
Logic programs with abstract constraint atoms

Content areas: Knowledge representation, logic programming, nonmonotonic reasoning

Abstract

We propose and study extensions of logic programming
with constraints represented as generalized atoms of the
form C(X), whereX is a finite set of atoms andC is
an abstract constraint (formally, a collection of sets of
atoms). AtomsC(X) are satisfied by an interpretation
(set of atoms)M , if M ∩ X ∈ C. We focus here on
monotone constraints, that is, those collectionsC that
are closed under the superset. They include, in particu-
lar, weight (or pseudo-boolean) constraints studied both
by the logic programming and SAT communities. We
show that key concepts of the theory of normal logic
programs such as the one-step provability operator, the
semantics of supported and stable models, as well as
several of their properties including complexity results,
can be lifted to such case.

Introduction
In this paper, we study logic programs whose clauses are
built of generalized atoms expressing constraints on sets.
We show that under the assumption ofmonotonicityof con-
straints, and with an appropriate handling of nondetermin-
ism inherent in deriving ways to satisfy constraints, basic
concepts, methods, semantics and results studied in nor-
mal logic programming generalize to the extended setting.
Our work provides a theoretical framework for recent ex-
tensions of logic programming with weight constraints (Si-
mons, Niemel̈a, & Soininen 2002) but applies to a much
broader class of programs.

In the 1990s researchers demonstrated that normal logic
programming with the stable-model semantics is an effec-
tive knowledge representation formalism. It provides solu-
tions to problems arising in such contexts as planning, rea-
soning about action, diagnosis and abduction, product con-
figuration, and modeling and reasoning about preferences.
Moreover, due to the emergence of fast methods to compute
stable models (Niemelä & Simons 1997; Leoneet al. 2003;
Babovich & Lifschitz 2002; Lin & Zhao 2002), the impor-
tance of the formalism increased significantly as it became
possible to use it not only as a modeling language but also as
a practical computational tool. (Baral 2003) and (Gelfond &

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Leone 2002) provide a detailed discussion of the formalism
and its applications.

In the last few years, researchers proposed extensions of
the language of normal logic programming with means to
model constraints involvingaggregateoperations on sets.
(Simons, Niemel̈a, & Soininen 2002) proposed a formal-
ism integrating logic programming withweight constraints1,
generalized the concept of stable models to this extended
setting, and developed fast algorithms to compute them.
(Denecker, Pelov, & Bruynooghe 2001; Pelov, Denecker,
& Bruynooghe 2004), introduced a formalism allowing for
more general aggregates. They extended to this new setting
several semantics of normal logic programs, including the
stable-model semantics and the well-founded semantics. A
related recent work (Dell’Armiet al. 2003), incorporated
aggregates into the formalism ofdisjunctivelogic programs
with theanswer-set semantics. Such extensions are impor-
tant as they simplify the task of modeling problem specifi-
cations, typically result in more direct and more concise en-
codings, and often significantly improve the computational
effectiveness of the formalism as a problem-solving tool2.

However, arguably, all these approaches are subject to
limitations. The formalism of (Simons, Niemelä, & Soini-
nen 2002) admits only weight constraints and focuses almost
entirely on the semantics of stable models. Furthermore, the
connections to normal logic programming are indirect and
somewhat obscure. There is a correspondence to logic pro-
grams withnestedexpressions (Ferraris & Lifschitz 2004),
which helped establish some interesting results on programs
with weight constraints (for instance, characterizationsof
their strong equivalence (Turner 2003)). However, the direct
encodings of programs with weight constraints as programs
with nested expressions have large size and, more impor-
tantly, it is not clear whether that connection applies in the
broader context of other types of constraints. The other two
approaches consider broader classes of constraints and are
more firmly grounded in the core formalism of normal (dis-

1These are constraints on the total weight of elements in sets.
In the SAT community, they are also referred to aspseudo-boolean
constraints.

