
Logic Programs, Well-orderings, and Forward
Chaining

V.W. Marek,1 A. Nerode2 and J.B. Remmel3

1Department of Computer Science, University Kentucky, Lexington, KY 40506–0027.

Research partially supported by NSF grant IRI-9400568.
2Mathematical Sciences Institute, Cornell University, Ithaca, NY 14853. Research par-

tially sponsored by USARO MURI DAAH-04-96-10341, Center for Foundations of Intelli-

gent Systems at Cornell University.
3Department of Mathematics, University of California at San Diego, La Jolla, CA

92903. Research partially supported by NSF grant DMS-93064270.

Abstract

We investigate the construction of stable models of general propositional
logic programs. We show that a forward-chaining technique, supplemented
by a properly chosen safeguards can be used to construct stable models of
logic programs. Moreover, the proposed method has the advantage that if
a program has no stable model, the result of the construction is a stable
model of a subprogram. Further, in such a case the proposed method “iso-
lates the inconsistency” of the program, that is it points to the part of the
program responsible for the inconsistency. The results of computations are
called stable submodels. We prove that every stable model of a program
is a stable submodel. We investigate the complexity issues associated with
stable submodels. The number of steps required to construct a stable sub-
model is polynomial in the sum of the lengths of the rules of the program.
In the infinite case the outputs of the forward chaining procedure have much
simpler complexity than those for general stable models. We show how to
incorporate other techniques for finding models (e.g. Fitting operator, Van
Gelder-Ross-Schlipf operator) into our construction.

2

1 Introduction and Motivation

One of the problems which motivated this paper is how do we deal with incon-
sistent information. For example, suppose that we want to develop an expert
system using logic programming with negation as failure. It may be the case
that the knowledge engineer gathers facts, i.e. clauses of the form p←, rules
without exceptions, i.e. clauses of the form p← q1, . . . qn, and rules with ex-
ception or rules of thumb, i.e. clauses of the form p← q1, . . . qn,¬r1, . . . ,¬rm,
from several experts. One problem is that the resulting program may be in-
consistent in the sense that the program has no stable model. That is, the
experts may not be consistent. The question then becomes how can we elim-
inate some of the clauses so that we can get a consistent program. That is,
at a minimum, we would like to select a subprogram of the original program
which has a stable model. Various schemes have been proposed in the lit-
erature to do this [GS92, GS93, KL89]. For example, we may throw away
the rules which came from what we feel are the most unreliable experts until
we get a consistent program. However even in the case when the knowledge
engineer consults only a single expert, the rules that the knowledge engineer
produces may be inconsistent because the rules that he or she abstracted are
not specific enough or simply because the expert did not give us a consistent
set of rules.

The above scenario is one practical reason that we would desire some
procedure to construct, for a given program which has no stable model, a
maximal subprogram that does have a stable model. Another practical rea-
son occurs when we are using a logic program to control a plant in real time,
see [KN93a] for examples. In this case, the program may have a stable model
but that stable model may be very complicated and we do not have enough
time to compute the full stable model. It has been shown [MT91] that the
problem of determining whether a finite propositional logic program has a
stable model is NP-complete. Moreover, the authors have shown [MNR92a]
that there are finite predicate logic programs which have stable models but
which have no stable models which are hyperarithmetic so that there is no

3

possible hope that one could compute a stable model of the program no mat-
ter how much time one has. Thus if there are time problems, one may be
satisfied by a procedure which would construct a subprogram of the original
program and a stable model of the subprogram as long as both the subpro-
gram and stable model of the subprogram can be computed rapidly, in fact,
in polynomial time.

Indeed some see as a general problem with the stable model semantics the
fact that there are many programs which have no stable models. For example,
if we have any program P and p is new statement letter, the program P plus
the clause p ← ¬p has no stable model even if the original program P has
a stable model. Thus a single superfluous clause which may have nothing
to do with the rest of the program may completely destroy the possibility
of the program possessing a stable model. This is one of the reasons that
researchers have looked for alternatives to the stable model semantics such
as the well-founded semantics [VGRS91].

In this paper, we shall present a basic Forward Chaining type construction
which can be applied to any general logic program. The input of the con-
struction will be any well-ordering of the non-Horn clauses of the program.
The construction will then output a subprogram of the original program and
a stable model of the subprogram. It will be the case that for any stable
model M of the original program P , there will be a suitable ordering of the
non-Horn clauses of the program so that the subprogram produced by our
construction is just P itself and the stable model of subprogram produced by
our construction will be M . Thus all stable models of the original program
will be constructed by our Forward Chaining construction for suitable order-
ings. Moreover, we shall show that for finite propositional logic programs,
our construction will run in polynomial time. That is, we shall prove that
our Forward Chaining construction runs in order of the square of the length
of the program.

In fact, a basic Forward Chaining (FC) construction can be applied to any
nonmonotonic rule system. In [MNR90, MNR92c], it was shown that non-
monotonic rule systems capture all the essential features of many nonmono-
tonic reasoning formalisms, including general logic programming with classi-
cal negation [GL90], Reiter’s default logic [Rei80], modal nonmonotonic logics
of McDermott [McD82] and truth maintenance systems of [Doy79, RDB89].
In the setting of nonmonotonic rule systems, one can give general proofs for

4

many of the basic theorems about such nonmonotonic reasoning formalisms.
Our Forward Chaining construction can thus be applied to any of these for-
malisms. This can be done by translating a nonmonotonic system as above
into a nonmonotonic rule system of [MNR90] and then writing an interpreter
of such a rule system within logic programming with stable semantics. The
Forward Chaining construction will then take any well-ordering ≺ of the
nonmonotonic clauses of a nonmonotonic system S = 〈U,N〉 and produce a
subset C≺ of nonmonotonic rules of S and a set D≺ ⊆ U which will be an
extension of the system 〈U,C≺〉. Thus the results of this paper apply to all
the systems mentioned above.

We shall see that any stable model M of P can be produced via our
Forward Chaining construction for some well-ordering ≺, i.e. every stable
model of P is a stable submodel of P . In the case where our original pro-
gram P is inconsistent in the sense that P has no stable models, we can view
our Forward Chaining construction as a way of extracting a maximal consis-
tent subset of clauses C≺ ⊆ P such that the system C≺ has stable model.
As outlined above, this feature of the Forward Chaining construction has a
number of potential applications. In particular, in the construction of expert
systems, one often consults several experts and the rules of different experts
may conflict. Thus the designer of the expert system is left with the task of
extracting a consistent set of rules from the rules supplied by different ex-
perts. We shall see that our Forward Chaining construction is ideally suited
to this task for it allows us to favor the rules of one expert over another by
the simple process of placing the rules of our favored expert earlier in the
list. Our results apply equally well to the construction of extensions of de-
fault theories, answer sets for extended logic programs, expansions of modal
nonmonotonic theories or extensions of truth maintenance systems.

We shall also analyze the complexity of our Forward Chaining construc-
tion. We shall show that for general recursive program, we can always pro-
duce a stable submodel which is r.e. in the jump of the empty set, 0′. Note
that in [MNR95], the authors constructed a recursive program system P such
that P has stable models but no hyperarithmetic stable models. Thus we
are always guaranteed that a recursive program has a stable submodel which
occurs at a relatively low level in the arithmetic hierarchy where no such
guarantee can be made for stable models of recursive programs even when
such programs have stable models. More importantly, we shall show that for
finite programs, we can always find a stable submodel and its corresponding

5

subprogram in polynomial time. Thus our Forward Chaining construction
has potential applications for real time systems.

The outline of this paper is as follows. In Section 2 we shall briefly review
the basic concepts of logic programming. In Section 3 we shall introduce our
Forward Chaining construction and prove several basic results about the con-
struction. In Section 4, we shall introduce recursive programs and recall some
basic results about such programs proved in [MNR92c]. Then we shall prove
our basic results about the complexity of the Forward Chaining construction.
In Section 5 we show how our construction can be modified and used to con-
struct stable models of systems possessing certain consistency property. In
Section 6 we show how our results of Sections 3 and 4 can be used for Default
Logic. In Section 7 we show how our Forward Chaining construction relates
to stratification of Apt, Blair and Walker [ABW87]. Finally in Section 8
we indicate how our construction can be coupled with other constructions of
models, for instance the constructions of Fitting [Fi85, Fi96] or van Gelder,
Ross and Schlipf [VGRS91].

2 Some auxiliary information on logic pro-

grams

A definite logic program consists of clauses of the form

a← a1, . . . , am

where a, a1, . . . , am are atoms of some underlying language. We call such
clauses Horn program clauses or simply Horn clauses. The set of atoms
occurring in some clause of P is called the Herbrand base of P , and is denoted
by HP . We will be dealing here with the propositional case only.

Definition 2.1 A subset M ⊆ HP is called a model of a set of program
clauses P if for all clauses a ← a1, . . . , am of P , a1, . . . , am ∈ M implies
a ∈M .

A general logic program consists of clauses of the form

C = a← a1, . . . , am,¬b1, . . . ,¬bn. (1)

6

where a1, . . . , am, b1, . . . , bn are atoms of some underlying language. Here
a1, . . . , an are called the premises of clause C, b1, . . . , bm are called the con-
straints of clause C, and a is called the conclusion of clause C. For any
clause C as in (1), we shall write prem(C) = {a1, . . . , an}, cons(C) =
{b1, . . . , bm}, and c(C) = a. Either prem(C), cons(C), or both may be
empty. If prem(r) = cons(r) = ∅, then the clause r is called an axiom.

Each Horn program can be identified with the a general program in which
every clause has an empty set of constraints.

Definition 2.2 A subset M ⊆ HP is called a model of P if for all C = a←
a1, . . . , am¬b1, . . . ,¬bn ∈ P , whenever all the premises a1, . . . , an of C are in
M and all the constraints b1, . . . , bm of C are not in M , then the conclusion
a of C belongs to M .

