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1. INTRODUCTION AND EARLY DEVELOPMENTS. Logic and foundations
are a domain of mathematics concerned with basic mathematical structures (in terms
of which one can define all other mathematical structures), with the correctness and
significance of mathematical reasoning, and with the effectiveness of mathematical
computations. In the twentieth century, these areas have crystallized into three large
chapters of mathematics: set theory, mathematical logic (including model theory), and
computability theory, which are intertwined in significant ways. In this paper we de-
scribe the evolution and present state of each of them. In modern times the study of
logic and foundations has attracted eminent mathematicians and philosophers such
as Cantor, Cohen, Frege, Gödel, Hilbert, Kleene, Martin, Russell, Solovay, Shelah,
Skolem, Tarski, Turing, Zermelo, and others, and has given rise to a large body of
knowledge. Although our paper is only a brief sketch of this development, we dis-
cuss essential results such as Gödel’s theorem on the completeness of first-order logic
and his theorems on the incompleteness of most mathematical theories, some indepen-
dence theorems in set theory, the role of axioms of existence of large cardinal numbers,
Turing’s work on computability, and some recent developments.

There are still many interesting unsolved problems in logic and foundations. For
example, logic does not explain what “good” mathematics is. We know that mathe-
matics has a very precise structure: axioms, definitions, theorems, proofs. Thus we
know what is correct mathematics but not why the works of certain mathematicians
delight us while others strike us as downright boring. Nor do foundations tell us how
mathematicians construct proofs of their conjectures. Since we have no good theoreti-
cal model of the process for constructing proofs, we are far from having truly effective
procedures for automatically proving theorems, although spectacular successes have
been achieved in this area. We mention other unsolved problems at the end of this
paper.

We now give a brief sketch of the history of logic and foundations prior to 1900.
The ancient Greeks asked: what are correct arguments? and: what are the real num-
bers? As partial answers they created the theory of syllogisms and a theory of com-
mensurable and incommensurable magnitudes. These questions resurfaced in the 18th
century, due to the development of analysis and to the lack of sufficiently clear con-
cepts of sets, functions, continuity, convergence, etc. In a series of papers (1878–1897)
Georg Cantor created set theory. In 1879 Gottlob Frege described a formal system of
logic that explained precisely the logical structure of all mathematical proofs. In 1858
Richard Dedekind gave a definitive answer to the question: what are the real numbers?
by defining them in terms of sets of rational numbers. He proved the axiom of conti-
nuity of the real line, an axiom accepted hitherto (beginning with the Greeks) without
proof.
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As for the question of characterizing correct arguments or proofs, Aristotle created
the theory of syllogisms, which codifies certain forms of proof. In terms of modern
logic, these were rules pertaining to unary relations. A relevant example is the syl-
logism: if Socrates is a Greek and if all Greeks are mortal then Socrates is mortal.
Written in modern logical notation this syllogism takes the form

[Greek(Socrates) ∧ ∀x(Greek(x)⇒ mortal(x))] ⇒ mortal(Socrates).

In this formula Greek(·) and mortal(·) are symbols for unary relations. We used the
universal quantifier ∀x . . . , which means for all x we have . . . Similarly, one introduces
the existential quantifier ∃x . . . which means there exists x such that . . . For two
thousand years the theory of syllogisms was the core of logic. In the 17th century
G.W. Leibniz hoped to create a “characteristica universalis”, a language that would
make it possible to express all mathematical sentences, and a “calculus ratiocinator”,
which would reduce all reasoning to computation. In the middle of the 19th century
G. Boole, guided by the algebra of numbers, introduced an algebra of sentences. We
owe further evolution of these ideas to A. De Morgan, C.S. Pierce, G. Frege, and other
mathematicians and philosophers. In particular, it became clear that the logic used in
mathematics goes beyond syllogisms. Indeed, mathematics involves relations between
two or more objects. For example, “less than” relates two numbers and is thus a binary
and not a unary relation.

Cantor made the most important steps toward the determination of fundamental
mathematical structures. He showed that (almost) all objects used by mathematicians
can be thought of as sets. Moreover, it turned out that such an interpretation removed
all ambiguities previously encountered in mathematics. For example, Zermelo and von
Neumann used the concept of set to define the concept of a natural number. In turn,
natural numbers could be used to define integers and rational numbers. B. Bolzano,
R. Dedekind, and Cantor showed independently how to use sets of rational numbers to
construct the real numbers and to prove their fundamental properties. Then functions
were defined as sets consisting of ordered pairs, as we explain in Section 2. This new
definition was simpler and more general than the earlier approach, which treated a
function f as an algorithm for computing the value f (x) for a given element x in the
domain of f . In the 1880s and 1890s Cantor used this general concept of function
to prove many theorems of set theory. He extended the concept of a cardinal number
to infinite sets, analyzed notions such as linear order, and introduced the concept of
well-ordering and the related concept of an ordinal number. He also used transfinite
induction in definitions and proofs. This was a new method that went beyond induction
over the natural numbers, already used in Euclid’s Elements.

There was no theory of computability at the end of the 19th century. The original
concept of functions as algorithms was developed only later, beginning with the work
of Turing in 1935. However, issues of effectiveness have concerned mathematicians
and philosophers since ancient times. There were many examples of algorithms, such
as Euclid’s algorithm for finding greatest common divisors, Cardano’s algorithm for
solving cubic equations, Newton’s algorithm for finding zeros of differentiable func-
tions, and Gauss’s algorithm involving the arithmetic-geometric mean. Some comput-
ing devices existed in antiquity. In many cultures there were types of abaci, some of
which are still in use today. Mechanical computing devices for addition and multi-
plication were developed for use in censuses. Science, artillery, and finance required
many accurate computations. The demand for computing devices for astronomy, engi-
neering, taxation bureaus, banks, etc., grew steadily. In the first half of the 19th cen-
tury C. Babbage proposed the construction of a machine similar to a modern stored-
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program computer, but he was not able to complete this project. Up to the middle
of the 19th century, many great analysts did not accept existential statements unsup-
ported by algorithms. For example, to show that the initial value problem y′ = −y,
y(1.3) = 2.4, has a solution, one had to know how to construct it, i.e., one had to give
a general prescription such that given any real number x one could compute the value
y(x) of the solution function y. Eventually, in the 20th century, the mathematical con-
cept of a computable function was created by A. Church, K. Gödel, E. Post, and in a
more definitive way by A. Turing.

An interesting prelude to the development of logic and foundations in the 20th
century occurred in 1900. At the International Congress of Mathematicians in Paris,
David Hilbert presented a lecture in which he stated 23 unsolved problems. Three of
them, Nos. 1, 2, and 10, deal with logic and foundations:

Problem 1 belongs to set theory and was originally posed by Cantor. It is called
the continuum hypothesis and asks: are there infinite sets of real numbers whose
cardinality differs from the cardinality of the set of integers as well as from the
cardinality of the set of all reals?
Problem 2 belongs to logic and asks: are the axioms of analysis consistent? In
his lecture, Hilbert asked about the consistency of arithmetic. But by arithmetic
he meant what is now called analysis: the arithmetic of the integers augmented
by set variables and a full comprehension scheme that we discuss in Section 2.
Problem 10 belongs to the theory of computability and asks: is there an algo-
rithm for deciding the existence of integral solutions of multivariable polynomial
equations with integral coefficients?