2For similar reasons, extending propositional logic with ag-
gregates (most notably, weight constraints) has recently been
gaining attention (Aloulet al. 2002; Dixon & Ginsberg 2002;
Prestwich 2002).

junctive) programs, but are limited in that they do not allow
aggregate constructs to appear in the heads of the clauses. In
addition, all approaches discussed above focus on concrete
constraints, and so, they are restricted in their applicability.

Our goal is to address these limitations. We develop a
formalism of logic programs with clauses built of general-
ized atoms that express constraints on sets. To this end,
we propose the notion of anabstract constraintand its
linguistic counterpart — anabstract constraint atom. We
then use abstract constraint atoms as building blocks of pro-
gram clauses. We restrict our attention tomonotonecon-
straints, as monotonicity is essential for preserving a pro-
cedural reading of a logic program as a computational de-
vice. We show that basic concepts, techniques and results
of normal logic programming have direct generalizations to
the class of programs built of monotone constraints. In par-
ticular, we extend to that setting thesupported-modeland
thestable-modelsemantics. We also establish some relevant
complexity results. Our work is related to (Marek, Niemelä,
& Truszczýnski 2004). That work, however, focused only on
one specific class of constraints — cardinality constraints.

The key tool in our work is thenondeterministic one-step
provability operator. It generalizes the one-step provabil-
ity operator of (van Emden & Kowalski 1976). Thanks to
close parallels between these two concepts, we are able to
reconstruct operator-based characterizations of models,sup-
ported models and stable models, presented in (Apt 1990;
Fitting 2002). We also distinguish and discuss the class of
deterministicprograms (programs with clauses whose heads
can be satisfied only in one way). For these programs the
one-step provability operator becomes deterministic and the
theory of normal logic programming extends to determinis-
tic programs withoutanysignificant change.

Basic concepts, motivation, examples
We limit our considerations to the propositional case. As
we interpret programs with variables by means of Herbrand
models, the first-order case reduces to the propositional one.

We consider a language determined by a fixed countable
setAt of propositional atoms. An abstract constraintis a
collectionC ⊆ P(At). An abstract constraint atomis a
syntactic expression of the formC(X), whereX ⊆ At is
finiteandC is an abstract constraint.

We interpret abstract constraint atoms by means of propo-
sitional interpretations (truth assignments), represented as
subsets ofAt3. An interpretationM ⊆ At satisfiesan ab-
stract constraint atomC(X) (M |= C(X)), if M ∩X ∈ C
(that is, if the set of atoms inX that are true inM belongs
to, or satisfies, the constraintC). Otherwise,M does not
satisfyC(X), (M 6|= C(X)). In that case, we also say that
M satisfies theliteral not(C(X)). An abstract constraint
atomC(X) is consistentif there is an interpretationM such
thatM |= C(X). We will now illustrate these concepts with
several examples of common constraints.
Weight constraints. Given a real numberv and a weight
function w, assigning to each atom inAt a real number

3We recall that for an interpretationM ⊆ At , an atomp ∈ At

is true in M if p ∈ M ; otherwise,p is falsein M .

(its weight), a weight constraintW≤
w,v imposes a restriction

that “a total weight of atoms in anallowedsubset ofAt be
at leastv”. We representW≤

w,v as an abstract constraint
W≤

w,v = {A ⊆ At : v ≤
∑

a∈A w(a)} (comparison rela-
tions<, >,≥ give rise to other types of weight constraints).
Volume constraints.They differ from weight constraints in
that they restrict the product of individual weights of atoms
in allowed sets, depending on the type of the comparison re-
lation used. Selecting the relation≤ and assuming the same
notation as before, we express volume constraints as abstract
constraints of the formV ≤

w,v = {A ⊆ At : v ≤ Πa∈Aw(a)}.
Maximum constraints. Given a weight functionw on
the set of atoms and a real boundv, the maximum con-
straint restricts allowed sets of atoms to those with the max-
imum weight at leastv. Formally, we express them as ab-
stract constraints of the formMax

≤
w,v = {A ⊆ At : v ≤

max{w(a) : a ∈ A}} (or it variants, depending on the com-
parison relation).
Even- and odd-cardinality constraints. They impose a
parity requirement on the cardinality of allowed sets. For-
mally, we express them as abstract constraintsE = {A ⊆
At : |A| is even} andO = {A ⊆ At : |A| is odd}.
Containment constraints. Such constraints require that al-
lowed sets contain some prespecified configurations (sub-
sets). We capture them by abstract constraintsCA that con-
sist of all subsets ofAt that contain at least one element from
a prespecified collectionA of finite subsets ofAt .