For general programs the set of models is not generally closed under
arbitrary intersections as in the monotone case. But models are closed under
intersections of descending chains. Since HP is model, by the Kuratowski-
Zorn Lemma, there is at least one model minimal among those containing I
for any I ⊆ HP .

Given sets M ⊆ HP and I ⊆ HP , an M-deduction of c from I in P is a
finite sequence 〈c1, . . . , ck〉 such that ck = c and for all i ≤ k, each ci either

1. belongs to I, or

2. is the conclusion of an axiom, or

3. is the conclusion of a clause C ∈ P such that all the premises of C are
included in {c1, . . . , ci−1} and all constraints of C are in HP −M (see
[MT93], also [RDB89]).

An M-consequence of I is an element of HP occurring in some M -deduction
from I. Let CM(I) be the set of all M -consequences of I in P . Clearly I
is a subset of CM(I). However note that M enters solely as a restraint on
the use of the clauses which may be used in an M -deduction from I. A
single constraint in a clause in P may be in M and thus prevent the clause
from ever being applied in an M -deduction from I, even though all the
premises of that clause occur earlier in a deduction. Thus M contributes no

7

members directly to CM(I), although members of M may turn up in CM(I)
by an application of a clause which happens to have its conclusion in M .
For a fixed M , the operator CM(·) is monotonic. That is, if I ⊆ J , then
CS(M) ⊆ CM(J). Also, CM(CM(I)) = CM(I). However, for fixed I, the
operator CM(I) is anti-monotonic in the argument M . That is if M ′ ⊆ M ,
then CM(I) ⊆ CM ′(I).

Generally, CM(I) is not a model of P . It is perfectly possible that all the
premises of a clause be in CM(I), the constraints of that clause are outside
CM(I), but a constraint of that clause be in M , preventing the conclusion
from being put into CM(I).

Example 2.1 HP = {a, b, c}, P = {a ←, c ← a,¬b}, M = {b}. Then
CM(∅) = {a} is not a model of P . 2

However, the following holds; see [MNR90].

Proposition 2.3 If M ⊆ CM(I), then CM(I) is model of P .

We say that M ⊆ HP is grounded in I if M ⊆ CM(I). We say that
M ⊆ HP is an stable model of P over I of I if CM(I) = M . Finally, we say
that M ⊆ HP is a supported model of P over I if CM(I ∪ R) = M , where R
consists of conclusions of those clauses C = a← a1, . . . , am,¬b1, . . . ,¬bn ∈ P
for which a1, . . . , an ∈M, b1, . . . , bm /∈M. (Thus we are talking about models
of Clark’s completion [Cla78], see also [AvE82].)

The notion of groundedness is related to the phenomenon of “reconstruc-
tion”. M is grounded in I if all elements of M are M -deducible from I
(remember that M influences only the negative sides of clauses). M is a
stable model of P over I if two things happen. First, every element of M
is M -deducible from I, that is, M is grounded in I (this is an analogue of
the adequacy property in logical calculi). Second, the converse holds: all
the M -consequences of I belong to M (this is the analogue of completeness).
Thus stable models are analogues for general programs of the set of all con-
sequences for Horn programs, except that the notion of derivability changes
and is self-referring. Both properties (adequacy and completeness) need to
be satisfied if we want M to be a stable model.

8

The third concept, supported model, is a closure property. In the process
of constructing CM(I), M is used only negatively as a restraint. But we can
relax our requirements and allow deductions that use M also on the positive
side. That is, elements of M are not treated as “axioms”, but are used to
generate objects from HP by also testing the positive side of a clause for
membership in M . Thus, we get fixpoints of the operator TP and Clark’s
completion, see [Apt90]. Gelfond and Lifschitz [GL88] proved that stable
models of P are minimal and supported. In particular, stable models of P
form an antichain. Moreover, it is easy to see that stable models of P over I
are supported models of P over I.

With each clause C of form (1), we associate a Horn clause of form (2)

C ′ = a← a1, . . . , am (2)

obtained from C by dropping all the constraints. The clause C ′ is called the
projection of clause C. Let M be any subset of HP and let G(M,P) be the
collection of all M -applicable clauses. That is, a clause C belongs to G(M,P)
if all the premises of C belong to M and all constraints of C are outside of
M . We write P |M for the collection of all projections of all clauses from
G(M,P). The projection P |M is a Horn program. Our definition of stable
model was different from that given by Gelfond and Lifschitz in [GL88]. It
is, however equivalent to it. In particular we have the following.

Theorem 2.4 M ⊆ HP is a stable model of P if and only if M is the least
model of P |M .

For the rest of this paper, we shall only consider stable models over ∅
unless explicitly stated otherwise. We say that M is a stable model of P if
M is stable model of P over ∅.

We shall end this section by giving yet another characterization of stable
models. For this we need the concept of a proof scheme. A proof scheme for
an atom c is a finite sequence

p = 〈〈c0, C0, G0〉, . . . , 〈cm, Cm, Gm〉〉 (3)

such that cm = c and
(1) If m = 0 then:

9

c0 is a conclusion of a clause

C = c0 ← ¬b1, . . . ,¬bn

C0 = C, and G0 = cons(C).
(This includes the case when c0 is an axiom that is, when C is of the form
C = c0 ←).
(2) If m > 0, then 〈〈ci, ri, Gi〉〉

m−1
i=0 is a proof scheme of length m and cm is a

conclusion of
C = cm ← ci0 , . . . cis ,¬b1, . . . ,¬br

where i0, . . . , is < m, Cm = C, and Gm = Gm−1 ∪ cons(C).
The atom cm is called the conclusion of p and is written cln(p). The set Gm

is called the support of p and is written supp(p).

The idea behind this concept is as follows. An M -derivation for P , say p,
uses some negative information about M to ensure that the constraints of
clauses that were used are outside of M . But this negative information is
finite, that is, it involves a finite subset of the complement of M . Thus,
there exists a finite subset G of the complement of M such that for every set
M1 ⊆ HP , as long as G ∩M1 = ∅, p is an M1-derivation as well. Our notion
of proof scheme captures this finitary character of M -derivation.

We can then characterize stable models of P as follows; see [MNR90].

Theorem 2.5 Let P be a general program. Then M is a stable model of P
if and only iff
(i) for each c ∈ M , there is a proof scheme p such that cln(p) = c and
supp(p) ∩M = ∅ and
(ii) for each c /∈ M , there is no proof scheme p such that cln(p) = c and
supp(p) ∩M = ∅.

3 The Forward Chaining Construction and

Stable Submodels

In this section we shall present our basic Forward Chaining construction
which can be applied to any general program P . We shall then establish
several basic properties of the Forward Chaining construction.

10

Given a general program P , we then let mon(P) denote the set of all Horn
clauses of P and nmon(P) = P \mon(P). The elements of nmon(P) will be
called nonmonotonic clauses.

Our Forward Chaining construction will take as an input a program P
and a well-ordering ≺ of nmon(P). The principal output of the Forward
Chaining construction will be a subset D≺ of HP . Although such subset
is not, necessarily, a stable model of P , it will be a stable model of A≺

for a subset A≺ ⊆ P . This subset, A≺, will also be computed out of our
construction and will be the maximal set of clauses of P for which D≺ is a
stable model. We thus call D≺ a stable submodel of P .

The first feature of our construction is that in every stage of our construction
we will close the sets we construct under mon(P). The point is that stable
models are always closed under the operator associated with the Horn part of
the program, and the applicability of a clause from mon(P) is not restricted.
We shall denote by clmon the monotone operator of closure under the clauses
in mon(P). Thus clmon(I) = Tmon(P) ↑ ω(I) is the least set Z of atoms from
HP such that I ⊆ Z and Z is closed under every clause r of mon(P). That is,
if premises of such a clause are all in Z, then its conclusion also belongs to Z.
The second important aspect of our construction is that when we inspect the
clauses of nmon(P) for a possible application, we look at the possible effect of
their application on the applicability of those clauses which were previously
applied. Rules that may invalidate applicability of previously used clauses
are not used.

The execution of this idea requires some book-keeping. Our Forward Chain-
ing construction will define two sequences of subsets of HP : 〈D≺

ξ 〉ξ≤|P |+ and
〈R≺

ξ 〉ξ≤|P |+ . D≺
ξ will be the set of elements derived by stage ξ. R≺

ξ will be the
set of elements restrained by stage ξ. Here and below α+ is the least cardinal
greater than α. Thus, if P is countable, then |P |+ is either finite or the first
uncountable ordinal. We shall prove, however, that if |P | is countably infi-
nite, then the construction actually stops below the first uncountable ordinal
and therefore, for denumerable P , the use of nondenumerable cardinals can
be eliminated.

In addition, we shall define two sets of clauses, I≺ (for “inconsistent clauses”)
and A≺ (for “acceptable” clauses). These sets of clauses will depend on
previously defined hierarchies.

11

3.1 Forward Chaining Construction

We now introduce our Forward Chaining construction. This is done by trans-
finite induction in the most general case. Note that in case when HP is finite
our construction terminates in finite number of steps. In the infinite case
the situation is no different from induction used to in other areas of Com-
puter Science, e.g. Buchberger’s construction of Grobner bases, where the
algorithms are performed on well-founded ordering of ordinal greater than
ω, or Blair’s construction of the largest fixpoint for a definite program. We
believe that the area of logic programming is no exception. We shall prove
below (Proposition 3.9) that if P is countable, then the stable models can
be computed with orderings of type ≤ ω. Stable submodels, as introduced
below, in general, do not share this property.

Definition 3.1 Let P be a general program and let ≺ be a well-ordering of
nmon(P). We define two sequences of sets of atoms from HP , 〈Dξ〉 as well
as 〈Rξ〉. The set Dξ is the set of atoms derived by stage ξ and Rξ is the set
of atoms rejected by the stage ξ.