Thus the three areas of foundations of mathematics appeared in Hilbert’s lecture. In
the 20th century these three problems were solved in very surprising ways: K. Gödel
and P.J. Cohen showed that the continuum hypothesis is independent of the gener-
ally accepted axioms of set theory (Table I). Gödel showed that Problem 2 is unsolv-
able. Moreover, no consistent theory containing enough combinatorics, whose axioms
are explicitly given, can prove its own consistency. And M. Davis, Yu. Matiyasevich,
H. Putnam, and J. Robinson showed that Problem 10 has a negative answer: no such
algorithm exists.

Before continuing our presentation of logic and foundations we add some remarks
about the relationship of this paper to the accounts of other historians and philosophers.

Some authors divide the study of logic and foundations into three orientations: in-
tuitionism, logicism, and formalism. There are reasons to think that this division is
misleading; first, because these three concepts are not of the same kind, and second,
because logicism and formalism are terminological oxymorons. Specifically, intuition-
ism is not an attempt to explain what mathematics is, but rather a proposal for an al-
ternative mathematics. On the other hand, logicism and formalism are such attempts,
but the difference between them is rather insignificant. Since these terms turn up so
frequently in the literature, it makes sense to discuss them in greater detail.

Intuitionism was invented in 1908 by L.E.J. Brouwer as a reaction to the freedom of
imagination proposed by Cantor, Hilbert, and Poincaré (in mathematics, to exist is to
be free of contradiction), and to the program of formalizing (that is, defining in math-
ematical terms) the rules of logic and the axioms of mathematics. Brouwer thought
that freedom of imagination and formalization are incompatible; he also thought that
many objects of classical mathematics are not sufficiently constructive. Developing
these ideas, he rejected the existence of least upper bounds of nonempty bounded
sets of reals (that is, the continuity of the real line) and many other nonconstructive
statements. He proposed an alternative mathematics, called intuitionism, which was
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intended to be more meaningful than classical mathematics and to have a more mean-
ingful logic (for example, the general theorem of classical logic p or not p was re-
jected; p or not p would be proved only by proving p or proving not p), and this logic
would undergo perpetual development.

This program attracted some outstanding mathematicians, such as H. Poincaré and
H. Weyl (although in their practice neither accepted all the strictures of intuitionism)
and E. Bishop (who accepted them fully). However, intuitionism proved to be rather
unsuccessful. It had two unpleasant technical features: its weak logic made it hard to
prove theorems, so that many theorems of classical mathematics were rejected out-
right; and it has a plethora of concepts that are equivalent in classical mathematics but
not under the weak logic of intuitionism. But Brouwer raised an issue that, if valid,
would make up for these technical difficulties. He claimed that many concepts and ob-
jects of classical mathematics are meaningless. For example, he accepted the integers
but rejected well-orderings of the real line.

Even today many mathematicians who are not familiar with logic and foundations
would say that this sounds reasonable. But in 1904 Hilbert observed that the infinite
sets of pure mathematics are actually imagined, in the sense that they are like contain-
ers whose intended content has not yet been constructed (imagined). The same view of
sets was also held by Poincaré. This observation removed the existential (ontological)
problem of infinite sets. Moreover, in 1923 the logic of Frege was extended by Hilbert
to one in which quantifiers cease to be primitive concepts; they become abbreviations
for certain quantifier-free expressions. In this way the apparent reference to infinite
universes in pure mathematics, suggested by quantifiers, becomes a metaphor for a fi-
nite constructive process actually occurring in the human imagination (see Section 3).
Thus the critique of classical mathematics raised by Brouwer and his followers col-
lapsed. The authors of this article know of no clear motivation for intuitionism. The
integers and their algebra (if we include some very large integers such as 101010

) are
no more constructive and finitary than any other mathematical objects and their “al-
gebras”. All we can say today in defense of Brouwer’s idea is that some concepts of
mathematics are useful in science and others are not; the latter must be regarded as pure
art. But both kinds of objects are equally solid constructions of the human imagination
and they become more permanent when expressed in writing.

Next we turn to logicism and formalism. Unlike intuitionism, they are attempts
to explain what mathematics is. The first is attributed to G. Frege, B. Russell, and
A.N. Whitehead, and its spirit is close to the philosophers of the Vienna circle. The
second is attributed to D. Hilbert and his collaborators and to Th. Skolem, and is close
to the Polish school of logic. The dividing line between logicism and formalism is
not very significant because it depends merely on a terminological difference: whether
set theory, or some of its variants (such as the theory of types), is included in logic.
The term logic was used for a long time in the narrower sense (often called first-order
logic), which does not include set theory; the growth of set theory and of model theory
has motivated the modern terminology. An important fact that favors the more inclu-
sive sense of logic (of Frege et al.) is the naturalness of the axioms of set theory; see
Table I. They are so intuitive that they belong to the mental logic of almost all people
who work in pure mathematics or use mathematics in science. Another reason why the
term logicism is not used any more is that its program—to derive mathematics from
logic in the wider sense—has been fully accomplished. This fundamental achievement
is due mainly to Cantor and Dedekind. We say more about it in the next section.

To complicate matters, the term formalism has several meanings. First, it is as-
sociated with the problem posed by Hilbert in 1900 of proving the consistency of
stronger (more expressive) theories in weaker theories, because this requires formal-
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ization of the stronger theory in the weaker one. Although in 1931 Gödel proved that
such proofs do not exist, the idea of Hilbert gave rise to the problem of classification
of mathematical theories according to their strength: we say that S is stronger than
T if T is interpretable in S (e.g., analysis in set theory) but not vice versa. Gödel’s
results imply that S is stronger than T if the consistency of T can be proved in S.
Work on the ensuing classification, which is sometimes called the Hilbert program,
is still in progress. Second, formalism is used as a name for the philosophy of Hilbert
that we discussed previously in connection with intuitionism. Brouwer called Hilbert a
formalist, meaning that Hilbert professed that pure mathematics is just a formal game
of symbols (Stalin levelled the same accusation against western art, which he called
bourgeois art). This was unfair, since Hilbert insisted that mathematics is, first and
foremost, a structure of thought-objects in our minds rather than of symbols on paper,
and, if the word game can be applied to it, then the adjectives interesting, beautiful,
and often applicable would have to be added as well. Thus, contrary to Brouwer’s
misnomer formalism for Hilbert’s philosophy, the role of mathematics as an interface
between science and art was essential to Hilbert.

2. SET THEORY. In the first decade of the 20th century, mathematicians clarified
the concept of set. A naive approach to this concept, the full comprehension scheme of
G. Frege and B. Russell, claims that “every class one can think of is a set”, in symbols
∃x∀y[y ∈ x ⇐⇒ ϕ(y)], where ϕ is any property expressed in the language of set
theory. Russell himself found that this led to a contradiction when ϕ(y) is the property
y /∈ y. Indeed, suppose that R is the collection {y : y is a set and y /∈ y}. It follows
immediately from this definition that if R is a set then

R ∈ R ⇐⇒ R /∈ R.

