : H2(P;S);I(m(�)) = tg:We are now ready to prove the main result of this section.Theorem 6.3 Let � be a default theory and let T = m(�). Then the following pairs ofoperators coincide and, thus, have the same �xpoints:1. E� = DT (partial expansions for � and T , including Kripke-Kleene �xpoints, coincide).2. E� = DT (expansions for � and T coincide).3. Est� = DstT (extensions for � and T coincide).4. Est� = DstT (partial extensions for � and T , including the well-founded �xpoints, coincide).Proof: (1) By Corollary 6.2, E� = Dm(�).(2) We recall that E�(P ) = Q if and only if E�(P; P ) = (Q;Q). By (1), this is equivalent toDm(�)(P; P ) = (Q;Q), that is, Dm(�)(P ) = Q. Thus, E� = Dm(�).(3) Since E� = Dm(�), we have, for every possible-world structure S,E l�(�; S) = Dlm(�)(�; S):Therefore, for each S, lfp(E l�(�; S)) = lfp(Dlm(�)(�; S)):But this just means that Est� = Dstm(�):(4) This assertion follows immediately from (3) as DstT (P; S) = (DstT (S);DstT (P )) and, likewise,Est� (P; S) = (Est�(S); Est�(P )). 2
33



E�E� Est�Est���	 ����	@@R DTDT DstTDstT��	 ����	@@R-�:� 7! K� ^ :K:� ) Figure 6: Embedding default logic into autoepistemic logic7 Computing the well-founded semanticsIn this section we discuss methods to compute Kripke-Kleene and well-founded �xpoints. Wewill focus on the case of autoepistemic logic. Since, as we demonstrated in the previous section,default logic can be viewed as a fragment of autoepistemic logic, our methods and results willapply to default logic, as well.To compute DlT (P; S) we need to compute all interpretations I such that H2(P;S);I(') = tfor every ' 2 T . The number of such interpretations may be exponential in the number ofatoms in T . The key to our approach is a simple observation that these interpretations aredetermined by some propositional theory of much smaller size. Indeed, the logical values ofmodal atoms (formulas of the form K ) occurring in ' do not depend on I. In particular,the logical values of maximal modal atoms (modal atoms not within the scope of any otheroccurrence of the modal operator) are determined by the belief pair (P; S). Once these valuesare established, we substitute them for the corresponding modal atoms. In this way, we obtaina formula, say '(P;S), in the propositional language with two special symbols t and f thatrepresent truth and falsity, respectively. These special symbols are interpreted in a standardway (in fact, we use the same notation for these two special elements of the language as for thecorresponding truth values). We denote this language by Le. The key property of the formula'(P;S) is that H2(P;S);I(') = t if and only if I('(P;S)) = t. Thus, the set of interpretationsDlT (P; S) is represented by the set of formulas f'(P;S):' 2 Tg. A similar representation canbe obtained for the set DuT (P; S). This leads to two questions: (1) how to compute theserepresentations, and (2) how to use them instead of belief pairs in the process of computingthe operator D and other related operators. The rest of this section is devoted to these issues.For every interpretation I 2 A, we de�ne an interpretation Ie of Le by setting Ie(t) = t,Ie(f) = f, Ie(p) = I(p) for every atom p in L, and by extending it to the whole language Le inthe standard way. For a theory X � Le, we de�neMod (X) = fI 2 A: Ie(') = t; for every ' 2 Xg:Let W be a possible-world structure. We call each propositional theory X � Le such thatMod (X) = W , a representation of W . Similarly, given a belief pair (P; S), a pair of theories(X;Y ) such that Mod(X) = P and Mod (Y ) = S is called a representation of (P; S). We extendthe notation Mod to pairs of theories and de�ne Mod(X;Y ) = (Mod (X);Mod (Y )).Let X and Y be two theories in the language Le. For every modal formula ' 2 LK wede�ne a formula '(X;Y ) 2 Le by induction as follows:34



1. If ' is modal-free, '(X;Y ) = '.2. If ' = : , '(X;Y ) = : (Y;X) (one should note that X and Y are reversed on the righthand side).3. If ' =  0 _  00, '(X;Y ) =  0(X;Y ) _  00(X;Y ).4. If ' =  0 ^  00, '(X;Y ) =  0(X;Y ) ^  00(X;Y ).5. If ' = K , '(X;Y ) = t if X `  (X;Y ). Otherwise, '(X;Y ) = f.Next, for a modal theory T we de�neT(X;Y ) = f'(X;Y ):' 2 Tg:It is easy to see that the inductive de�nition given above yields an algorithm to compute'(X;Y ). If we count each call to the propositional provability oracle as one step (the inputfor each such call is given by X or Y and a subformula of '), then this algorithm runs inpolynomial time in the size of '. Since the input for each call to the oracle is formed by one ofX or Y and a subformula of ', it