Each of these constraints determines associated abstract
constraint atoms. LetAt = {p1, p2, . . .} and let us con-
sider a weight functionw such thatw(pi) = i, i =

1, 2, The expressionW≤
w,6(p1, p2, p5, p6) is an example

of an abstract constraint atom. A setM of atoms satisfies
W

≤
w,6(p1, p2, p5, p6) if and only if the total weight of atoms

in M∩{p1, p2, p5, p6} is at least6 (that is, wheneverM con-
tainsp6, or p5 together with at least one other atom). Simi-
larly, the abstract constraint atomMax

≤
w,5(p2, p4, p6, p8) en-

forces the restriction that allowed sets containp6 or p8. An
abstract constraint atomE(p1, p7) (E stands for the even-
cardinality constraint) forces allowed sets of atoms to con-
tain none or both ofp1 andp7. All these constraint atoms are
consistent. An atomW≤

w,7(p1, p2, p3) is an example of an
inconsistent atom. No selection of atoms from{p1, p2, p3}
satisfies it and, consequently, it has no models.

These examples demonstrate that abstract constraints and
constraint atoms can express a broad range of constraints.
In the paper, we show that abstract constraint atoms can be
combined into logic program clauses to represent even more
complex constraints, and that much of the theory of normal
logic programs generalizes to the extended setting.

Let F be a class of abstract constraints overAt . By an
F-atomwe mean an abstract atomA(X) such thatA ∈ F
andX ⊆ At . By anF-clausewe mean an expression

A(X)←B1(X1), . . . , Bm(Xm),

not(C1(Y1)), . . . ,not(Cn(Yn)) (1)
whereA(X), Bi(Xi) andCj(Yj) areconsistentF-atoms4.
By anF-programwe mean a collection ofF-clauses.

4The case when inconsistent atoms are allowed is not essen-

If r is a clause of the form (1),A(X) is the head of
r, denoted byhd(r), and X is the head setof r, de-
noted byhset(r). We also call the conjunction of literals
B1(X1), . . . , Bm(Xm),not(C1(Y1)), . . . ,not(Cn(Yn)),
the body of r. Finally, for anF-programP , we define
hset(P) to be the union of setshset(r), for r ∈ P .

Our goals are to extend concepts, techniques and results
of normal logic programming to the class ofF-programs,
to provide a uniform theoretical framework for current ex-
tensions of logic programs with aggregates, and to identify
basic assumptions under which such extensions are possi-
ble. To this end, we note that normal logic programs can
be viewed as programs with abstract constraint atoms. Let
UAt = {X ⊆ At : X 6= ∅}. Clearly,UAt is an abstract con-
straint and, for every atoma ∈ At and every interpretation
M , M |= a if and only if M |= UAt(a). That is, propo-
sitional atoms areequivalentto abstract constraint atoms
UAt(a). Under this equivalence, a normal logic programP
can be viewed as a{UAt}-program, by regarding each atom
a as a shorthand for the constraint atomUAt(a). Formally,
for a normal logic programP , we define its correspond-
ing {UAt}-programP ac (the superscript stands forabstract
constraints) to consist of all{UAt}-clauses obtained from
clauses inP by replacing atomsa with abstract constraint
atomsUAt(a). As a verification of the soundness of our
approach, we will show in the paper that several properties
of programs with abstract constraints, when applied to pro-
grams of the formP ac, reduce to well known properties of
normal logic programs.