1. D≺
0 = clmon(∅), R

≺
0 = ∅;

2. If γ = β + 1 and there is a clause C ∈ nmon(P) such that

prem(C) ⊆ D≺
β , ({c(C)} ∪ cons(C)) ∩D≺

β = ∅

and
clmon(D

≺
β ∪ {c(C)}) ∩ (cons(C) ∪R≺

β) = ∅

(we call such clause applicable clause), then let Cγ be the ≺-first appli-
cable clause and set

D≺
γ = clmon(D

≺
β ∪ {c(Cγ)}) R≺

γ = R≺
β ∪ cons(Cγ).

If there is no C such that

prem(C) ⊆ D≺
β , ({c(C)} ∪ cons(C)) ∩D≺

β = ∅

and
clmon(D

≺
β ∪ {c(C)}) ∩ (cons(C) ∪R≺

β) = ∅,

then set
D≺

γ = D≺
β and R≺

γ = R≺
β

12

3. If γ is a limit ordinal, then

D≺
γ =

⋃

ξ<γ

D≺
ξ and R≺

γ =
⋃

ξ<γ

R≺
ξ .

4. Finally let

D≺ = D≺
|P |+ =

⋃

ξ<|P |+

D≺
ξ and R≺ = R≺

|P |+ =
⋃

ξ<|P |+

R≺
ξ .

Sets D≺ and R≺ are sets of atoms derived and rejected during the
forward chaining construction along the well-ordering ≺.

We define the set of inconsistent clauses, I≺, and the set of consistent clauses,
A≺, relative to ordering ≺ as follows:

5. C is inconsistent with ≺ (or simply inconsistent if ≺ is fixed) if prem(C)
∈ D≺, ({c(C)}∪cons(C))∩D≺ = ∅, but clmon(D

≺∪{c(C)})∩(cons(C)∪
R≺) 6= ∅. I≺ = {C ∈ P : C is inconsistent with ≺};

6. A≺ = P \ I≺

We then say that a subset D ⊆ HP is a stable submodel of P , if there is a
well-ordering ≺ of nmon(P) such that D = D≺.

The following observations should be clear: First, the clause that is used
for construction of D≺

γ+1 from D≺
γ is different from any clause used before

in the construction. Therefore, by cardinality argument, the construction,
eventually, stabilizes.

Next, both hierarchies 〈D≺
ξ 〉 and 〈R≺

ξ 〉 are increasing. Moreover, it is easy to
prove by induction on ξ that D≺

ξ ∩R
≺
ξ = ∅. Therefore D≺ ∩R≺ = ∅.

The sets R≺
ξ accumulate the restraints of all clauses applied during the con-

struction. Since D≺ ∩ R≺ = ∅, the applicability of clauses applied dur-
ing the construction is preserved at the end. This immediately implies
the following result. First, let Pα = {Cξ : ξ < α}, P ⋆ = {Cα : α <
|P |+ and Cα is defined}. We have

Proposition 3.2 1. D≺
ξ is a stable model of Pξ

13

2. D≺ is a stable model of P ⋆.

Proof: For (1), note that it is easy to see that our construction ensures
that cons(Cα) ⊆ Rξ for all α ≤ ξ. It then follows that if Cα = c ←
a1, . . . , ak¬b1, . . . ,¬bm, then Cα = c ← a1, . . . , ak is a clause in the pro-
jection of Pξ relative to Dξ, Pξ |D≺

ξ
. But it is then straightforward to prove

that D≺
ξ is the closure of ∅ in Pξ |D≺

ξ
and hence D≺

ξ is a stable model of Pξ.

(2) follows from (1) since D≺ = D≺
|P |+ and P≺ = P≺

|P |+ . 2

We now have a result showing that the set D≺ we produced in the Forward
Chaining construction behaves as promised:

Theorem 3.3 Let P be a general program. Let ≺ be a well-ordering of
nmon(P). Then D≺ is a stable model of A≺. Hence if I≺ = ∅, then D≺ is a
stable model of P .

Proof: We want to show that CD≺(∅) = D≺ in the program A≺. This requires
two lemmas.

Lemma 3.4 If x ∈ D≺
γ , then there is a sequence 〈x1, . . . , xn〉 such that xn =

x and for all i ≤ n, either

(I) there is a clause C = xi ← ¬b1, . . . ,¬bn ∈ A≺ such that {b1, . . . , bn} ∩
D≺ = ∅ or

(II) there is a clause C = xi ← xi1 , . . . , xik¬b1, . . . ,¬bn ∈ A≺ such that
i1, . . . , ik < i and {b1, . . . , bn} ∩D

≺ = ∅.

Proof: We proceed by transfinite induction on γ.

Case 1: γ = 0. Then D≺
0 = clmon(∅) so that if x ∈ D≺

0 , there is a sequence
〈x1, . . . , xn〉 with xn = x such that for all i ≤ n, either there is a clause
C = xi ← ∈ mon(P) or there is a clause C = xi ← xi1 , . . . , xik ∈ mon(P)
such that i1, . . . , ik < i. Then 〈x1, . . . , xn〉 is our desired sequence for x.

Case 2: γ = β + 1. Assume the lemma holds for D≺
β . If D≺

γ = D≺
β , there is

nothing to prove. Otherwise, there is a clause

Cγ = c← a1, . . . , ap,¬e1, . . . ,¬em

14

such that a1, . . . , ap ∈ D≺
β , e1, . . . , em ∈ R≺

γ and D≺
γ = clmon(D

≺
β ∪ {c}).

Now suppose x ∈ D≺
γ . Then, since x ∈ clmon(D

≺
β ∪ {c}), there is a sequence

〈y1, . . . , yn〉 with yn = x such that either

(a) yi ∈ D
≺
β ∪ {c},

(b) there is a clause C = yi ← ∈ mon(P), or

(c) there is a clause C = yi ← yi1 , . . . , yik ∈ mon(P) such that i1, . . . , ik < i.

Now by induction, if x ∈ D≺
β , there is a sequence 〈zx

1 , . . . , z
x
tx〉 such that for

all j ≤ tx either

(i) there is a clause C = zx
j ← ¬b1, . . . ,¬bs ∈ A

≺ such that {b1, . . . , bs} ∩
D≺ = ∅, or

(ii) there is a clause C = zi ← zi1 , . . . , zik¬b1, . . . ,¬bs ∈ A
≺ such that

{b1, . . . , bs} ∩D
≺ = ∅ and i1, . . . , ik < j .

Now consider the sequence 〈y1, . . . , yn〉. For each yi, we shall define a se-
quence wyi

as follows: First suppose yi satisfies Case (a). Then if yi ∈ D
≺
β ,

we let wyi
= 〈zyi

1 , . . . , z
yi

tyi
〉 as described above. If yi = c, then we let wyi

=

wc = 〈za1

1 , . . . , z
a1

ta1
, . . . , z

ap

1 , . . . , z
ap

tap
, c〉 where for each j ≤ n, 〈z

aj

1 , . . . , z
aj

taj
〉 is

the sequence satisfying (i) and (ii) for x = aj. Such a sequence 〈z
aj

1 , . . . , z
aj

taj
〉

exists because by the definition of Cγ, aj ∈ D≺
β . We claim that the entire

sequence wc satisfies conditions (I) and (II). Certainly each of the subse-
quences 〈z

aj

1 , . . . , z
aj

taj
〉 satisfy (I) and (II). Now

Cγ = c← a1, . . . , ap,¬e1, . . . ,¬em ∈ A
≺

and {e1, . . . , em} ⊂ R≺
γ ⊆ R≺ by construction. Thus {e1, . . . , em} ∩D

≺ = ∅
since R≺ ∩D≺ = ∅. Thus Cγ shows that c satisfies condition (II) for wc.

Finally if yi satisfies Case 2(b) or 2(c), then we let wyi
= 〈yi〉. It then

follows that if w is the concatenation of the sequences wy1
, . . . , wyn

, then w
satisfies conditions (I) and (II) for x.

Case 3: γ is a limit ordinal. Then if x ∈ D≺
γ =

⋃

β≺γ D
≺
β , then for some

β < γ, x ∈ D≺
β . Thus by induction, there is a sequence 〈x1, . . . , xn〉 satisfying

(I) and (II) for x. 2

15

Note that Lemma 3.4 implies that D≺ ⊆ CD≺(∅) relative to A≺ To prove
that CD≺(∅) ⊆ D≺, we need only prove the following.

Lemma 3.5 Suppose 〈x1, . . . , xn〉 is a sequence such that for all i ≤ n, either

(I) there is a clause Ci = xi ← ¬b1, . . . ,¬bs ∈ A
≺ such that {b1, . . . , bs}∩

D≺ = ∅ or

(II) there is a clause Ci = xi ← xi1 , . . . , xik¬b1, . . . ,¬bs ∈ A
≺ such that

{b1, . . . , bs} ∩D
≺ = ∅ and i1, . . . , ik < i.

Then xn ∈ D
≺.

Proof: We proceed by induction on n. We can thus assume that x1, . . . , xn−1

∈ D≺. Hence there is some stage γ0 such that x1, . . . , xn−1 ∈ D≺
γ0

. Now
suppose, for a contradiction, that xn /∈ D≺. Note that at successor stages
γ = β + 1 of our construction, if rγ is defined, then

rγ = c← a1, . . . , an,¬b1, . . . ,¬bm

satisfies c /∈ D≺
β and c ∈ D≺

γ . It follows that if γ1 6= γ2 are two successor
ordinals smaller than |nmon(P)|+ such that rγ1

and rγ2
are defined, then

rγ1
6= rγ2

. Now by a cardinality argument, there must be a stage α > γ0

such that α = β′ + 1 is a successor ordinal and all clauses C such that
C ≺ rn do not satisfy the criteria to be rα. Thus at stage α, rn = xn ←
xi1 , . . . , xik ,¬b1, . . . ,¬bs satisfies that {xi1 , . . . , xik} ⊆ D≺

β , {xn, b1, . . . , bs} ∩
D≺

β′ = ∅. Then the only way that we would not pick rα = rn is either if xn ∈
D≺

β′ , in which case we are done, or if clmon(D
≺
β′∪{xn})∩({b1, . . . , bs}∪R

≺
β′) 6= ∅.