follows that the problem to compute '(X;Y ), given a modalformula ' and a pair of theories (X;Y ), is in the class �2P .Our algorithm to compute the Kripke-Kleene and well-founded semantics for autoepistemicand default logics is based on the following result.Theorem 7.1 For every belief pair (P; S) and every propositional theories X and Y in theextended language, if Mod(X;Y ) = (P; S), thenDT (P; S) = Mod (T(Y;X); T(X;Y )):Proof: We will �rst show that for every belief pair (P; S), every two propositional theories Xand Y (in the extended language), every modal formula ' and every interpretation I 2 A,H2(P;S);I(') = Ie('(X;Y )): (3)We proceed by induction on the length of '. The claim is evident in the case when ' 2 L(this case establishes, in particular, the basis for the induction). Let us assume that ' = : .Then, H2(P;S);I(') = :H2(S;P );I( ) = :Ie( (Y;X)) = Ie(: (Y;X)) = Ie('(X;Y ))(the second equality is implied by the induction hypothesis, the last one follows from theinductive de�nition of '(X;Y )). A similar reasoning establishes the inductive step for the caseswhen the main connective in ' is the disjunction or the conjunction.The last case to consider is that of ' = K . Let us assume that H2(P;S);I(') = t. Then,H2(P;S);J( ) = t for every J 2 P . By the induction hypothesis we obtain that Je( (X;Y )) = tfor every J 2 P . Since Mod(X) = P , it follows that X `  (X;Y ). Thus, '(X;Y ) = t andIe('(X;Y )) = t. Conversely, let us assume that Ie('(X;Y )) = t. Since ' = K , '(X;Y ) = tor f. The latter case is impossible as Ie('(X;Y )) = t. Thus, '(X;Y ) = t. It follows thatX `  (X;Y ). Since Mod (X) = P , for every interpretation J 2 P , Je( (X;Y )) = t. By the35



induction hypothesis, for every interpretation J 2 P , H2(P;S);J( ) = t. Thus, by the de�nitionof the function H2(P;S);I , H2(P;S);I(') = t. This completes our inductive argument.We will use (3) to prove the assertion of the theorem. We haveDlT (P; S) = fI:H2(S;P );I(T ) = tg = fI: Ie(T(Y;X)) = tg = Mod(T(Y;X)):Similarly, DuT (P; S) = fI:H2(P;S);I(T ) = tg = fI: Ie(T(X;Y )) = tg = Mod(T(X;Y )):Thus, the assertion follows. 2Let us de�ne an operator on pairs of theories from Le byST (X;Y ) = (T(Y;X); T(X;Y )):Directly from Theorem 7.1, it follows that for every pair (X;Y ) of propositional theories inthe extended language we have:DT (Mod(X;Y )) = Mod (ST (X;Y )): (4)Before we state the next corollary, which is the key to our complexity results, we introduceadditional notation. Let L be a set, and let O : L! L be an operator in L. The iterations ofthe operator O, hO"nin2N are de�ned inductively as follows. O"0 is the identity operator inL. When O"n is de�ned, O"n+1 is de�ned by the condition:O"n+1(x) = O(O"n(x)):We now have the following corollary.Corollary 7.2 Let T be a modal theory. For every n � 0,DT"n(A; ;) = Mod(ST"n(ftg; ffg)):Proof: Clearly, A = Mod(t) and ; = Mod(f). Thus, the assertion holds for n = 0. Let usconsider an integer n � 0 and assume that the assertion holds for n. We haveDT"n+1(A; ;) = DT (DT"n(A; ;)) = DT (Mod (ST"n(ftg; ffg))(the second equality follows by the induction hypothesis). Now, by (4),DT (Mod (ST"n(ftg; ffg))) = Mod(ST (ST"n(ftg; ffg))) = Mod(ST"n+1(ftg; ffg)):Thus, the assertion follows by induction. 2Corollary 7.2 implies an algorithm to compute the Kripke-Kleene expansion (�xpoint) fora modal theory T . Since the operator DT is �pr-monotone, this �xpoint (which is the least�xpoint of DT ) can be computed by iterating DT over the belief pair (A; ;). By Corollary7.2, this �xpoint (or, more precisely, a pair of theories that represents it) can be computed byiterating the operator ST over the pair of theories (ftg; ffg).36



The number of iterations necessary to compute the least �xpoint of DT (or, equivalently,ST ) is polynomial in the size of T . Indeed, by the monotonicity of DT , the sequence of setsBi = DT"i(A; ;) is ascending, that is,B0 �pr B1 �pr B2 �pr : : : :Moreover, by Proposition 3.5, all Bis are consistent. Thus, by Proposition 3.2, for every modalatom K of T we haveH4B0(K ) �pr H4B1(K ) �pr H4B2(K ) �pr : : : :After no more that 2k iterations, where k is the number of maximal modal atoms in T , thislatter sequence stabilizes (reaches its limit). Indeed, each modal atom can change its value atmost twice (from f to u or i and, then, one more time to t). By Proposition 3.8 it followsthat if no modal atoms change their values when moving from Bi to Bi+1, then Bi+1 = Bi+2.Thus, B2k+1 = B2k+2.We have already argued before that the task to compute a single iteration of the operatorST is in the class �2P . Thus, we