This is a contradiction, hence R cannot be a set. It became clear that the concept of
set had to be refined so as to avoid such contradictions. This is not to imply that the
mathematical community, Cantor in particular, ever accepted the full comprehension
scheme. Cantor knew that this scheme was too liberal and he had other examples to
prove it. Collections defined by arbitrary formulas ϕ of the language of set theory
are called classes. Cantor found that if the class of ordinal numbers were a set, then
there would be an ordinal number not in that class—a contradiction; and if the class
of all sets were a set, then its power set would have a cardinal number greater than
itself—again a contradiction.

Something had to be done to make the concept of set clear and useful. This problem
was solved by Russell and Whitehead, who constructed a weak set theory called the
theory of types, and in a more satisfying way by E. Zermelo. In 1908 Zermelo proposed
a system of axioms describing sets and methods for constructing them. These axioms
do not imply that Russell’s R, or Cantor’s other classes, are sets. Zermelo’s system,
with certain improvements introduced by Th. Skolem and A. Fraenkel, became the
generally accepted axiomatization of set theory. Almost all of mathematics can be
developed within this theory, called Zermelo-Fraenkel set theory, or ZFC; see Table I.

These axioms describe a hierarchy of sets, among which are the natural numbers
0, 1, 2, . . . First, taking any formula ϕ that is always false in axiom A4, we get a set
with no elements. By axiom A1 this set is unique; we call it the empty set and denote
it by ∅ or 0. By axiom A3, we have a set P(∅) = {∅} (also denoted by 1), which has
the single element ∅. Then we have the set P({∅}) = {∅, {∅}} (also denoted by 2).
And given any two sets u and v we can build the set {u, v} by using axiom A4 with
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TABLE I. The Axioms of Set Theory ZFC

A1 Extensionality (Sets containing the same elements are equal):

∀z[z ∈ x ↔ z ∈ y] → x = y

A2 Union (The union u of all elements z of a set x is a set; u = ⋃
(x)):

∃u∀y[y ∈ u ↔ (∃z ∈ x)[y ∈ z]]

A3 Powerset (The collection p of all subsets of a set x is a set; p = P(x)):

∃p∀y[y ∈ p ↔ (∀z ∈ y)[z ∈ x]]

A4 Replacement (The image r of a set d by a mapping ϕ is a set):

∀x∃z∀y[ϕ(x, y)→ y = z] → ∀d∃r∀y[y ∈ r ↔ (∃x ∈ d)ϕ(x, y)]

(The axiom A4 is a scheme: for each formula ϕ we get a separate axiom. The formula
ϕ may contain free variables other than x and y but not the variables d, r , or z)

A5 Infinity (There exists an infinite set s):

∃s[∃x[x ∈ s] ∧ (∀x ∈ s)(∃y ∈ s)∀z[z ∈ y ↔ (z ∈ x ∨ z = x)]]

A6 Regularity (Every non-empty set has an ∈-minimal member):

∃y[y ∈ x] → (∃y ∈ x)(∀z ∈ y)[z /∈ x]

A7 Choice (Every set x of non-empty, pairwise-disjoint sets y possesses a selector s):

{(∀y ∈ x)∃z[z ∈ y] ∧ ∀yzt[y ∈ x ∧ z ∈ x ∧ t ∈ y ∧ t ∈ z → y = z]}
→ ∃s(∀y ∈ x)∃t∀u[(u ∈ y ∧ u ∈ s)↔ u = t)]

d = {∅, {∅}} and

ϕ(x, y) := [(x = ∅ → y = u) ∧ (x = {∅} → y = v)].
We denote

⋃
({u, v}) by u ∪ v and say that x ⊆ y if and only if x ∪ y = y. The ordered

pair (x, y) is {{x}, {x, y}} and the Cartesian product a × b is {(x, y) : x ∈ a ∧ y ∈ b}.
Another important definition, due to von Neumann, is the class Ord of ordinal num-

bers. These are sets α (such as the sets 0, 1, and 2) with the property:

∀x, y[x ∈ y ∈ α→ x ⊆ y ⊆ α].
The class Ord of ordinal numbers is not a set. One proves that Ord is the smallest class
containing ∅, closed under the operation x + 1 = x ∪ {x} and under arbitrary unions
of sets of its elements. An ordinal λ is called a limit if

⋃
(λ) = λ. We denote the least

infinite ordinal number by ω or N , so ω = N = {0, 1, 2, . . .}.
The members of an ordinal are well-ordered by the ∈ relation, and in general we

define a well-ordering to be any ordering isomorphic to an ordinal, or to Ord itself.
The axiom of choice A7 implies that any set can be well-ordered (and the converse
also holds); Zermelo introduced A7 for precisely this purpose.
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Every set x can be assigned a unique ordinal number called its rank and defined as
follows: rank(∅) = 0 and rank(x) = ⋃

({rank(y)+ 1 : y ∈ x}). The set of all sets of
rank at most α exists and is denoted by Vα . We can define Vα (where α is any ordinal)
inductively by:

V0 = ∅, Vα+1 = P(Vα), Vλ =
⋃

ξ<λ

Vξ for limit λ.

The class of all sets is denoted by V , so V = ⋃
α Vα; see Figure 1.

Ord ⊆ L ⊆ H O D ⊆ O D ⊆ V ;
ZFC is true in V, in H O D, and in L;

ZFC+ GCH+ V = L is true in L;
It is consistent with ZFC that not all real numbers are in O D;
Ord : 0 = ∅; ξ + 1 = ξ ∪ {ξ}; λ = ⋃

ξ<λ ξ, λ limit;
V : V0 = ∅; Vξ+1 = P(Vξ ), Vλ = ⋃

ξ<λ Vξ , λ limit;
Figure 1. Ordinal-definable, hereditarily ordinal-definable and constructible sets in the universe of Set Theory

It is a surprising and important fact (established by Cantor, Dedekind, von Neu-
mann, and others) that all mathematical objects can be interpreted in a natural way
as sets in V . A simple but important step of this interpretation was the construction
(by Wiener and Kuratowski) of ordered pairs (x, y) as {{x}, {x, y}}. Later, D. Scott
constructed cardinal numbers without using the axiom of choice, by defining the car-
dinal number of x to be the set of all sets y of least possible rank such that y can be
bijectively mapped onto x .

The axiom of choice, A7, troubled some mathematicians. This axiom asserts that
for any set x of nonempty and pairwise disjoint sets there is a set with just one element
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in common with each member of x . This generalizes an obvious property of finite
collections of sets, but it leads to sets that are not explicitly definable. Mathematicians
now use the axiom of choice in many of its equivalent forms, such as Zorn’s lemma
or the well-ordering principle, but of course accepting the axiom implies accepting its
consequences, such as the paradoxical decomposition of a ball found by S. Banach and
A. Tarski in 1924. Improving on an earlier theorem of F. Hausdorff, they showed that a
ball can be divided into five disjoint sets that can be moved by isometries to form two
balls of the same size as the initial ball. Of course, this contradicts physical experience.
Thus one can say that the mathematical concept of a set is far more liberal than the
concept of a physical body. In general, the consequences of the axiom of choice (for
uncountable families of sets) are less relevant to applications of mathematics than are
theorems whose proofs do not involve this axiom.