But then clearly clmon(D
≺∪{xn})∩({b1, . . . , bs}∪R

≺) 6= ∅ which would mean
rn ∈ I

≺. But by assumption rn ∈ A
≺ = P − I≺. Thus we must conclude that

rα = rn and hence xn ∈ D
≺
α ⊆ D≺ which contradicts our assumption that

xn /∈ D≺. Hence xn ∈ D
≺ as desired. 2

Lemmas 3.4 and 3.5 imply the Proposition 3.3.

Note that our original definition of A≺ depends on both D≺ and R≺. This
is because I≺ depends on both D≺ and R≺. Since, however, D≺ is a stable

16

model of A≺, it follows that whenever C ∈ A≺, then D≺ is closed under C.
That is, if prem(C) ⊆ D≺, then either cons(C) ∩ D≺ 6= ∅ or c(C) ∈ D≺.
On the other hand, whenever C ∈ I≺ (that is C /∈ A≺), then c(C) /∈ D≺,
prem(C) ⊆ D≺ but clmon(D

≺∪{c(C)})∩cons(C) 6= ∅ or clmon(D
≺∪{c(C)})∩

R≺ 6= ∅. In this latter case clmon(D
≺ ∪ {c(C)}) ∩ (HP \D

≺) 6= ∅. Therefore
we get the following characterization of A≺ which depends only on D≺.

Corollary 3.6 If P is a general program and ≺ is a well-ordering of of the
set nmon(P), then

A≺ = {C ∈ P : prem(C) 6⊆ D≺ or clmon(D
≺ ∪ {c(C)}) ∩ (HP \D

≺) 6= ∅}

In Section 5, we shall describe a set of programs P which we call FC-
normal programs which have the property that when the Forward Chaining
construction is applied to P , I≺ is always empty. FC-normal programs were
introduced in [MNR93b]. FC-normal programs are guaranteed to have sta-
ble models. These systems are generalizations of Reiter’s normal default
logic [Rei80]. The properties of FC-normal program are proved in [MNR93b]
so that in section 5, we shall simply give basic definitions and results of
[MNR93b].

We define the set of nonmonotonic generating clauses for a set M ⊆ HP ,
NG(M,P).

Definition 3.7 Let P be a general program. Let M ⊆ HP .

NG(M,P) = {C ∈ nmon(P) : prem(C) ⊆M, cons(C) ∩M = ∅}

Thus NG(M,P) = G(M,P) ∩ nmon(P).

Next we show the completeness of our construction, that is that every
stable model is a stable submodel.

Theorem 3.8 If P is a general program, then every stable model of P is a
stable submodel of P . That is, if M is a stable model of P , then there exists
a well-ordering ≺ of nmon(P) such that D≺ = M . In fact, for every well-
ordering ≺ such that NG(M,P) forms an initial segment of ≺, D≺ = M .

17

Proof: First of all notice that sinceM is a stable model of P , M is a supported
model of P . Thus it is generated from the conclusions of nonmonotonic
generating clauses by means of monotonic clauses.

Next, let ≺ be a well-ordering of nmon(P) such that NG(M,P) forms
an initial segment of ≺. Let δ be the order type of ≺. Then we can write
nmon(P) as nmon(P) = {nα : α < δ}. By our assumption there is a γ ≤ δ
such thatNG(M,P) = {nα : α < γ}. Let µ = γ+ and let {(D≺

α , R
≺
α) : α ∈ µ}

be the sequence constructed by the Forward Chaining construction for P
relative to the well-ordering ≺ . Then we claim that D≺

µ = M.

First it is easy to show by induction that clmon(D
≺
α) = D≺

α for all α.
Next we claim that if α < µ, then D≺

α ⊆ M and moreover if D≺
α 6= D≺

α+1,
then rα+1 = nθ for some θ < γ, i.e., rα+1 ∈ NG(M,P). That is, suppose
by induction that D≺

β ⊆ M for all β < α. Then if α is a limit ordinal,
D≺

α =
⋃

β<αD
≺
β ⊆M. If α is a successor ordinal, we can assume by induction

that α = η + 1 where D≺
η ⊆ M and that rβ ∈ NG(M,P) for all β < α such

that rβ is defined. Since rβ ∈ NG(M,P), we know that cons(rβ) ∩M =
∅. But R≺

η =
⋃

β≤η cons(rβ) so that R≺
η ∩ M = ∅ as well. Now consider

D≺
η . If D≺

η = M, then for any clause r = c ← a1, . . . , an,¬b1, . . . , bm either
{a1, . . . , an} 6⊆ M or {c, b1, . . . , bm} ∩ M 6= ∅ since M is a stable model.
But this means that rη+1 must be undefined so that D≺

α = D≺
η = M. If

D≺
η ⊂ M, then consider some a ∈ M \ D≺

η . Since a ∈ M, there is some
minimal proof scheme p = 〈〈a0, r̄0, G0〉, . . . , 〈am, r̄m, Gm〉〉 where am = a and
Gm ∩ M = ∅ which witnesses that a ∈ M. Since a /∈ D≺

η , there must be
some k ≤ m such that a0, . . . , ak−1 ∈ D≺

η and ak /∈ D≺
η . Then consider

r̄k = ak ← ai0 , . . . , aij ,¬b1, . . . ,¬bt where i0, . . . , ij < k .

Now it cannot be that {b1, . . . , bt} = ∅ since otherwise ak ∈ clmon(D
≺
η) =

D≺
η . Thus {b1, . . . , bt} 6= ∅. But since {b1, . . . , bt} ⊆ Gm and Gm ∩M = ∅, it

must be the case that {b1, . . . , bt} ∩M = ∅ so that certainly {b1, . . . , bt} ∩
D≺

η = ∅. Moreover, D≺
η ∪ {ak} ⊆ M so that clmon(D

≺
η ∪ {ak}) ⊆ M. Also

({b1, . . . , bt}∪R
≺
η)∩M = ∅ so that clmon(D

≺
n ∪{ak})∩({b1, . . . , bt}∪R

≺
n) = ∅.

Thus r̄k is a candidate to be rα at stage α. But r̄k ∈ NG(M,P) so that
r̄k = nθ for some θ < γ. Hence by construction rα = nλ for some λ ≤ θ < γ.
Thus rα ∈ NG(M,P) and cln(rα) ∈M. But this means D≺

η ∪{cln(rα)} ⊆M
so that D≺

α = clmon(D
≺
η ∪ {cln(rα)}) ⊆M.

It follows that D≺
µ ⊆ M . That is, µ is a limit ordinal so that D≺

µ =
⋃

α∈µD
≺
α and we have proved D≺

α ⊆M for all α ∈ µ. We claim that it must be

18

the case that D≺
µ = M for otherwise D≺

µ ⊂M and hence for all α ∈ µ,D≺
α ⊂

M. But our argument above shows that if D≺
α ⊂ M, then D≺

α ⊂ D≺
α+1, and

rα+1 ∈ NG(M,P). This fact, in turn, will allow us to prove by induction on
the length of a minimal proof scheme that for all r ∈ NG(M,P), cln(r) ∈ D≺

µ .
That is, suppose p = cln(r) for some r ∈ NG(M,P). Now since p ∈ M,
there is a minimal proof scheme p = 〈〈a0, r̄0, G0〉, . . . , 〈am, r̄m, Gm〉〉 where
Gm ∩ M = ∅ and am = p. Now we can assume by induction that if c is
the conclusion of a minimal proof scheme q such that supp(q) ∩ M = ∅
and the length of q < m, then c ∈ D≺

µ . Thus we can assume a0, . . . , am−1

are in D≺
µ . Hence there is some α < µ such that {a0, . . . , am−1} ⊆ D≺

α .
Then consider r̄m = p← ai1 , . . . , aik ,¬b1, . . . ,¬bt where ij, . . . , ik < m. Since
{ai1 , . . . , aik} ⊆ D≺

α and {b1, . . . , bt} ∩ M 6= ∅, it will follow that for all
β such that p /∈ D≺

β and α ≤ β < µ, r̄m is a candidate to be rβ+1 at
stage β. Now r̄m = nλ for some λ < γ. Thus at such at stage β, it must
be the case that either rβ+1 = nλ = r̄m or rβ+1 = nθ for some θ < λ.
Moreover if β1 6= β2 and r̄β1

and r̄β2
are defined, then we have previously

observed that rβ1
6= rβ2

. If follows that because µ is cardinal and hence
card({nθ : θ ≤ λ}) < card(µ), there must be a stage β such that α ≤ β < µ
and either p ∈ D≺

β or r̄m = rβ+1 In either case, p will be in D≺
β+1 ⊆ D≺

µ .
It follows that {cln(r) : r ∈ NG(M,P)} ⊆ D≺

µ ⊆ M. But then M =
clmon({cln(r) : r ∈ NG(M,P)}) ⊆ clmon(D

≺
µ) = D≺

µ ⊆ M. Thus D≺
µ = M as

claimed.

Now if µ = |P |+, then D≺
µ = D≺ = M . If µ < |P |+, then we know

that Dµ = M . But by our observation above, whenever Dα = M , rα+1

is undefined. Thus rµ+1 is undefined and hence D≺
α = D≺

µ = M for all
µ ≤ α ≤ |P |+. Thus in either case D≺ = M . 2

Next, we shall consider some examples.