Clauses of normal logic programs are typically regarded
as computational devices:assuming that preconditions of a
clause have been established, the clause provides a justifica-
tion to establish (compute) its head. Crucial concepts behind
formal accounts of that intuition are those of a Horn pro-
gram, the correspondingbottom-upcomputation, and a least
Herbrand model, which defines theresult of the computa-
tion. Computations and their results are well defined due to
themonotonebehavior of Horn programs. To extend normal
logic programming to the class of programs with abstract
constraint atoms, one needs a generalization of the class of
Horn programs supporting an appropriate notion of a com-
putation, with the results of computations playing the same
role as that played by the least Herbrand model.

In order to accomplish that, it is not enough simply to dis-
allow the negation operator in the bodies ofF-clauses. It is
also necessary to restrict the class of constraints to thosethat
aremonotone(that is, intuitively, once true in an interpreta-
tion, they remain true in its every superset). Without that
assumption, the “monotonicity” of normal Horn programs
does not generalize and there is no straightforward way to
define the concept of a computation.

Formally, we say that an abstract constraintC is mono-
tone if for every A,A′ ⊆ At , if A ∈ C and A ⊆ A′

thenA′ ∈ C (in other words, monotone constraints are pre-
cisely upward-closed families of subsets ofAt). An abstract
constraint atomC(X) is monotone if its constraintC is

tially different and can be reduced to the one we focus on here. We
do not discuss that issue in detail due to space restrictions.

monotone. The followingmonotonicityproperty of abstract
monotone atoms is a direct consequence of these definitions.

Proposition 1 Let C be an abstract monotone constraint
over At , X ⊆ At , and letM,M ′ ⊆ At be two interpre-
tations. IfM |= C(X) andM ⊆M ′, thenM ′ |= C(X).

We note that if all the individual weights used by the
weight functionw are non-negative, the weight constraint
W≤

w,v, which we discussed earlier, is monotone. The maxi-

mum constraintMax
≤
w,v is monotone for every weight func-

tion w. We also note that the constraintUAt , which we used
to interpret normal logic programs as programs with abstract
constraints, is monotone as well, which further justifies a
central role of monotone constraints. On the other hand, we
note that some common constraints, for instance, even- and
odd-cardinality constraintsE andO, are not monotone.

From now on, unless explicitly stated otherwise, we re-
strict our attention to constraints that aremonotone. Under
this assumption, the concept of a Horn program has an obvi-
ous direct generalization. Namely, for any classF of mono-
tone constraints, anF-program is aHorn F-program if it
contains no occurrences of the operatornot.

Nondeterministic one-step provability
operator

A basic tool in the studies of normal logic programs is that
of theone-step provability operator(van Emden & Kowal-
ski 1976). It describes the results of updating an interpreta-
tion by computing the heads of applicable program clauses.
The difficulty with extending that operator to the case ofF-
programs is that once a clause “fires”, there may be many
sets of atoms that can be derived on that basis, as there may
be many ways to “satisfy” the abstract atom in the head of
the clause. In this section, we address that issue.

A nondeterministic operatoron a setD is any function
f : D → P(D) \ ∅ (that is, for everyd ∈ D, f(d) 6= ∅).
One can view the setf(d) as the collection of all possible
outcomes of applyingf tod, one of which (by the definition,
at least one is available) can be selected nondeterministically
as theactualoutcome off .

Definition 1 LetF be a class of monotone constraints. Let
P be anF-program and letM ⊆ At .
(1) A clauser ∈ P is M -applicable, if M satisfies all lit-
erals in the body ofr. We denote byP (M) the set of all
M -applicable clauses inP .
(2) A setM ′ is nondeterministically one-step provablefrom
M by means ofP , if M ′ ⊆ hset(P (M)) andM ′ |= hd(r),
for every clauser in P (M).
(3) Thenondeterministic one-step provability operatorT nd

P ,
is a function fromP(At) to P(P(At)) such that for every
M ⊆ At , T nd

P (M) consists of all setsM ′ that are nonde-
terministically one-step provable fromM by means ofP .

Our use of the termnondeterministic operatorin refer-
ence toT nd

P is justified. We have the following property.