There is a weaker axiom of choice (called the axiom of dependent choices or DC)
that does not have such odd consequences. DC says that if A0, A1, . . . is a sequence of
nonempty sets and Ri ⊆ Ai × Ai+1 are relations such that

(∀x ∈ Ai )(∃y ∈ Ai+1)[(x, y) ∈ Ri ],
then there exists a sequence a0, a1, a2, . . . such that

∀i[(ai , ai+1) ∈ Ri ].
The classification of all sets by rank is paralleled by other classifications, not neces-

sarily of all sets, by ordinal definability or constructibility. All of these classifications
can be defined in the theory ZFC minus the axiom of choice, which is called ZF.

A set x is ordinal-definable if, for some ordinal α and some formula ϕ(y), x is the
set of elements y of Vα that satisfy the formula ϕ(y) in Vα. The class of ordinal-
definable sets is denoted by OD. H O D denotes the class of hereditarily ordinal-
definable sets, i.e., sets such that they, their elements, the elements of their elements,
and so on, are in O D. Gödel showed, without using the axiom of choice, that H O D
satisfies all the axioms of ZFC. Thus if ZF is consistent then so is ZFC. The assumption
V = O D implies V = H O D and the axiom of choice.

As mentioned in Section 1, the continuum hypothesis says that any infinite set of
real numbers has either the cardinal number ℵ0 of the set of integers or else the cardinal
number c of the set of all real numbers. ZFC implies that this hypothesis is equivalent
to c = ℵ1, where ℵ1 is the cardinality of the shortest well-ordered uncountable set.
Attempts to decide whether c = ℵ1 have led to many interesting results. In the late
1930s Gödel showed that the continuum hypothesis is consistent with the axioms of
ZFC, and in 1964 Paul J. Cohen showed that the axiom of choice does not follow from
ZF and that the continuum hypothesis does not follow from ZFC.

Gödel’s technique amounts to reversing the objections to the axiom of choice. In-
stead of asking how to define choice sets (selectors), he admits only the sets con-
structible by means of the following transfinite process. Working in ZF, we inductively
define “constructible levels” Lα so that sets at a particular level are definable in the
structure consisting of the objects at previous levels. Thus L0 = ∅, Lα+1 = Def (Lα),
and Lλ = ⋃

α<λ Lα for limit λ. Here Def (A) is the operation that adds to A new ele-
ments, representing all subsets of A definable in terms of elements of A.

This definition of Lα can be formalized in ZF because definitions are formulas, and
formulas can be encoded by natural numbers. In fact, we can even construct a well-
ordering of the universe L = ⋃

α Lα of constructible sets. This is done by induction.
It is enough to define the ordering of a given level Lα. First we order “k-tuples” of
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objects from the previous levels. Then we order the given level by comparing pairs
consisting of a code of a formula and a sequence of parameters (from the previous
levels). This well-ordering of L shows that the axiom of choice holds in L .

To obtain the continuum hypothesis in L , Gödel proved a deeper theorem: all con-
structible real numbers occur in levels Lα with indices α that are countable in L . This
readily implies the continuum hypothesis in L . What remains to be shown is that all
the axioms of ZFC hold in L . We have already shown that the axiom of choice holds
in L . Showing the validity of the other axioms of ZF in L is easy. Hence the axioms of
ZFC remain consistent after adding the continuum hypothesis. Even the generalized
continuum hypothesis—2ℵα = ℵα+1 for every ordinal α—holds in the universe L of
constructible sets. Gödel also showed that all constructible sets (and only those) are
constructible in L . Thus all the consequences of ZFC, and of the sentence “V = L”
asserting that all sets are constructible, are true in L .

Although it is consistent to assume that V = L , it is more natural to assume that
V �= L , in which case the class L can be enlarged by adding sets from V \ L and using
them in an inductive definition of a larger universe. For example, inclusion of all the
real numbers yields an interesting universe denoted by L[R]; see Figure 2.

Ord ⊆ L ⊆ L[R] ⊆ V ;
ZFC is true in V and in L , ZF is true in L[R];

Under suitable large cardinal axioms ZF+ ∀X[AD(X)] + DC is true in L[R];
Figure 2. Sets that are constructible and constructible from reals in the universe of Set Theory

Cohen’s argument for the independence of the axiom of choice and of the contin-
uum hypothesis is more complicated than Gödel’s. It can be explained as the construc-
tion of a Boolean model—a class of functions whose values belong to the Boolean
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algebra of open-closed subsets of a topological space. For suitable definitions of the
membership and equality relations between such functions, the construction assigns
the Boolean value 1 to all the axioms of ZFC. For a suitable choice of topological
space the value of the continuum hypothesis in this model is 0. But it can be shown
that whatever is provable from formulas of value 1 in this model likewise has value 1.
Hence the continuum hypothesis is an independent sentence—it is not provable from
ZFC. In a similar way, Cohen proved the independence of A7 (the axiom of choice)
from ZF. His method, called forcing, was later used to obtain other independence
proofs, for many well-known problems in set theory, real analysis, and algebra.

While these results show the independence of various sentences in ZFC, the truth
or falsehood of most of them can be established in the two natural subuniverses L
and L[R]. The proofs of these theorems in L[R], however, require some extensions of
ZFC. Specifically, they require cardinal numbers so large that their existence cannot
be proved in ZFC.

The role of different universes, i.e., of different models of ZF, becomes particularly
clear if we look at the axiom of determinacy introduced by J. Mycielski and H. Stein-
haus in 1962. Let X be a set of infinite sequences of 0s and 1s, and consider the follow-
ing game between two players I and II. Player I chooses 0 or 1, then player II chooses
0 or 1, then I again chooses 0 or 1, etc. When making their choices, both players know
X and they know the previous choices. Player I wins if the sequence of 0’s and 1’s
belongs to X , while player II wins if the sequence does not belong to X . The axiom of
determinacy for X , AD(X), states that one of the players has a winning strategy. Using
the axiom of choice, one can show that there are sets X for which AD(X) is false, i.e.,
for which neither of the players has a winning strategy. But if a model of ZF satisfies
AD(X) for all X , then this model is closer to physical reality than any model of ZFC.
For example, the Banach-Tarski paradoxical decomposition of a ball is impossible. In
1989, D.A. Martin, J.R. Steel, and H. Woodin showed that if one assumes ZFC plus
appropriate large cardinal axioms, then L[R] satisfies AD(X) for all X , as well as the
axiom DC of dependent choices. Whether AD(X) holds for all X ∈ O D remains an
open problem; see the problems at the end of this paper.

The universes H O D, L , and L[R] are very different. For example, in H O D and L
there are definable non-Lebesgue measurable sets of reals, while (under the assumption
of the existence of a suitable large cardinal) in L[R] all sets of reals are Lebesgue
measurable and |R ∩ HOD| = ℵ0.