Example 3.1 Let HP = {a, b, c, d, e, f} and let P consist of the following
clauses:

1. a←

2. b← c

3. c← a,¬d

4. d← b,¬c

19

5. e← c,¬f

6. f ← c,¬e

Here, mon(P) consists of clauses (1) and (2), whereas nmon(P) consists of
clauses (3), (4), (5), and (6).
Let≺ of nmon(P) be defined as (3) ≺ (4) ≺ (5) ≺ (6). Then the construction
of sets D≺

n and R≺
n is as follows:

Stage 0 D≺
0 = clmon(∅) = {a}, R≺

0 = ∅.
Stage 1 r1 = (3), D≺

1 = clmon({a} ∪ {c}) = {a, b, c}, R≺
1 = {d}.

Stage 2 r2 = (5), D≺
2 = {a, b, c, e}, and R≺

2 = {d, f}.
Stage 3 At this stage our construction stabilizes.
It is easy to see that I≺ = ∅ so D≺ = D≺

2 is an stable model of P .

Now, let ≺′ be an ordering of nmon(P) as follows: (4) ≺′ (3) ≺′ (6) ≺′ (5).
Here, the construction of D≺′

produces these stages:
Stage 0 D≺′

0 = clmon(∅) = {a}, R≺′

0 = ∅.
Stage 1 r1 = (3), D≺′

1 = clmon({a} ∪ {c}) = {a, b, c}, R≺′

1 = {d}.
Stage 2 r2 = (6), D≺′

2 = {a, b, c, f}, and R≺′

2 = {d, e}.
Stage 3 At this stage our construction stabilizes.
Again, it is easy to see that I≺

′

= ∅ so D≺′

= D≺′

2 is a stable model of
P . These are the only stable models of P and the construction with any
well-ordering will produce one of these. 2

Let us look at another example.

Example 3.2 Let HP = {a, b, c, d, e} and let P consist of the following
clauses:

1. a←

2. e← b

3. c← d

4. d← a,¬b

5. b← a,¬d

6. d← e,¬c

20

7. b← c,¬e

Here, mon(P) consists of clauses (1), (2) and (3), whereas nmon(P) consists
of clauses (4), (5), (6), and (7).
Let ≺ of nmon(P) be defined as (4) ≺ (5) ≺ (6) ≺ (7). Then the construc-
tion of sets D≺

n and R≺
n is as follows:

Stage 0 D≺
0 = clmon(∅) = {a}, R≺

0 = ∅.
Stage 1 r1 = (4), D≺

1 = clmon({a} ∪ {d}) = {a, c, d}, R≺
1 = {b}.

Stage 2 r2 is undefined and the construction stops at this stage. Hence
D≺ = D≺

1 = {a, c, d}. We check that I≺ consists of the clause (7). A≺

consists of clauses (1)-(6). Thus {a, c, d} is a stable model of (1) − (6) but
not of (1)− (7).

Now, let ≺′ be an ordering of nmon(P) as follows: (7) ≺′ (6) ≺′ (5) ≺′ (4).
Here, the construction of D≺′

produces these stages:
Stage 0 D≺′

0 = clmon(∅) = {a}, R≺′

0 = ∅.
Stage 1 r1 = (5), D≺′

1 = clmon({a} ∪ {b}) = {a, b, e}, R≺
1 = {d}.

Stage 2 r2 is undefined and the construction stops at this stage. Hence
D≺′

= D≺′

1 = {a, b, e}. We check that I≺
′

consists of the clause (6). A≺′

consists of clauses (1)-(5) and (7). Thus {a, c, d} is a stable model of (1) −
(5), (7) but not of (1) − (7). In fact, it is easy to check that in any well-
ordering of nmon(P), either clause (4) or clause (5) will be r1and hence
{a, b, d} and {a, b, e} are the only two stable submodels of P . Thus P has no
stable models. This example shows that while P is inconsistent, P has two
maximal subprograms which are consistent. 2

While we stated Theorem 3.3 and Theorem 3.8 in full generality, we are
most interested in the case when program P is finite or countable. In this
case we can show that to construct stable models via forward chaining, one
need consider orderings of type smaller or equal of order type ω. So let us
assume that |P | ≤ ω. Note that it follows easily from Propositions 3.8 that it
is enough to consider orderings of type ≤ ω + ω. For in this case NG(M,P)
can be ordered in type ≤ ω and similarly nmon(P) \ NG(M,P) can be
ordered in type ≤ ω. But it turns out that, actually, only the orderings of
type ≤ ω are needed.

Proposition 3.9 Let P be a program such that |HP | ≤ ω and let M be a
stable model of P . There exists a well-ordering ≺′ of nmon(P) in type ≤ ω

21

such that D≺′

= M . Moreover the forward Chaining construction stabilizes
in at most ω steps.

Proof: ConsiderNG(M,P). If NG(M,P) is finite, then let ≺ be an order-
ing of nmon(P) of order type ω such that the set of clauses in NG(M,P) form
an initial segment under ≺ . Such an ordering ≺ must exist since nmon(P) is
countable and NG(M,P) is finite. Then our proof in Proposition 3.8 shows
that in the Forward Chaining construction with respect to ≺, D≺

ω = M =
D≺. Now if NG(M,P) is infinite, let n0, n1, . . . be a list of NG(M,P) and
d0, d1, . . . be a list of nmon(P)−NG(M,P). Let ≺1 be the well-ordering of
nmon(P) defined by n0 ≺1 n1 ≺1 . . . ≺1 d0 ≺1 d1 ≺ Again our proof
of Proposition 3.8 shows that D≺1

ω =
⋃

n∈w D
≺1

n = M. Since M is a stable
model, it follows that for each clause dn = cn ← an

1 , . . . , a
n
pn
,¬bn1 , . . . ,¬b

n
tn

either {an
1 , . . . , a

n
pn
} 6⊆ M or {bn1 , . . . , b

n
tn} ∩ M 6= ∅ by our definition of

NG(M,P). Then define Γ(dn) = n if {an
1 , . . . , a

n
pn
} 6⊆ M and Γ(dn) to be

the least m ≥ n such that {bn1 , . . . , b
n
tn}∩D

≺1

m 6= ∅ otherwise. Clearly Γ(dn) is
defined for all n. Next let ϑ(n) = 1+max{k : nk = rj for some j ≤ n} where
rj is the clause defined at stage j of our Forward Chaining construction with
respect to ≺1 . Finally for each n ≥ 0, define the rank of dn, rank(dn), by
rank(dn) = ϑ(Γ(dn)). The significance of the rank of dn is that we can insert
dn into the list n0, n1, . . . , at any point after nrank(dn) and remove it from
the list d0, d1, . . . , to form a new ordering ≺2. Then if we run the Forward
Chaining construction with respect to ≺2, the first Γ(dn) steps of the For-
ward Chaining construction with respect to ≺2 will be identical with the first
Γ(dn) steps of the Forward Chaining construction with respect to ≺1 . That
is, our definition of ϑ ensures that the first Γ(dn) steps of the Forward Chain-
ing construction with respect to ≺1 depends only on clauses n0, . . . , nϑ(Γ(dn)).
Thus since n0, . . . , nϑ(Γ(dn)) also are the first 1+ϑ(Γ(dn)) clauses with respect
to ≺2, the first Γ(dn) steps of the Forward Chaining construction with re-
spect to ≺2 will stay the same as in the Forward Chaining construction with
respect to ≺1 .

Hence D≺2

Γ(dn) = D≺1

Γ(dn). But our choice Γ(dn) ensures that either

{bn1 , . . . , b
n
tn} ∩D

≺1

Γ(dn) 6= ∅

or
{an

1 , . . . , a
n
pn
} 6⊆M.

22

It follows that the insertion of dn into the list n0, n1, . . . does not effect
any step of the Forward Chaining construction up to stage ω. Thus we
can conclude D≺1

ω = D≺2

ω = M. But then since M is a stable model, rω+1

must be undefined in both the Forward Chaining constructions with respect
to ≺1, and ≺2 and hence D≺2 = D≺1 = M. Note that our definition of
rank(dn) ensures that for any given rank k, there are only finitely many
clauses dn such that rank(rn) = k. Now construct a new list of the elements
of nmon(P), a0, a1, . . . , by starting with the list n0, n1, . . . and then insert-
ing all the clauses dn of rank k, say in increasing order with respect to ≺1,
between nk and nk+1. Then if ≺ is the well-ordering of nmon(P) defined
by a0 ≺ a1 ≺ . . . it follows by our arguments above that in the Forward
Chaining construction with respect to ≺, D≺

n = D≺1

n for all n ∈ ω. Thus
D≺ = D≺

ω = M as desired. 2

We note that Theorem 3.9 does not hold for all stable submodels. That is,
the sets D≺ which are not stable models may have the property that they
can only be obtained by means of orderings of the length > ω. Moreover, in
opposition to stable models, stable submodels do not form an antichain.

Example 3.3 Let HP = {ai : i < ω} ∪ {bi : i < ω} ∪ {ci : i < ω} ∪ {p}. Let
P consist of the following clauses:

1. qi = ai ← a1, . . . , ai−1,¬bi for i ≥ 1 (thus q1 = a1 ← ¬b1);

2. si = bi ← ai,¬ci for i ≥ 1;

3. q0 = a0 ← ¬b0;

4. ti = ai ← a0 for i ≥ 1;

5. u = p← ¬p.