obtain the following result.Theorem 7.3 The problem of computing the Kripke-Kleene �xpoint for a given �nite modaltheory T is in the class �2P .This result was �rst proved in [DMT99]. The method we presented here is a simpli�cationof the approach from [DMT99]. Moreover, we will now extend it to the case of computing thewell-founded �xpoint of a modal theory T .In order to compute the well-founded �xpoint of T we need to design techniques to computethe stable operator DstT . Let us recall that DstT (P; S) = (DstT (S);DstT (P )), where DstT (S) =lfp(DS;T ) (we recall that DS;T = DT (�; S)). Thus, we will �rst focus on computing the operatorDstT .Let Y be a theory in the language Le. For every theory X � Le, we de�neSY;T (X) = T(Y;X):Theorem 7.1 has the following corollary concerning the connection between the operators DS;Tand SY;T (the proof is straightforward and we omit it).Corollary 7.4 Let T be a modal theory, let P and S be possible-world structures and let Xand Y be theories in Le. If P = Mod (X) and S = Mod(Y ), then DS;T (P ) = Mod(SY;T (X)).It follows from Corollary 7.4 that the possible-world structure DstT (S) (or, to be precise, itsrepresentation) can be computed by iterating the operator SY;T , where Y is a representationof S.Corollary 7.5 Let T be a modal theory. For every possible-world structure S and every theoryY � Le, if S = Mod(Y ), then for every n � 0,DS;T"n(A) = Mod(SY;T"n(ftg)):37



Proof: We proceed by induction. SinceDS;T"0(A) = A = Mod(ftg) = Mod(SY;T"0(ftg));the case n = 0 is settled. Let us assume that the assertion holds for all integers smaller thanor equal to some integer n � 0. We will show that the assertion holds for n+ 1. Indeed,DS;T"n+1(A) = DS;T (DS;T"n(A)) = DS;T (Mod (SY;T"n(ftg)))= Mod(SY;T (SY;T"n(ftg))) = Mod(SY;T"n+1(ftg)):The second equality follows by the induction hypothesis, the third one is implied by Corollary7.4. 2The sequence DS;T"n(A) is ascending and it stabilizes after no more than 2k+ 1 iterations,where k is the number of maximal modal atoms occurring in T (a similar argument as the onewe used for DT"n(A; ;) works in this case, as well). Thus, the sequence SY;T"n(ftg) stabilizesafter no more than 2k + 1 iterations, too. Let us denote this limit by SstT (Y ).The problem of computing the value SY;T (X) is in the class �2P (it follows from our earlierremarks on the complexity of computing ST ). Thus, it follows from Corollary 7.5 that wecan compute SstT (Y ) (which is a representation of the possible-world structure Dst(S)) byiterating the operator SY;T (where Y is a representation of S). Since the number of iterationsis polynomial in the size of T and Y , the task of computing (a representation of) Dst(S) is in�2P (assuming that S is given in terms of its representation Y ).For a pair of theories (X;Y ) in the language Le, we de�neSstT (X;Y ) = (SstT (Y ); SstT (X)):Let us consider possible-world structures P and S and theories X and Y in Le such thatP = Mod(X) and S = Mod(Y ). Then, by Corollary 7.4,Dst(P; S) = (DstT (S);DstT (P )) = (Mod (SstT (Y );Mod (SstT (X))) = Mod (SstT (X;Y )):It follows, that the problem of computing a representation of Dst(P; S) (that is, SstT (X;Y )),given representations X and Y of P and S, respectively, is in the class �2P .The well-founded �xpoint of Dst can be computed by iterating the operator Dst startingwith the belief pair (A; ;). Our discussion implies that its representation can be computedby iterating the operator Sst and starting with the pair of theories (ftg; ffg). The number ofiterations is bounded by 2k + 1, where k is the number of maximal modal atoms occurringin T (the same argument as in the case of the Kripke-Kleene �xpoint computations applies).Thus, we obtain the following theorem.Theorem 7.6 The problem of computing the well-founded �xpoint for a given �nite modaltheory T is in the class �2P .We proved in the previous section that default theories can be translated into equivalentmodal theories (Theorem 6.3). Thus, Theorems 7.3 and 7.6 have the following corollary.Corollary 7.7 The problem to compute the Kripke-Kleene �xpoint (respectively, the well-founded �xpoint) for a given default theory � is in the class �2P .38