For these reasons, and because of their intrinsic interest, large cardinals have be-
come an important topic. What are they? Here we introduce one type, called measur-
able cardinals. We call a cardinal number κ measurable if there is a measure, with
values 0 and 1, defined on the family of all subsets of a set X of cardinality κ , such
that the measure of every one-element set is 0, the measure of the whole set X is 1, and
the measure of the union of fewer than κ sets of measure 0 is still 0. ℵ0 is the smallest
measurable cardinal. In ZFC it is not possible to prove the existence of measurable
cardinals greater than ℵ0. In fact, D. Scott showed in 1961 that V = L implies that
they do not exist. Thus we see that V �= L is a more natural assumption than V = L
since it does not rule out the natural idea of measurable cardinals.

But why are measurable cardinals called “large”? The reason is a 1930 theorem
of Ulam that any measurable cardinal κ can “model the universe”, i.e., the sets of
rank less than κ satisfy all the axioms of ZFC. This, like the theorem of Scott just
mentioned, implies that existence of measurable cardinals cannot be proved in ZFC.
However, their existence (and that of other large cardinals) has interesting and deep
consequences in real analysis, in the combinatorics of infinite sets, and even in the
combinatorics of finite sets.
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Practicing mathematicians, whether algebraists, geometers, or analysts, almost
never use axioms beyond ZFC. This is surprising, since set theory was invented by
Cantor more than 100 years ago and ZFC expresses only Cantor’s assumptions. It
is even more surprising, since mathematics is constantly enriched by definitions and
theorems suggested by the physical sciences. Nonetheless, famous problems such as
the four-color conjecture, Fermat’s last theorem, Bieberbach’s conjecture, and many
others, were solved in ZFC; in fact, in weak subtheories of ZFC. It may be of some
interest that large cardinal existence axioms (e.g., those used by Martin et al.) are not
inspired by physical experience, but rather by concepts arising in the human imagina-
tion for which there are no ready physical interpretations. On the other hand, the axiom
of determinacy was motivated by H. Steinhaus’ wish to build a system of mathematics
closer to physical experience than ZFC.

Independence of a sentence in set theory tells us nothing about its future, since it
is possible that new developments in mathematics will decide this sentence. Indepen-
dence tells us only that the sentence is false in some model of ZFC and true in another.
If we limit ourselves to the universe of constructible sets, then we obtain theorems
about sets of real numbers that are very different from those true in the universe of sets
with a measurable cardinal.

Today, set theory plays a role similar to that played by Euclidean geometry for over
15 centuries (up to the time of the construction of mathematical analysis by Newton
and Leibniz). Namely, it is a universal axiomatic theory for modern mathematics. It
bears repeating that its axiomatization is not complete, and that new fundamental prin-
ciples about sets are sometimes discovered or invented. Large cardinal axioms and
the axiom of determinacy for the class L[R] are relevant examples. The evolution of
mathematics decides which axioms become generally accepted.

Some axiomatic theories weaker than ZFC are still very strong in the sense that
large chapters of mathematics can be developed in them. The simplest is PA (Peano
arithmetic; see Table II). PA is so powerful that it allows us to prove all known theo-
rems of classical number theory. However, there are theorems of finite combinatorics
(which can be expressed somewhat artificially as number-theoretic statements) that are
provable in ZFC but not in PA. We meet such theorems in the next two sections.

TABLE II. The Axioms of Peano’s Arithmetic, PA
(Primitive symbols 1, +, ·)
PA1: x + 1 �= 1;
PA2: x �= y → x + 1 �= y + 1;
PA3: x + (y + 1) = (x + y)+ 1;
PA4: x · 1 = x ;
PA5: x · (y + 1) = (x · y)+ x ;
PA6: ϕ(1) ∧ ∀x[ϕ(x)→ ϕ(x + 1)] → ∀xϕ(x), for every formula ϕ(x), which may contain free

variables other than x .

TABLE III. The Axioms of Second Order Arithmetic, Z2

(Primitive symbols 1, +, · and ∈)

Z21–Z25: Formulas PA1–PA5 of table II;
Z26: ∀x[x ∈ X ↔ x ∈ Y ] → [X = Y ];
Z27: ∃X∀y[y ∈ X ↔ ψ(y)] where ψ is any formula of the extended language without the

free variable X ;
Z28: 1 ∈ X ∧ ∀x[x ∈ X → x + 1 ∈ X] → ∀x[x ∈ X].

May 2001] THE EVOLUTION OF. . . 459



The theory PA has a natural extension called Z2 or second order arithmetic; see
Table III. Z2 is obtained from PA by adding a second sort of variables X,Y, ... called set
variables, a binary symbol ∈, an axiom of extensionality, the comprehension scheme,
and the set form of the induction axiom PA6.

The theory Z2 is a natural framework for the development of mathematical analysis,
but it is much weaker than ZFC.

3. LOGIC AND MODEL THEORY. We now turn to mathematical logic and model
theory, and to Hilbert’s second problem. While Frege discovered the formalism of
logic as early as 1879, introduction of a good system of notation took considerable
time. In their Principia Mathematica, the first volume of which appeared in 1910, B.
Russell and A.N. Whitehead popularized the modern notation for the Fregean syntax of
logic. However, their system of logic also included a part of set theory. The first truly
modern textbook of mathematical logic, written by D. Hilbert and W. Ackermann,
was published in 1928. Then, in 1929, Gödel showed in his doctoral dissertation that
Frege’s rules of proof suffice to prove all logically valid sentences. We call this result
the completeness theorem for first-order logic. It motivated the modern terminology
according to which logic is the system of axioms and rules of Frege.

In 1924 Hilbert extended Frege’s system by adding an operator ε for creating func-
tions. If ϕ(x̄, y) is any formula (here x̄ denotes any finite sequence of free variables),
then Hilbert’s operator gives a function symbol εyϕ of the variables x̄ ; see axiom L6
of Table IV. This formalizes the mathematical practice of naming new objects and
functions with desired properties: in this case, “a y such that ϕ(x̄, y) holds”. If there is
no such y, then the value (εyϕ)(x̄) does not matter and L6 holds automatically. Simi-
larly, L7 allows any formula ϕ(x̄) to be abbreviated by a single relation symbol Rϕ(x̄).
Hilbert’s extension has three advantages: (a) it simplifies the rules of logic, (b) choice
functions are part of logic, so the axiom of choice follows from the remaining axioms
of ZFC, and, most importantly, (c) it allows us to solve the ontological mystery of
quantification over infinite universes.

TABLE IV. The Axioms and Rules of First Order Logic
(Essentially after G. Frege and D. Hilbert)

Primitive symbols: ¬ negation; → implication; = equality symbol; sequences of variables x̄ =
(x1, . . . , xn) and ȳ = (y1, . . . , yn), (n ≥ 0); ε an operator such that if ϕ(x̄, y) is any formula then
εyϕ is a function symbol of n arguments (or a constant symbol if n = 0).