Clearly, P has no stable model. Now, order the clauses in nmon(P) as follows:

q1 ≺ q2 ≺ . . . q0 ≺ s1 ≺ s2 . . . ≺ u

It is easy to see that D≺ = {ai : i ∈ ω}, R≺ = {bi : i ∈ ω}, and A≺ =
{q0, q1, t1, q2, t2, . . .}. However we claim that if ≺1 is an ordering of P of
order type ω, then D≺1 must contain at least one bi. This implies that

23

{ai : i ∈ ω} is not equal to D≺1 where ≺1 is of order type ω. That is,
suppose that n0 ≺1 n1 ≺1 n2 ≺1 . . . is an ordering of P of order type ω. Not
that since b0 is not the conclusion of any clause in P , at any stage k, q0 is
a candidate to become rk. Since nl = q0 for some l, it follows that for some
k ≤ l + 1, rk = q0 and hence

D≺1

k = clmon(D
≺1

k−1 ∪ {a0}) ⊇ {ai : i ∈ ω}

Since R≺1

k is finite, infinitely many of the clauses si are applicable at stage
k + 1. However none of the clauses qi are applicable at stage k + 1 since
ai ∈ D

≺1

k for all i ∈ ω. Thus rk+1 = sj for some j and hence bj ∈ D
≺1

k+1 ⊆ D≺1 .
(In fact, it is easy to see that all but finitely many bj will be in D≺1 .) 2

Our construction of the set D≺ persists with respect to prolongation of
the well-ordering (providing the Horn part is the same).

Proposition 3.10 Let P ⊂ P ′ be two sets of clauses such that mon(P) =
mon(P ′). Let ≺′ be a well-ordering of nmon(P ′) and let nmon(P) be an
initial segment in ≺′. Finally, let ≺=≺′ |P . Then D≺ ⊆ D≺′

and R≺ ⊆ R≺′

.

Proof: Let α be the least ordinal η such that D≺
η = D≺

η+1. Let α′ be the

least ordinal η such that D≺′

η = D≺′

η+1. It is straightforward to prove by

induction on ξ < α that r≺ξ = r≺
′

ξ and, consequently, D≺
ξ = D≺′

ξ and R≺
ξ =

R≺′

ξ . This implies that D≺ =
⋃

ξ≤αD
≺
ξ =

⋃

ξ≤αD
≺′

ξ and so α ≤ α′. Thus

D≺ ⊆
⋃

ξ≤α′ D≺′

ξ = D≺′

.

Similar argument shows that R≺ ⊆ R≺′

. 2

Our argument shows that if one ordering is a prolongation of another, then
all the clauses applied in the construction along the smaller well-ordering have
also been used in the construction along the longer well-ordering. But what
happens with the remaining clauses, those in nmon(P) \NG(P,D≺)? These
consist of two types of clauses: inconsistent clauses and clauses unused in the
construction. Inconsistent clauses may become unused. This will happen, for
instance, if their conclusion is also a conclusion of another clause used later
in the construction. The clauses unused in the construction along ≺ may
become inconsistent or remain unused.

24

Example 3.4 Let P consist of r0 = p←, r1 = t← p,¬q and r2 = q ← s,¬r.
Let r1 ≺ r2. It is easy to check that D≺ = {p, t}, R≺ = {q}, and I≺ = ∅.
Next, let P ′ = P ∪ {r3} where r3 = s← ¬w. Let r1 ≺

′ r2 ≺
′ r3.

Again it is easy to check that D≺′

= {p, t, s} and R≺′

= {q, w} so that
now r2 ∈ I

≺′

. 2

Example 3.5 Let P consists of a clause r = p ← ¬p only. Then with
the trivial well-ordering of P the clause r is inconsistent. But when we add
a clause r′ = p ← ¬q, then, in the construction along any ordering ≺, r
becomes unused. 2

In our presentation we treated our Horn clauses in “absolute fashion”. In
particular we always took the closure clmon under all the clauses in mon(P).
In every step of the Forward Chaining construction we took care of making
sure that every level is closed under all the Horn clauses. This does not
have to be the case. That is, in a specific application we can treat some
Horn clauses as “nonmonotonic clauses without restraints”. Specifically, let
R ⊆ mon(P). Then we can associate with R a monotonic operator clR(·) of
closure under the clauses in R. Since R ⊆ mon(P), all the nonmonotonic
clauses belong to P \ R. Let ≺ be a well-ordering of P \ R. We can now
execute the Forward Chaining construction with respect to ≺. If the set of
clauses I≺ is empty then, as before, we get a stable model of P . When I≺ is
nonempty it may contain monotonic clauses in mon(P) \R.

Example 3.6 Let HP = {a, b, c, d, e}. Let P = {r1, r2, r3, r4, r5} where
r1 = b← a, r2 = a←, r3 = c← b, r4 = d← ¬c, r5 = f ← d¬f .

Here, mon(P) = {r1, r2, r3}. clmon(∅) = {a, b, c}, the clauses r4, r5 are
unused under any well-ordering and the only set computed here is {a, b, c}
which is an stable model of P . But with R = {r1, r2} and an ordering ≺ in
which the clause r3 follows the remaining clauses then the Forward Chaining
construction produces another set. That is D≺ = {a, b, d}, R≺ = {c} and
the clauses r3 and r5 become inconsistent. 2

It should be clear that this variant of the Forward Chaining construction
generalizes the original Forward Chaining construction. In particular, all the
sets D≺ constructed with the well-orderings of nmon(P) can be constructed

25

with the well-orderings of P \ R (for any R ⊆ mon(P)). Specifically, the
orderings of P \ R in which mon(P) \ R forms an initial segment have this
property.

4 Complexity of Stable Submodels

In this section, we study the complexity of the Forward Chaining construc-
tion for finite and recursive programs. We begin this section with the ba-
sic definitions of recursive programs and recall some of the basic results on
the complexity of stable models in recursive programs proved in [MNR90,
MNR92c, MNR92a]

4.1 Preliminaries

Let ω denote the set of natural numbers. The canonical index, can(X), of
finite set X = {x1 < . . . < xn} ⊆ ω is defined as 2x1 + . . . + 2xn and the
canonical index of ∅ is defined as 0. Let Dk be the finite set whose canonical
index is k, i.e., can(Dk) = k.

We shall identify a clause r with a triple 〈k, l, ϕ〉 where Dk = prem(r),
and Dl = cons(r), ϕ = c(r). In this way, when HP ⊆ ω we can think about
P as a subset of ω as well. This given, we then say that a program P is
recursive if HP and P are recursive subsets of ω.

Next we shall define various types of recursive trees and Π0
1 classes. Let

[,]:ω × ω → ω be a fixed one-to-one and onto recursive pairing function
such that the projection functions π1 and π2 defined by π1([x, y]) = x and
π2([x, y]) = y are also recursive. Extend our pairing function to code n-
tuples for n > 2 by the usual inductive definition, that is, let [x1, . . . , xn] =
[x1, [x2, . . . , xn]] for n ≥ 3. Let ω<ω be the set of all finite sequences from
ω and let 2<ω be the set of all finite sequences of 0’s and 1’s. Given α =
〈α1, . . . , αn〉 and β = 〈β1, . . . , βk〉 in ω<ω, write α ⊑ β if α is initial segment
of β, i.e. , if n ≤ k and αi = βi for i ≤ n. In this paper, we identify
each finite sequence α = 〈α1, . . . , αn〉 with its code c(α) = [n, [α1, . . . , αn]]
in ω. Let 0 be the code of the empty sequence ∅. When we say that a set
S ⊆ ω<ω is recursive, recursively enumerable, etc., what we mean is that

26

the set {c(α):α ∈ S} is recursive, recursively enumerable, etc. Define a
tree T to be a nonempty subset of ω<ω such that T is closed under initial
segments. Call a function f :ω → ω an infinite path through T provided
that for all n, 〈f(0), . . . , f(n)〉 ∈ T . Let [T] be the set of all infinite paths
through T . Call a set A of functions a Π0

1-class if there exists a recursive
predicate R such that A = {f :ω → ω :∀n(R(n, [f(0), . . . , f(n)])}. Call a
Π0

1-class A recursively bounded if there exists a recursive function g:ω → ω
such that ∀f ∈ A∀n(f(n) ≤ g(n)). It is not difficult to see that if A is a
Π0

1-class, then A = [T] for some recursive tree T ⊆ ω<ω. Say that a tree
T ⊆ ω<ω is highly recursive if T is a recursive finitely branching tree and
also there is a recursive procedure which, applied to α = 〈α1, . . . , αn〉 in T ,
produces a canonical index of the set of immediate successors of α in T .
Then if A is a recursively bounded Π0

1-class, it is easy to show that A = [T]
for some highly recursive tree T ⊆ ω<ω, see [JS72b]. For any set A ⊆ ω, let
A′ = {e: {e}A(e) is defined} be the jump of A, let 0′ denote the jump of the
empty set ∅. We write A ≤T B if A is Turing reducible to B and A ≡T B if
A ≤T B and B ≤T A.

We say that there is an effective, one-to-one degree preserving correspon-
dence between the set of stable models Stab(P) of a recursive programs P
and the set of infinite paths [T] through a recursive tree T if there are indices
e1 and e2 of oracle Turing machines such that
(i) ∀f∈[T]{e1}

gr(f) = Mf ∈ Stab(P),
(ii) ∀

M∈Stab(P)
{e2}

M = fM ∈ [T], and

(iii) ∀f∈[T]∀M∈Stab(P)
({e1}

gr(f) = M if and only if {e2}
M = f).

where {e}B denotes the function computed by the eth oracle machine with
oracle B. Also, write {e}B = A for a set A if {e}B is a characteristic function
of A. For any function f :ω → ω, gr(f) = {[x, f(x)]:x ∈ ω}. Condition (i)
says that the infinite paths of the tree T uniformly produce stable models
via an algorithm with index e1. Condition (ii) says that stable models of P
uniformly produce infinite paths through T via an algorithm with index e2.
Condition (iii) asserts that if {e1}

gr(f) = Mf , then f is Turing equivalent to
Mf . In the sequel we shall not explicitly construct the indices e1 and e2, but
it will be clear that such indices can be constructed in each case.

We shall use now the concept of a proof scheme (see Section 2) to define
two important classes of programs. We depart from the fact that there is
a natural preordering of proof schemes. We define, for proof schemes s1, s2,

27

s1 ≪ s2 if both s1, s2 have same conclusions and every clause appearing in
s1 appears in s2. Although ≪ is not a partial ordering, it is well-founded.
Thus for every proof scheme s there is a ≪-minimal proof scheme s1 such
that s1 ≪ s.