Proposition 2 Let F be a class of monotone constraints
over a setAt and letP be anF-program. For everyM ⊆
At , hset(P (M)) ∈ T nd

P (M). In particular,T nd

P (M) 6= ∅.

We use the operatorT nd

P to introduce and characterize
several semantics forF-programs, and to relate the formal-
ism ofF-programming to normal logic programming. We
will often rely on the intuition that elements ofT nd

P (M) can
be viewed as possibleupdatesof M on the basis of clauses
in P , none of them distinguished and each available for a
nondeterministic selection as anactualupdate.

We conclude this section with a characterization of mod-
els ofF-programs. It is a generalization of the familiar de-
scription of models of normal logic programs as prefixpoints
of the van Emden-Kowalski operator (the conditions in the
theorem are commonly used as a definition ofprefixpoints
of a nondeterministic operator).

Theorem 1 LetF be a class of monotone constraints over
a setAt . Let P be anF-program and letM ⊆ At . The
setM is a model ofP if and only if there isM ′ ∈ T nd

P (M)
such thatM ′ ⊆M .

Supported models ofF-programs
For a setM of atoms, we say thatM -applicable clauses in an
F-programP providesupportto atoms in the heads of these
clauses. ForM to be a model ofP , M must satisfy the heads
of all applicable clauses. To this end,M needs to contain
some of the atoms appearing in the heads of these clauses
(atoms with support inM andP) and, possibly, also some
atoms that do not have such support. Models that contain
only atoms with support form an important class of models
generalizing the class of supported models for normal logic
programs (Clark 1978; Apt 1990).

Definition 2 LetF be a class of monotone constraints and
let P be anF-program. A set of atomsM is a supported
modelof P if M is a model ofP andM ⊆ hset(P (M)).

Supported models have the following characterization
generalizing a characterization of supported models of nor-
mal logic programs as fixpoints of the the van Emden-
Kowalski operator (the characterizing condition is com-
monly used as a definition of afixpointof a nondeterministic
operator).

Theorem 2 LetF be a class of monotone constraints. Let
P be anF-program. A setM ⊆ At is a supported model of
P if and only ifM ∈ T nd

P (M).

Our concept of a supported model generalizes that consid-
ered in normal logic programming. Specifically, supported
models of a normal logic program coincide with supported
models of this same program viewed as a{UAt}-program.

Theorem 3 For every normal logic programP , a set of
atomsM is a supported model ofP if and only if M is a
supported model of the{UAt}-programP ca

Horn F-programs
The concepts of a model and supported model extend toF-
programs directly. To find a proper generalization of sta-
ble models is less straightforward. We will address it in the
next two sections. In this section, we will studyHorn F-
programs. The key issues is that of generalization of the

concept of a bottom-up computation which, in the case of
HornF-programs is inherently non-deterministic.

Let F be a class of monotone constraints and letP
be a HornF-program. AP -computationis a sequence
(Xn)n=0,1,... such thatX0 = ∅ and, for every non-negative
integern:
1. Xn ⊆ Xn+1, and
2. Xn+1 ∈ T nd

P (Xn).
Given a computationt = (Xn)n=0,1,..., we call

⋃∞

n=0
Xn

theresultof the computationt and denote it byRt.
The following proposition shows that the results of com-

putations contain only atoms with support and that they
are supported models (and, thus, also models) of HornF-
programs.

Proposition 3 LetF be a class of monotone constraints and
let P be a HornF-program. For everyP -computationt:
1. Rt ⊆ hset(P (Rt)), and
2. Rt, is a supported model ofP .

Let M be a model ofP . We defineXP,M
0 = ∅ and, for

everyn ≥ 0, we setXP,M
n+1 = hset(P (XP,M

n)) ∩M.

Theorem 4 Let F be a class of monotone constraints and
let P be a HornF-program. For every modelM of P , the
sequencetP,M is aP -computation.