L1: (ϕ→ ψ)→ [(ψ → χ)→ (ϕ→ χ)];
L2: ϕ→ (¬ϕ→ ψ);
L3: (¬ϕ→ ϕ)→ ϕ;
L4: If ϕ and ϕ→ ψ are proved then ψ is proved;
L5: If ϕ(x) is proved, then ϕ( f (ȳ)) is proved, where f (ȳ) is any term;
L6: ϕ(x̄, y)→ ϕ(x̄, (εyϕ)(x̄)));
L7: Rϕ(x̄)↔ ϕ(x̄);
L8: x = x ;
L9: x = y → y = x ;

L10: x = y → (y = z → x = z);
L11: [x1 = y1 ∧ . . . ∧ xn = yn] → [R(x̄)↔ R(ȳ)], where R is any relation

symbol of n variables;
L12: [x1 = y1 ∧ . . . ∧ xn = yn] → [ f (x̄) = f (ȳ)], where f is any term

of n variables.
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First order logic generalizes the languages of ZFC, whose primitives are the relation
symbols ∈ and=, and of PA, whose primitives are the constant 1, the function symbols
+ and ·, and the relation symbol =, to an arbitrary system of relation symbols Ri (i ∈
I ) and function symbols f j ( j ∈ J ). Our generalized language allows us to express
properties of structures (called interpretations of the language), of the form:

M = 〈A, R̃i , f̃ j 〉i∈I, j∈J ,

where A is a nonempty set and the R̃i and f̃ j are relations and functions on A. Given
any interpretation M of the language and any sentence σ in the language (for example,
an axiom of ZFC or PA) we can talk about the truth of σ in M . M is called a model of
a theory T if all the axioms of T are true in M .

In Table IV we list all the rules and axioms of logic. Notice that L1–L7, L11, and
L12 are rules since ϕ,ψ , and χ are arbitrary formulas and R and f are arbitrary
relation or function symbols. Similarly, A4 in Table I and PA6 in Table II were also
rules; the other statements in Table I and II are single statements (axioms). The system
presented in Table I and Table IV formalizes almost all of mathematics.

It is natural to add various abbreviations to Hilbert’s system. The following are
particularly important, and some of them have been used already.

(ϕ ∨ ψ) := (¬ϕ→ ψ);
(ϕ ∧ ψ) := ¬(ϕ→¬ψ);
(ϕ ↔ ψ) := (ϕ→ ψ) ∧ (ψ → ϕ);
(x �= y) := ¬(x = y);
(x /∈ y) := ¬(x ∈ y);

{y : y ∈ z ∧ ϕ(x̄, y)} = εt∀y[y ∈ t ↔ y ∈ z ∧ ϕ(x̄, y)](x̄) (in the case of ZFC);

∃yϕ(x̄, y) := ϕ(x̄, (εyϕ)(x̄));
∀yϕ(x̄, y) := ϕ(x̄, (εy(¬ϕ))(x̄)).

Since this formalism avoids any reference to infinite universes, it defuses Brouwer’s
criticism of classical mathematics. Indeed, variables are merely places for substituting
constant terms. And the quantifiers ∃ and ∀ are defined by the last two formulas. This
elimination of quantifiers in favor of Hilbert’s ε terms can be used to prove the com-
pleteness of first order logic, by first showing that any consistent set T of sentences has
a model; this justifies Hilbert’s slogan that existence is freedom from contradiction.

In 1929, Gödel proved the following fundamental theorem. If A is a set of sentences
(axioms) then a sentence σ is derivable by rules L1–L12 from A if and only if for every
model M of A, σ is true in M . This result is called the completeness theorem for first
order logic. This result justifies the current significance of the word logic.

In 1950 Alfred Tarski initiated a systematic study of first-order theories and their
models. Model theory has applications in algebra, algebraic geometry, functional anal-
ysis, and other areas of mathematics. One such application is nonstandard analy-
sis. While 17th and 18th-century mathematicians used infinitesimals without defin-
ing them in a clear way, and while Cauchy introduced the ε–δ definition of continuity
that allowed mathematicians to avoid their use, in the 1960s Abraham Robinson used
model theory to introduce infinitesimals by clear and precise definitions and he made
good use of them. However, nonstandard analysis is conservative in the sense that
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if a theorem is stated in the standard concepts and can be proved using nonstandard
concepts, then it can also be proved without them.

In mathematical practice we almost always use many-sorted logic, that is, a lan-
guage with various sorts of variables restricted to appropriate kinds of objects. Second
order arithmetic, defined at the end of Section 2, is a good example. Likewise, when
we analyze a ring, then, as a rule, we discuss not only the set of its elements but also the
set of its ideals, which is a family of its subsets. Thus again we use two sorts of vari-
ables. However, one can reduce many-sorted logics to first-order logic with additional
unary relation symbols.

Hilbert’s second problem was to prove the consistency of the theory Z2 of Section 2.
How could this consistency be established? Hilbert recognized that as soon as a theory
T is axiomatized and its rules of proof are spelled out, the consistency of T becomes
a combinatorial problem. Since PA can express all problems of finite combinatorics,
Hilbert proposed proving the consistency of Z2 in PA. PA appears to be consistent,
because its only problematic part is the induction scheme PA6, and PA6 is corroborated
by the following experiment: if one knocks down the first in a row of dominoes, and if
every falling piece knocks down the next, then, no matter how many pieces there are,
they all fall down.

Generalizing, we can ask for a proof of the consistency of ZFC, i.e., of most of
mathematics, in PA. Hilbert thought that PA is complete and so he believed that such
proofs can be found. But in 1931 Gödel proved that PA is not complete and, moreover,
that one cannot prove the consistency of PA within PA. Hence it is impossible to prove
the consistency of Z2 or of ZFC in PA, and the solution sought by Hilbert does not
exist.

The theorems that wrecked Hilbert’s program are called Gödel’s first and second
incompleteness theorems. He proved them by encoding symbols, formulas, and se-
quences of formulas by numbers. When this is done appropriately we can say, in the
language of PA, what it means for a number to be the code of a correct proof. Then
the language of PA can express a sentence Con(PA) that says that PA is consistent;
Con(PA) says “There is no proof of the formula 1 �= 1 from the axioms of PA.”

Gödel showed that if PA is consistent, then it contains no proof of Con(PA)! More
generally, he showed that a consistent theory T containing PA, in which the consis-
tency of T can be expressed by a sentence Con(T ), cannot prove Con(T ). Of course,
we can prove Con(PA) in ZFC. We can also show in ZFC that the negation ¬Con(PA)
has no proof in PA (because ZFC proves that PA has a model). Hence PA is not a com-
plete theory, and neither is any consistent extension of PA by a set of axioms whose set
of codes is definable in the language of PA. In particular, none of these theories proves
its own consistency. In this strong sense, Gödel showed that Hilbert’s second problem
of proving consistency cannot be solved.

This brings us to an important ordering of theories, in which S < T means that
Con(S) is provable in T :

RCF < PA < · · · < Ai < · · · < ZFC < · · · < ZFC+ LCi < · · ·
RCF (called the theory of real closed fields) is the theory of the field of real numbers
〈R,+, ·,<〉, which happens to be a complete theory. PA was defined in Table II; Ai

are various axiomatic systems of analysis (Z2 among them); ZFC was defined in Table
I; LCi are various axioms of existence of large cardinals (some were discussed in
Section 2).