There are two important subclasses of recursive programs introduced in
[MNR92a], namely locally finite and highly recursive programs. Say that
the program P is locally finite if for each c ∈ HP , there exist only finitely
many ≪-minimal proof schemes with conclusion c. If P is locally finite,
then for every c, there exists a finite set of derivations Drc such that all the
derivations of c are inessential variants of the derivations in Drc. That is, if
p is a derivation of c, then there is a derivation p1 ∈ Drc such that p1 ≪ p.
Finally, say that P is highly recursive if P is recursive, locally finite, and the
map c 7→ can(Drc) is partial recursive. The latter means that there is an
effective procedure which, when applied to any c ∈ HP , produces a canonical
index of the set of all ≪-minimal proof schema with conclusion c.

This given, we can now state some basic results from [MNR90, MNR92c,
MNR92a] on the complexity of stable models in recursive programs.

Theorem 4.1 For any highly recursive program P , there is a highly recursive
tree TP such that there is an effective 1:1 degree preserving correspondence
between [TP] and Stab(P). Vice versa, for any highly recursive tree T , there
is a highly recursive program PT such that there is an effective 1:1 degree
preserving correspondence between [T] and Stab(PT).

Theorem 4.2 For any locally finite recursive program P , there is a tree
TP which is highly recursive in 0′ such that there is an effective 1:1 degree
preserving correspondence between [TP] and Stab(P). Vice versa, for any
highly recursive tree T in 0′, there is a locally finite recursive program PT

such that there is an effective 1:1 degree preserving correspondence between
[T] and Stab(PT).

Theorem 4.3 For any recursive program P , there is a recursive tree TP such
that there is an effective 1:1 degree preserving correspondence between [TP]
and Stab(P). Vice versa, for any recursive tree T , there is a recursive pro-
gram PT such that there is an effective 1:1 degree preserving correspondence
between [T] and Stab(PT).

28

Because the set of degrees of paths through trees have been extensively
studied in the literature, we immediately can derive a number of corollaries
about the degrees of stable models in recursive programs. We shall give a
few of these corollaries below.

For recursive programs, we have the following results, see [MNR92a].

Corollary 4.4 1. Every recursive program P , which has a stable model,
has a stable model M such that M ≤T B where B is a complete Π1

1-set.

2. If P is a recursive program with a unique stable model M , then M is
hyperarithmetic.

Corollary 4.5 1. There is a recursive program P such that P has a stable
model but P has no stable model which is hyperarithmetic.

2. For each recursive ordinal α, there exists a recursive program P pos-
sessing a unique stable model M such that M ≡T 0(α).

These two corollaries show that the stable models of a recursive program
may be very complex. We shall see in the next section that in contrast,
there is always at least one stable submodel of a recursive program which
occurs relatively low in the arithmetic hierarchy, namely there will always be
a stable submodel which is r.e. in 0′.

We note that there are natural conditions which will guarantee that the
set of stable models of a program are much better behaved. For example,
if the program is highly recursive, then we have the following results, see
[MNR92a].

Call A low if A′ ≡T 0′. This means that A is low provided that the
jump of A is as small as possible with respect to Turing degrees. The follow-
ing corollary is an immediate consequence of Theorem 4.1 and the work of
Jockusch and Soare [JS72b].

Corollary 4.6 Let P be a highly recursive program such that Stab(P) 6= ∅.
Then
(i) There exists a stable model M of P such that M is low.
(ii) If P has only finitely many stable models, then every stable model M of
P is recursive.

29

In the other directions, there are a number of corollaries of the Theorem
4.1 which allow us to show that there are highly recursive programs P such
that the set of degrees realized by elements of Stab(P) are still quite complex.
Again all these corollaries follow by transferring results of Jockusch and Soare
[JS72b, JS72a].

Corollary 4.7 1. There is a highly recursive program P such that P has
2ℵ0 stable models but no recursive stable models.

2. There is a highly recursive program P such that P has 2ℵ0 stable models
and any two stable models M1 6= M2 of P are Turing incomparable.

3. There is a highly recursive program P such that P has 2ℵ0 stable mod-
els and if a is the degree of any stable model M of P and b is any
recursively enumerable degree such that a <T b, then b ≡T 0′.

4. If a is any recursively enumerable Turing degree, then there is a highly
recursive program P such that P has 2ℵ0 stable models and the set of
recursively enumerable degrees b which contain an stable model of P is
precisely the set of all recursively enumerable degrees b ≥T a.

Finally, we note that there are analogues of Corollaries 4.6 and 4.7 which
hold for recursive locally finite general programs. That is, one can replace
highly recursive general programs by recursive locally finite general programs
if one replaces all the statements about degrees of stable models by the cor-
responding statement relative to an 0′ oracle. For example, the analogue of
part (1) of Corollary 4.6 is that every recursive locally finite general program
P such that Stab(P) 6= ∅ has a stable model M such that M is recursive
in 0′′, while the analogue of part (1) of Corollary 4.7 is that there exists a
recursive locally finite general program P which has 2ℵ0 stable models but
which has no stable model which is recursive in 0′. See [MNR92c] for further
details.

4.2 Complexity of the Forward Chaining Construc-
tion.

In this section we discuss complexity issues for sets of the form D≺, where
P is a recursive program and ≺ is either some ordering of type ω or some

30

finite ordering. First of all, recall that every stable model of P can be ob-
tained as D≺ for a suitably chosen ordering ≺. This means that, since the
stable models can be very complex, even if there is only one stable model,
we cannot obtain results on complexity of D≺ without restricting the class
of orderings. As noticed above there are recursive programs P such that P
possess a unique stable model but that stable model is as high in the hyper-
arithmetical hierarchy as desired. Therefore we shall put now the restriction
on the order type of ≺. This restriction is related to the fact that in any at-
tempt to implement even a partial construction of D≺, we cannot go beyond
ω. Moreover, ω (and finite ordinals) have the following property:

Lemma 4.8 Let P be a program and let ≺ be a well-ordering of nmon(P)
of order type ≤ ω. Then the closure ordinal of the construction of the family
〈D≺

ξ 〉 is at most ω.

Proof: Our lemma is obvious for the case of finite nmon(P). Hence assume
that nmon(P) is infinite. If the closure ordinal of the construction of D≺

is greater than ω, then D≺
ω+1 6= D≺

ω and in particular rω is defined. Then
c(rω) /∈ D≺

ω , prem(rω) ⊆ D≺
ω , (cons(rω) ∪ R≺

ω) ∩ (clmon(D
≺
ω ∪ {c(rω)}) = ∅.

Let {sk : k ∈ ω} be the enumeration of nmon(P) in the order ≺. Then for
some k ∈ ω, rω = sk. Since k is finite, there must be a natural number l
satisfying the following conditions:

1. prem(rω) ⊆ D≺
l ;

2. For all j < k if c(sj) ∈ D
≺
ω , then c(sj) ∈ D

≺
l .

Selecting least l with these properties we see that rl+1 = rω, which is a
contradiction. 2

It is easy to see that the property indicated in Lemma 4.8 does not hold for
ordinals greater than ω.

Example 4.1 Let HP = {an : n ∈ ω} ∪ {bn : n ∈ ω} ∪ {c, d}, let P =
{C0, C1, E0, E1, E2, . . .} where C0 = c ← ¬d, C1 = a1 ← c,¬d, E0 = a0 ←
and Em = am+2 ← am,¬bm, m ≥ 1. Let ≺ be the ordering on nmon(P)
defined by r1 ≺ r2 ≺ . . . ≺ q0 ≺ q1. Then ≺ is an ordering of the type ω+ 2.
But it is easy to see that with this ordering the construction of D≺ will take

31

precisely ω + ω steps. In the first step we compute a0, then at the step n
we add a2n. At the step ω we add c, at the step ω + 1, a1 and at each step
ω + n, a2n+1. Finally, at the stage ω + ω construction closes. 2

We shall restrict our attention now to the case when P is recursive and ≺ is
a recursive well-ordering of type ω.

Proposition 4.9 Let P be a recursive general program. Let ≺ be a recursive
well-ordering of nmon(P) of order type ≤ ω. Finally, let D≺, R≺, I≺, and
A≺ be sets of atoms and of clauses defined in Definition 3.1. Then:

1. D≺ is r.e. in 0′.

2. R≺ is r.e. in 0′.

3. I≺ is recursive in 0′′.

4. A≺ is recursive in 0′′.

Proof: Clearly, mon(P) and nmon(P) are recursive sets. Since mon(P) is
recursive it follows that for any r.e. set M ⊆ HP , clmon(M) is also r.e. In
fact it is uniform, i.e. we can find a recursive function f such that for a set
We, clmon(We) = Wf(e).

The closure ordinal of the construction of the sets D≺
ξ (and thus R≺

ξ) is at
most ω (by Lemma 4.8). It is easy to see that each R≺

i is finite. As concerns
D≺

i , each of these sets is r.e., as is easily proved by induction.

If we end up in a finite number of steps, say n, then it follows that D≺ is r.e.
and R≺ is finite. Thus certainly D≺ is r.e. in 0′, and similarly for R≺.

If the closure ordinal of our construction is exactly ω, we are dealing with
two sequences:

D≺
0 ⊆ D≺

1 ⊆ . . .

R≺
0 ⊆ R≺

1 ⊆ . . .

The first sequence consists of r.e. sets, the second of finite sets. Now we
want to evaluate the complexity of union of each hierarchy. To this end let

32

us notice that with an 0′ oracle, we can effectively find rn, and so we have a
function h, recursive in 0′, such that D≺

n = Wh(n). Then, we can write:

x ∈ D≺ ≡ ∃nx ∈ Wh(n)

or equivalently
x ∈ D≺ ≡ ∃n∃k(k = h(n) ∧ x ∈ Wk)

Since h is recursive in 0′, D≺ is r.e. in 0′.