We call theP -computationtP,M , whereM is a model
of P , the canonicalP -computation forM . Since every
F-programP has models, every HornF-program has at
least one computation. In general, a HornF-program may
have multiple computations with, possibly, different results.
Indeed, when derivingXn+1 from what was computed so
far, we can pick forXn+1 any element form the collection
T nd

P (Xn) which, typically, contains more than one element.
We use computations to distinguish an important class of

models of HornF-programs, which generalizes the concept
of a least Herbrand model of a normal Horn program.

Definition 3 LetF be a class of monotone constraints and
let P be a HornF-program. We say that a set of atomsM
is a derivable modelof P if there exists aP -computationt
such thatM = Rt.

It follows from Proposition 3(2) that derivable models of
a HornF-programP are supported models (and therefore
models) ofP . The following theorem shows they are the
results of their own canonical computations.

Theorem 5 LetF be a class of monotone constraints. For
every derivable modelM of a HornF-programP , we have
M = RtP,M .

Proposition 3(2) and Theorems 4 and 5 entail additional
properties of derivable models of HornF-programs.

Corollary 1 LetF be a class of monotone constraints and
let P be a HornF-program. Then:
1. P has at least one derivable model
2. Every model ofP contains a derivable model ofP
3. Every minimal model ofP is derivable.

These properties generalize their counterparts holding for
normal Horn programs. Indeed, the{UAt}-programP ca,

whereP is a normal Horn program, has exactly oneP ca-
computation coinciding with the bottom-up computation for
P , and exactly one derivable model that coincides with the
least Herbrand model ofP .

Stable models ofF-programs
We will now define stable models ofF-programs. To this
end, we will generalize the concept of thereduct(Gelfond
& Lifschitz 1988) to the case ofF-programs and exploit
results on HornF-programs from the previous section.

Definition 4 LetF be a class of monotone constraints and
let P be anF-program. For a set of atomsM ⊆ At we
define thereductof P with respect toM , PM in symbols,
as a HornF-program obtained fromP by (1) removing
fromP every clause containing in the body a literalnot(A)
such thatM |= A, and (2) removing all literals of the form
not(A) from all remaining clauses inP .

It is clear that the reductPM is a HornF-program. Thus,
the following definition is sound, as the concept of a deriv-
able model is well defined for the reduct.

Definition 5 LetF be a class of monotone constraints and
let P be anF-program. A set of atomsM is a stablemodel
of P if M is a derivable model of the reductPM .

This definition does not make it explicit that a stable
model of anF-program is a model. It is however so and the
use of the termmodelis indeed justified. In fact, a stronger
property holds: stable models ofF-programs are supported.

Proposition 4 LetF be a class of monotone constraints and
P be anF-program. IfM ⊆ At is a stable model ofP then
M is a supported model ofP .

The notion of a stable model allows us to strengthen
Proposition 3(2).

Proposition 5 LetF be a class of monotone constraints and
P be a HornF-program. A set of atomsM ⊆ At is a deri-
vable model ofP if and only ifM is a stable model ofP .

We conclude this section by noting that this concept of
a stable model of anF-program extends the concept of a
stable model of a normal logic program.

Theorem 6 LetP be a normal logic program and letM be
a set of atoms. Then,M is a stable model ofP if and only if
M is a stable model of the{UAt}-programP ca.

Deterministic F-programs
A monotone constraint atomC(X) is deterministicif X is
a minimal element inC. Deterministic monotone constraint
atoms have the following properties.

Proposition 6 Let C(X) be a deterministic constraint
atom. ThenC(X) is consistent and, for everyM ⊆ At ,
M |= C(X) if and only ifX ⊆M .

An F-programP is deterministic, if the head of every
clause inP is a deterministic constraint atom. For deter-
ministic logic programs there is only one way to derive a set
of atoms to satisfy the head of an applicable clause. Thus,
computing with deterministicF-programs does not involve
nondeterminism. Indeed, we have the following result.

Proposition 7 LetF be a class of monotone constraints and
let P be a deterministicF-program. Then, for every set of
atomsM , |T nd

P (M)| = 1.