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Figure 7: Operators associated with logic programmingThe problem to decide whether a default theory � has an expansion (respectively, exten-sion) is complete for the class �2P . The problem to compute an expansion (extension) for �is �2P -hard. These results were obtained by Gottlob [Got92] and, independently, by Stillman[Sti90]. The corresponding problems concerning expansions and extensions of autoepistemictheories have the same complexity [Got92]. Theorems 7.3 and 7.6 and Corollary 7.7 indicatethat the complexity of the problems to compute Kripke-Kleene and well-founded �xpoints ofautoepistemic and default theories have lower complexity (assuming the polynomial hierarchydoes not collapse). Thus, these approximation semantics are computationally more attractivethan the semantics of (two-valued) expansions and extensions.8 Discussion and future workWe presented results uncovering the semantic properties of default and autoepistemic logics.For each logic, we introduced an operator describing how to revise belief pairs when con-structing belief sets, and derived from this operator a whole family of semantics. We obtainedthese semantics by purely algebraic transformations reecting basic principles of approximat-ing belief sets. Some of these semantics (Kripke-Kleene and well-founded semantics) have aconstructive avor and are more amenable to computational treatment.We also demonstrated that the modal interpretation of defaults proposed by Konoligeestablishes a perfect correspondence between the families of semantics of default and autoepis-temic logics. This elegant picture can be further extended to the case of logic programmingwith negation. Based on the work of Fitting[Fit02], it was shown in [DMT00b] that all keysemantics for logic programs can be similarly obtained from the four-valued operator TP gen-eralizing the original van Emden-Kowalski one-step provability operator TP [vEK76]. Theresulting structure of main semantics of logic programs is shown in Figure 7.The operator TP is a counterpart to the operators DT and E�. Indeed, the translation oflogic program clauses into default rules proposed in [BF91, MT89b] establishes an embedding oflogic programming into default logic that precisely aligns the corresponding semantics (Figure8). Let us further note that the approach to semantics of nonmonotonic logics based on the39



TPTP T stPT stP��	 ����	@@R E�E� Est�Est���	 ����	@@R-p q;not(r) 7! q::rpFigure 8: Embedding logic programming in default logicconcept of a belief pair can also be extended to the case of reexive autoepistemic logic intro-duced by Schwarz [Sch91]. As in all other cases discussed in this paper, all major semantics forthe reexive autoepistemic logic can be obtained from a single operator on the lattice B (thede�nition of the operator remains essentially the same as in the case of autoepistemic logic |what changes is the de�nition of the truth function H4(P;S);I).As pointed in the Section 1, in early 80s, McDermott and Doyle proposed a general approachto de�ne modal nonmonotonic logics [MD80, McD82]. It is known that autoepistemic logiccan be obtained within the framework of McDermott and Doyle from the modal logic KD45[Shv90, MT93]. In [Sch91] Schwarz proved that reexive autoepistemic logic can similarly beobtained from modal logic SW5. Our results show that both logics can be given an algebraictreatment based on the concept of a belief pair. An interesting question is whether other modalnonmonotonic logics in the McDermott and Doyle's scheme are amenable to such an approach.Another question concerning the McDermott and Doyle's scheme is whether the semanticsof extensions for autoepistemic logic can be reconstructed within it as a modal nonmonotoniclogic corresponding to some appropriately chosen underlying modal logic. The answer to thisquestion is negative. The modal theory T , whereT = f:Kp) p; Kp) pg;has no extensions. The easiest way to see it is to observe that T = m(�), where� = �;; fp :p ; : :pp g� :Since � has no extensions, Theorem 6.3 implies that m(T ) has no extensions either. However,for every modal logic S, T has at least one S-expansion (in the sense of McDermott and Doyle).In particular, the set of consequences of fpg in the logic S5 is such an expansion [MT93].Finally, let us mention that it is possible to develop an abstract, purely algebraic treatmentof the concept of an approximation of an operator. It generalizes the approach presented hereand the work of Fitting on logic programming semantics. An account of this abstract treatmentof approximations can be found in [DMT00a].AcknowledgmentsMarc Denecker was supported in part by the Research Fund of the K.U. Leuven, Belgium.Victor W. Marek and Miros law Truszczy�nski were supported by the National Science Foun-dation under Grants No. 9874764 and 0097278. Any opinions, �ndings, and conclusions or40
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