Various interesting combinatorial theorems of ZFC that can be stated in the lan-
guage of PA have been found to be independent of PA. This is the case for some strong
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forms of Ramsey’s theorem on the coloring of graphs. In fact, H. Friedman, L. Har-
rington, R. Laver, J. Paris, and R. Solovay have proved that some such sentences are
intimately related to the existence of large cardinals.

4. COMPUTABILITY THEORY. Now we turn to problems of computability, and
to Hilbert’s 10th problem. While proving the incompleteness theorem discussed in
Section 3, Gödel considered a class of functions now called computable or recursive
(though without claiming that they captured the intuitive notion of computability). A
function f : N → N is computable if there exists a formula ϕ(x, y) of the language
of PA such that ϕ(n,m) is a theorem of PA if f (n) = m, and ¬ϕ(n,m) is a theorem of
PA if f (n) �= m. Here m and n denote any terms of the form 1+ · · · + 1 and f (n) is
also represented in this way. This definition of computability is robust in the sense that
replacing PA by a stronger theory, e.g., by ZFC, gives the same class of computable
functions. Around 1935, Post, Church, and Turing proposed alternative definitions of
computable functions and later all these definitions were proved to be equivalent.

Turing’s definition constitutes a theoretical model of the modern computer. In 1935
he introduced the concept of a machine, now called a Turing machine, and proved
the existence of a universal machine: a machine that, given an appropriate code, is
capable of simulating the work of any other Turing machine. Turing’s definition of
computability does not depend on the notion of proof and leads to many interesting
concepts, theorems, and still unsolved problems.

A Turing machine M is a function M : A × S → A × S × C , where A is a finite
set called an alphabet. We assume without loss of generality that A consists of only
three letters, 0, 1, and the blank symbol �. S is a finite set called the set of states or
memory of M , and C consists of three symbols: R, L , Q called right, left, and quit,
which we call commands. The letter � and a certain state s0 in S play special roles.
Such a machine M acts upon an infinite tape

. . . . . . . . . . . .

whose squares are filled with single letters of A. At time 0 we have a doubly infinite
string of letters . . . a0

−1 a0
0 a0

1 . . .. The machine always starts at the location 0 and in
the state s0; thus it first looks at a0

0 and evaluates M(a0
0, s0) = (a1

0, s1, c). It erases a0
0 ,

and puts a1
0 in its place. Then it moves left or right or quits depending on the value of

the command c. If it quits, it declares that its job is finished. If it moves right, it looks
at the current content of the cell with the index 1, and if it moves left, it looks at the
current content of the cell with the index −1. Then, if this content is a, it evaluates
M(a, s1), and acts again in the same way. M works in this way until (if ever) the third
component c becomes Q, in which case it halts. Notice that only a single cell on the
tape is affected at each time step. The machine creates the sequence of consecutive
tapes . . . an

−1 an
0 an

1 . . . where n = 0, 1, . . . is the number of steps.
The initial tape . . . a0

−1 a0
0 a0

1 . . . is called the input, and the final tape (if M
reaches Q) is called the output. From now on we assume that the input is of the
form . . .��w�� . . . where w is a finite string of letters from the alphabet A, which
we denote briefly by w. We also assume that at time 0 the first letter of w is at the
location 0.

Any machine M is determined by a table of function values proportional in size to
its set S of states, hence M can be coded by a finite sequence of 0s and 1s of length at
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most K |S| log |S|, where K is an absolute constant. We denote the code of the machine
M by code(M).

A universal machine M0 is one that, given any input of the form code(M)�w,
works like M on the input w. Thus M0 halts for the input code(M)�w if and only if
M halts for the inputw, and it yields the same output. An important theorem of Turing
says that universal Turing machines exist.

The concept of a Turing machine has philosophical significance because of the fol-
lowing suggestive analogies:

Turing machine

its tape
= organism

its environment

universal Turing machine

the code part of its input
= human being

its knowledge
.

These analogies are supported by the fact that for every real-world computational pro-
cedure (algorithm) there exists a Turing machine that can perform that procedure. A
universal Turing machine M0 is a theoretical model for a programmable computer.

Turing machines permit us to define the concept of computable function as follows.
A function f : D → N , where D ⊆ N , is called computable if there is a Turing ma-
chine M which converts any input n ∈ D to output f (n), and does not halt for input
n /∈ D. Turing proved that if D = N then this definition is equivalent to Gödel’s defi-
nition stated at the beginning of this section: the main difficulty was to show that there
is a Turing machine that enumerates all the codes (Gödel numbers) for theorems of PA
and only such numbers.

The idea of a machine enumerating objects is formalized by the concept of a recur-
sively enumerable set, which may be defined as the domain of a computable function.
The set of consequences of a finite set of axioms is a typical example of a recursively
enumerable set. More generally, the consequences of a recursively enumerable set of
axioms (such as PA) are recursively enumerable. The latter set is one for which the
membership problem is undecidable: although there is a Turing machine that lists all
theorems of PA, there is no machine that lists all nontheorems, and hence no machine
that correctly distinguishes theorems from nontheorems.

The negative solution of Hilbert’s 10th problem comes from a new characteriza-
tion of recursive enumerability, achieved by the efforts by many mathematicians in the
years 1950–1970. M. Davis, Y. Matiyasevich, H. Putnam, and J. Robinson showed that
for every recursively enumerable set X ⊆ N there is a polynomial p(x, x1, . . . , xn)

with integer coefficients such that x ∈ X if and only if there exist integers y1, . . . , yn

such that p(x, y1, . . . , yn) = 0. It follows (by taking p to represent a set X with un-
decidable membership problem) that there is no algorithm for deciding, for each x ,
whether the equation p(x, x1, . . . , xn) = 0 has an integer solution. Thus even elemen-
tary number theory is a profound subject, so profound that there is no uniform method
for solving its most natural problems.

Another important concept of computability theory, due independently to Solo-
monoff, Kolmogorov, and Chaitin, is that of an incompressible sequence. This for-
malizes the idea of a sequence that cannot be generated by a program shorter than
itself. Let |w| denote the length of the sequence w. Then a finite sequence v of 0s
and 1s is incompressible relative to a universal Turing machine M0 if, for every code
w such that M0 with the input w�0 yields the output v, we have |w| ≥ |v|. Since
there are 2n sequences of length n and 2n − 1 sequences of length < n, there exists an
incompressible sequence of any length n.
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Chaitin showed that for every theory T with a recursively enumerable set of axioms,
and every universal machine M0, there are only finitely many sequences that T can
prove to be incompressible relative to M0. This is another concrete form of the Gödel
incompleteness theorem: only finitely many sentences of a certain type can be proved,
although infinitely many of them are true. Thus proving such sentences always remains
an art, rather than a science.