Consequently, for a deterministicF-programP , the op-
eratorT nd

P is deterministic and, so, can be regarded as an
operator with both the domain and codomainP(At). We
write T d

P , to denote the unique operator such that for ev-
ery M ⊆ At , T nd

P (M) = {T d
P (M)}. Models, sup-

ported models and stable models of a deterministicF-
program can be introduced in terms of the operatorT d

P in
exactly the same way as the corresponding concepts are de-
fined in normal logic programming in terms of the opera-
tor TP . In particular, the algebraic treatment of logic pro-
gramming developed in (Fitting 2002; Przymusinski 1990;
Denecker, Marek, & Truszczyński 2000) applies literally to
deterministicF-programs. We note that this comment ex-
tends to 3- and 4-valued semantics of partial models, sup-
ported models and stable models (including the Kripke-
Kleene semantics and the well-founded semantics)5. That
is important as we do not have yet a convincing generaliza-
tion of some of these semantics (most notably, multivalued
stable-model semantics and the well-founded semantics) to
the case of arbitraryF-programs.

Complexity
In this section we will briefly discuss the complexity of
deciding whether anF-program has a supported (stable)
model. For the complexity considerations we restrict tofini-
tary abstract constraints, that is, constraints that consist of
finite sets of atoms only.

We note that a finitary abstract constraintC gives rise to
a decision problemDC : given a finite setX ⊆ At , decide
whetherX ∈ C. For many common constraints that deci-
sion problem belongs to the class P. It is so for all constraints
considered earlier (in the case of a containment constraint,
under the assumption that sets inA that define the constraint
are given by lists of their elements).

Theorem 7 LetF be a nonempty class of finitary abstract
monotone constraints such that for every constraintC ∈ F ,
the decision problemDC is in P and at least one constraint
in F is nonempty. Then the problem to decide whether anF
program has a supported (stable) model is NP-complete.

The proof of the upper bound is simple. Once we guess
a candidateM for a stable model forP , we first verify that
M is a model ofP . Next, we compute the reductPM and,
finally, we verify thatM is a derivable model ofPM by
constructing the canonical derivation forM . The last task
is well defined as it is applied after we first verify thatM is
a model (we recall that canonical derivations are defined for
models only). Moreover, all tasks can be accomplished in
polynomial time (by our assumption on the classF).

The proof of NP-completeness is harder. Due to the lack
of space, we only note that to prove the claim we reduce to
our problem the problem of the existence of stable models

5Results in (Denecker, Pelov, & Bruynooghe 2001) are related
to this observation. They deal with programs (with aggregates),
whose clauses have heads consisting ofsingleatoms.

for normal logic programs (known to be NP-complete). The
reduction is possible due to the fact thatF contains at least
one constraintC and this constraint contains at least one
finite minimal model.

The arguments in the case of supported models are sim-
ilar. We also note that Theorem 7 can be generalized so
that to give the complexity of the problem of the existence
of supported (stable) models ofF-programs in terms of the
complexity of the decision problemsDC , for C ∈ F .

Discussion
In this paper, we discussed a generalization of normal logic
programming, in which clauses consist ofabstract con-
straint atoms, that is, expressions modeling constraints on
sets. We showed that for a broad class of abstract con-
straints, called in the papermonotone, basic concepts, meth-
ods and results from normal logic programming generalize.

The results of the paper provide a formal tool to study
properties of current extensions of logic programming sys-
tems with weight constraints such as those proposed in (Si-
mons, Niemel̈a, & Soininen 2002). However, they apply
equally well to extensions with much broader classes of con-
straints; the only requirement is their monotonicity. Suchex-
tended formalisms have clear modeling and computational
advantages. Our work offers for them a solid theoretical ba-
sis.

The paper opens several interesting research directions.
First, our complexity results indicate that the complexityof
automated reasoning tasks for programs with constraints re-
mains NP-complete as long as programs are built on the ba-
sis of constraints, for which the membership problem is in
P. That indicates that an extension of algorithmic methods to
compute stable models of programs with weight constraints
in (Simons, Niemel̈a, & Soininen 2002) to programs with
more general constraints might be possible. Second, due to
close analogies between our approach and normal logic pro-
gramming, we believe several other properties and results
(splitting theorems, the concept of strong equivalence andits
characterizations, Fages lemma, etc.) can be extended to the
setting of programs with constraints. Finally, an important
problem is to establish under what conditions the assump-
tion of monotonicity can be dropped. Our formalism can
easily be extended to the case allowing clauses with incon-
sistent heads and in such clauses, atoms built ofarbitrary
constraints can occur. Whether that result can be general-
ized in any significant fashion is an open question.

References
Aloul, F.; Ramani, A.; Markov, I.; and Sakallah, K. 2002.
PBS: a backtrack-search pseudo-boolean solver and opti-
mizer. SAT02, 346 – 353.
Apt, K. 1990. Logic programming.Handbook of theoreti-
cal computer science. 493–574.
Babovich, Y., and Lifschitz, V. 2002.Cmodels pack-
age. http://www.cs.utexas.edu/users/tag/
cmodels.html.
Baral, C. 2003.Knowledge representation, reasoning and
declarative problem solving.

Clark, K. 1978. Negation as failure.Logic and data bases,
293–322.
Dell’Armi, T.; Faber, W.; Ielpa, G.; Leone, N.; and Pfeifer,
G. 2003. Aggregate functions in disjunctive logic program-
ming: semantics, complexity, and implementation in DLV.
IJCAI 2003.
Denecker, M.; Marek, V.; and Truszczyński, M. 2000. Ap-
proximations, stable operators, well-founded fixpoints and
applications in nonmonotonic reasoning.Logic-Based Ar-
tificial Intelligence, 127–144.
Denecker, M.; Pelov, N.; and Bruynooghe, M. 2001. Ulti-
mate well-founded and stable semantics for logic programs
with aggregates.ICLP 2001, 212–226.
Dixon, H., and Ginsberg, M. 2002. Inference methods for a
pseudo-boolean satisfiability solver.AAAI-2002, 635–641.
Ferraris, P., and Lifschitz, V. 2004. Weight constraints
ans nested expressions.Theory and Practice of Logic Pro-
gramming, (forthcoming).
Fitting, M. C. 2002. Fixpoint semantics for logic program-
ming – a survey.Theoretical Computer Science278:25–51.
Gelfond, M., and Leone, N. 2002. Logic programming
and knowledge representation – the A-prolog perspective.
Artificial Intelligence138:3–38.
Gelfond, M., and Lifschitz, V. 1988. The stable semantics
for logic programs.ICLP 1988, 1070–1080.
Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.;
Perri, S.; and Scarcello, F. 2003. The dlv system for
knowledge representation and reasoning.http://xxx.
lanl.gov/abs/cs.AI/0211004.
Lin, F., and Zhao, Y. 2002. ASSAT: Computing answer
sets of a logic program by SAT solvers.AAAI-2002, 112–
117.
Marek, V.; Niemel̈a, I.; and Truszczýnski, M. 2004. Char-
acterizing stable models of logic programs with cardinality
constraints.LPNMR7, 154–166.
Niemel̈a, I., and Simons, P. 1997. Smodels — an imple-
mentation of the stable model and well-founded semantics
for normal logic programs. InLPNMR4, 420–429.
Pelov, N.; Denecker, M.; and Bruynooghe, M. 2004. Par-
tial stable models for logic programs with aggregates.LP-
NMR7, 207–219.
Prestwich, S. 2002. Randomised backtracking for linear
pseudo-boolean constraint problems.CPAIOR-02, 7–20.
Przymusinski, T. 1990. The well-founded semantics coin-
cides with the three-valued stable semantics.Fundamenta
Informaticae13(4):445–464.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extending
and implementing the stable model semantics.Artificial
Intelligence138:181–234.
Turner, H. 2003. Strong equivalence made easy: Nested
expressions and weight constraints.Theory and Practice
of Logic Programming3, (4&5):609–622.
van Emden, M., and Kowalski, R. 1976. The semantics of
predicate logic as a programming language.Journal of the
ACM 23(4):733–742.