Here is Chaitin’s interesting proof. Let MT be a Turing machine that enumerates
the theorems of T . For each natural number c we upgrade MT to a Turing machine
Mc

T that, given the input 0, searches for a sequence s with |s| ≥ c that T proves to be
incompressible relative to M0, and if it finds such a sequence it prints s and stops. We
can define Mc

T so that the code of Mc
T relative to M0 is no longer than

|code(MT )| + K1 log2 c + K2,

where K1, K2 are constants independent of c. Now choose c so that

|code(MT )| + K1 log2 c + K2 < c.

Then M0 applied to the input code(Mc
T )�0 does not halt; otherwise its output s would

be compressible, contrary to the definition of Mc
T . Therefore, T proves no theorem of

the form “s is incompressible” for |s| ≥ c.
We now turn to some other important concepts of computability theory, formalizing

the time and space complexity of problems. An algorithmic problem in mathematics
typically consists of an infinite set L of questions, each of which may be encoded by a
finite sequence of 0s and 1s. A solution may be embodied in a Turing machine M that
takes each such questionw as input and eventually gives the answer (say, giving output
1 for “yes” and 0 for “no”). In this case the set L is said to be decidable. Similarly, a
theory T is called decidable if the set of its theorems is decidable.

If we are interested not only in the existence of a solution, but also in its feasibility,
then we impose a bound on the time or space used in the computation. We say that L
is decidable in polynomial time (L ∈ PTIME) if there is a Turing machine M and a
polynomial p(x) such that M decides whether w ∈ L in no more than p(|w|) steps.
An example is the problem of checking multiplication of integers: given an equation
c = ab of length n, we can multiply the numbers a and b, and can then compare the
result with c, in around n2 steps. Hence checking multiplication is a PTIME problem.

The class PSPACE (polynomial space) is defined similarly, except that now we
require M to visit no more than p(|w|) cells of the tape; the number of steps does not
matter.

Finally, we say that L ∈ NPTIME (nondeterministic polynomial time) if there is a
Turing machine M and a polynomial p(x) such that w ∈ L if and only if there is a v
such that, given the input w�v, M stops in at most p(|w|) steps.

The classes PTIME and PSPACE are natural candidates for classes of feasibly de-
cidable problems, with respect to time and space, respectively. The significance of
NPTIME is that M is allowed to incorporate a “guess” v in its computation. This is
the nondeterministic ingredient, and we illustrate its naturalness by two examples.

4.1 The problem of deciding whether an n-digit integer c is composite is not known
to be PTIME. However, a Turing machine M can solve this problem in around n2

steps with the help of a correct “guess” c = ab, i.e., by giving M the guess a�b.
Then M needs to check only the multiplication, so the problem of recognizing
composite numbers is in NPTIME.
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4.2 Gödel’s incompleteness theorem implies that no consistent, recursively enumer-
able theory containing PA is decidable. We can of course decide, given a sen-
tence σ and integer n, whether σ has a proof with fewer than n symbols. In
fact, this is an NPTIME problem, because if a correct proof is guessed, one can
check it in polynomial time. But again we do not know whether this problem is
in PTIME. Gödel posed this question in a letter to von Neumann; most mathe-
maticians believe that the answer is negative.

It is easily seen that

PTIME ⊆ NPTIME ⊆ PSPACE.

An important theorem of S. Cook says that if problem 4.2 is in PTIME, then PTIME
= NPTIME. There are many other such problems (called NP-complete), which are
important in combinatorics, computer science, and applications of mathematics.

5. CONCLUDING REMARKS. What is mathematics? Mathematical practice and
logic and foundations indicate that mathematics is the art, rather than the science, of
constructing deductive theories. For example, while the Goldbach conjecture (every
even number greater than 2 is a sum of two primes) is a well established empirical
fact, mathematicians do not include it as an axiom because it is not a basis for an
interesting theory. Also, it may turn out to be provable in PA or ZFC. Thus mathematics
is the art of deduction rather than a list of facts. On the other hand, the study of nature
often suggests new mathematical conjectures and sometimes even their proofs, and
from time to time it suggests new fundamental axioms that yield interesting theories.
In particular, logic is a study of ways in which nature has prepared us to describe
reality, a study of natural intelligence. Even the concept of infinite sets is suggested
by some apparently unending processes, and by the physical space-time continuum.
Thus mathematics is not based on human imagination alone. Mankind in contact with
nature generates the art of mathematics.

The main achievements of logic and foundations in the 20th century are:

(A) A precise language for mathematics has been constructed, so that we know what
mathematical sentences are and what is a proof of a sentence based on a set
of axioms and definitions. Gödel’s completeness theorem for first-order logic
shows that this concept of proof matches the set-theoretic semantics developed
later by Tarski. When proving theorems, mathematicians have always appealed
to logical intuition. In the 20th century this intuition has been fully and precisely
described; see Table IV.

(B) An axiomatic set theory ZFC, whose primitive notions are those of logic plus
the membership relation, has been constructed. Modern mathematics is based
on this theory. Its axioms are so simple that they can be presented on a single
page; see Table I. On the other hand, as shown by Gödel in 1931, and later by
Cohen and others, many questions in finite combinatorics, in the arithmetic of
natural numbers, in analysis, and in set theory cannot be decided in ZFC. The
work of extending ZFC by new axioms with interesting consequences continues.

(C) A theory of computable functions and algorithms has been constructed. We have
a clear distinction between the general classes of functions and their subclasses
of computable functions, defined by means of Turing machines. More concrete
classes concerned with the time and space complexity of computation, such as
PTIME, NPTIME, and PSPACE, are also being investigated.
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Thus the fundamental questions posed in the 19th century have been answered.
Those answers are surprising and beautiful. One can ask whether mathematics and
computer science in the 21st century will be founded on the same concepts as in the
20th century. We conjecture that set theory will remain the most useful and inspiring
universal theory on which all of mathematics can be based.

Finally, let us formulate three open problems in logic and foundations that seem to
us of special importance.

1. To develop an effective automatic method for constructing proofs of mathemati-
cal conjectures, when these conjectures have simple proofs! Interesting methods
of this kind already exist but, thus far, automated theorem proving procedures
are not dynamic: they do not use large lists of axioms, definitions, theorems, and
lemmas that mathematicians could provide to the computer. Also, the existing
methods are not yet powerful enough to construct most proofs regarded as sim-
ple by mathematicians, and conversely, the proofs constructed by these methods
do not seem simple.

2. Are there natural large cardinal existence axioms LC such that ZFC+ LC im-
plies that all O D sets X of infinite sequences of 0s and 1s satisfy the axiom of
determinacy AD(X)? This question is similar to the continuum hypothesis, in
the sense that it is independent of ZFC plus all large cardinal axioms proposed
thus far.

3. Is it true that PTIME �= NPTIME, or at least, that PTIME �= PSPACE? An af-
firmative answer to the first of these questions would tell us that the problem
of constructing proofs of mathematical conjectures in given axiomatic theories
(and many other combinatorial problems) cannot be fully mechanized in a cer-
tain sense.

In May 2000 the Clay Mathematics Institute announced a prize of one million
dollars for a proof or disproof of the conjecture PTIME �= NPTIME. See http:
//www.claymath.org/prize_problems/index.htm for details.
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