A similar argument is used for item (2), except that instead ofWe we consider
an enumeration of finite sets. The complexity does not lower, since the
existential quantifier in front is still there, and the function that produces
the canonical index of R≺

n+1 out of R≺
n is recursive in 0′.

Finally, given the 0′′ oracle we can decide the question of membership of
elements in sets r.e. in 0′. In particular we can decide if prem(r) ⊆ D≺, and
if clmon({c(r)} ∪D

≺) ∩ (cons(r) ∪ R≺) 6= ∅. Thus I≺ is recursive in 0′′, and
hence A≺ is recursive in 0′′ as well. 2

Corollary 4.10 If P is a recursive program such that nmon(P) is finite,
then for any ordering ≺ of nmon(P), D≺ is r.e., R≺ is finite, and I≺ is
finite and A≺ is recursive. 2

We shall now define a class of programs for which stronger results can be
obtained.

Definition 4.11 Let P be a recursive program. We say that P is monoton-
ically decidable if

1. For every finite A ⊆ HP , clmon(A) is recursive;

2. There is a recursive function f such that given a canonical index k,
f(k) is an index of a partial recursive function ϕk such that ϕk is the
characteristic function of clmon(Dk).

Notice that this concept depends only on the monotonic part of the program
P . The idea here is that we can find the characteristic function of clmon(A)
uniformly in A. For example, if mon(P) is finite, then P is monotonically
decidable.

33

If the program P is monotonically decidable we can strengthen Proposition
4.9 considerably.

Proposition 4.12 If P is a recursive monotonically decidable program and
≺ is a recursive ordering of nmon(P) of type ≤ ω, then

1. If nmon(P) is finite, then D≺ is recursive and A≺ is recursive (and I≺

and R≺ are finite).

2. If nmon(P) is infinite, then D≺ and R≺ are r.e. and I≺ and A≺ are
recursive in 0′.

Proof: Since P is monotonically decidable, D≺
n is recursive for every n. In-

deed, the operator clmon is monotone, finitizable and idempotent and there-
fore D≺

n = clmon({c(rj) : j ≤ n, rj defined}.

Moreover, our assumption that ≺ is effective means that we can search the
list nmon(P) effectively to see if there is a clause r such that prem(r) ⊆ D≺

n ,
(cons(r) ∪ {c(r)}) ∩ D≺

n = ∅ and clmon(D
≺
n ∪ {c(r)}) ∩ (cons(r) ∪ R≺

n) = ∅.
This implies that if rn+1 exists we can effectively find it.

Thus, as in the proof of Proposition 4.9 either for some n, D≺
n = D≺

n+1 and
so D≺

n = D≺ (and in this case D≺ is recursive and R≺ is finite) or the
construction closes at ω and we are dealing with an effective sequence of
recursive sets

D≺
0 ⊆ D≺

1 ⊆ D≺
2 . . .

and an effective sequence of finite sets

R≺
0 ⊆ R≺

1 ⊆ R≺
2 . . .

Proceeding similarly as in the proof of Proposition 4.9 we establish that D≺

is r.e. and that R≺ is r.e.

Again, reasoning as in Proposition 4.9 (except that an oracle for 0′ is now
enough) one can easily show that I≺ and A≺ are recursive in 0′.

If nmon(P) is finite then the construction must stop in a finite number of
steps and the first case applies. Since I≺ ⊆ nmon(P), I≺ is a finite set, and
so A≺ is recursive. 2

34

Now let us look at the case of finite P . In our complexity considerations,
every atom a will have the cost ||a||. Next, for a clause

r = c← a1, . . . , an,¬b1, . . . ,¬bm

we define ||r|| = (
∑

i≤n ||ai||) + (
∑

i≤m ||bj||) + ||c||. Finally, for a set Q of
clauses we define

||Q|| =
∑

r∈Q

||r||.

Theorem 4.13 Suppose P is a finite general program and ≺ is some well-
ordering of nmon(P). Then D≺, R≺, A≺, and I≺ can be computed in time
O(||mon(P)|| ||nmon(P)||+ ||nmon(P)||2).

Proof: First consider a stage k + 1 in the Forward Chaining construc-
tion. Given D≺

k and R≺
k , we must make a pass in order through the clauses

to check for each clause r = c← a1, . . . , an,¬b1, . . . ,¬bm whether

{a1, . . . , an} ⊆ D≺
k and {b1, . . . , bm, c} ∩D

≺
k = ∅.

Notice that at a cost of maintaining an appropriate data structure we can
perform this check in C||r|| steps for some constant C and we call such a
check a clause check. Now if {a1, . . . , an} ⊆ D≺

k and {b1, . . . , bm, c}∩D
≺
k = ∅,

then we must compute clmon({c}∪D
≺
k) and check whether clmon({c}∪D

≺
k)∩

({b1, . . . , bm}∪R
≺
k) = ∅. Now assuming that we process the clauses in order,

if clmon({c}∪D
≺
k)∩({b1, . . . , bm}∪R

≺
k) = ∅, then r = rk+1, D

≺
k+1 = clmon({c}∪

D≺
k), and R≺

k+1 = {b1, . . . , bm}∪R
≺
k . If clmon({c}∪D

≺
k)∩({b1, . . . , bm}∪R

≺
k) 6=

∅, then we know that r can never be a candidate to rj for any j > k so that
we can just mark clause r and never consider it again. Of course we also
mark rk+1 at stage k + 1 if it is defined so that at each stage we will mark
at least one r ∈ nmon(P). Moreover, if rk+1 is not defined, then we can stop
since then we know D≺

k = D≺ and R≺
k = R≺.

It follows that at stage k + 1, we need to look at most |nmon(P)| - k
clauses and hence perform at most |nmon(P)| -k clause checks. Since the
construction must stop at stage nmon(P), it follows that the entire construc-
tion requires at most

(a)

(

|nmon(P)|
2

)

clause checks,

35

(b) |nmon(P)| operations of computing clmon(D
≺
k ∪ {c}) and checking if

clmon(D
≺
k ∪ {c}) ∩ ({b1, . . . bm} ∪R

≺
k) = ∅ and

(c) the computation of clmon(∅).

Since
(

xy=1/2x(x+1

)

, consequently clause checks require O(||nmon(P)||2)

steps. Next consider the computations of clmon(A) and the checking of
whether clmon(A) ∩ B = ∅ for A,B ⊆ HP where A ∩ B = ∅ which are
required for (b) and (c) above. We claim all this can be done in at most
in O(||mon(P)|| ||nmon(P)||) steps. Since in our construction all the ele-
ments of D≺

k and R≺
k must appear in one of the clauses, we can assume

||A|| + ||B|| ≤ ||mon(P)|| + ||nmon(P)||. Now we can first make a pass
through all the clauses of nmon(P) to get a list of all the elements of HP

which occur in one of the clauses. Call this set V. Another pass through the
clauses will allow us to set up a system of pointers from each c ∈ V to the
set of clauses r ∈ mon(P) such that c occurs in the set of premises of r. We
can also mark which c are in A and which c are in B. All this will require
O(||mon(P)|| + ||nmon(P)||) ≤ O(||mon(P)|| ||nmon(P)||) steps. Now for
each c ∈ A, use the pointers from c to the clauses r ∈ mon(P) to update
each r by marking each premise of r in A. Now if a clause r ∈ mon(P)
has all of its premises marked, we mark the conclusion of r, i.e., we add the
cnl(r) to clmon(A), and use the pointers from cln(r) to clauses in mon(P) to
further update the premises of each clause by marking cln(r). We continue
in this fashion until there are no more clauses to update in which case A
together with the marked conclusions will form the clmon(A). Of course, if
an element of B turns up, we stop the construction. Thus either we will find
that clmon(A)∩B 6= ∅ or we will complete the computation of clmon(A) and be
assured that clmon(A)∩B 6= ∅. Now assuming that updates can be performed
in constant time, each clause r ∈ mon(P) can require at most ||r|| updates
in this process since once all the premises of a clause have been marked we
no longer have to consider it. Thus we require at most ||mon(P)|| updates
so the entire process takes at most O(||mon(P)||) steps. Thus to compute
the monotonic closures and intersection checks required in (b) and (c) above
takes O((1 + ||mon(P)||)||nmon(P)||) ≤ O(||mon(P)|| ||nmon(P)||) steps. 2

36

5 Variants of the Forward Chaining Const-

ruction

In this section, we briefly explore the possibility of simplifying our Forward
Chaining construction. First we show that it is possible to reconstruct all
stable models of a program via a Forward Chaining algorithm which requires
that we neither monotonically close at each stage nor do we have to check
consistency. As we shall see a drawback of this type of construction is that
when it does not work, we may not even get a stable submodel. Then we
shall give the definition of FC-normal programs as defined in [MNR93b].
FC-Normal programs have the property that all stable submodels are in fact
stable models and moreover we can drop the consistency check in the Forward
Chaining algorithm.

5.1 Computing Extensions without Maintaining Con-
sistency

We begin by giving a simplified variant of the construction given in Section
3 which does monotonically close at each stage and which does not check
consistency.

Let P be a general program. Let ≺ be a well-ordering of P . We define a
sequence of subsets of subsets of HP , 〈Mξ〉ξ<α, a sequence of elements of P ,
〈dξ〉0<ξ<α, a sequence of elements of HP , 〈aξ〉0<ξ<α, and an ordinal α = α≺

inductively as follows.

M0 = ∅ (notice that d0 and a0 are not defined at all). Assume that
〈Mξ〉ξ<β, 〈dξ〉0<ξ<β, 〈aξ〉0<ξ<β have been defined but α has not been defined.
If there is no clause r ∈ P \ {dξ : 0 < ξ < β} such that prem(r) ⊆

⋃

ξ<β Mξ,
cons(r) ∩

⋃

ξ<β Mξ = ∅, then α = β and the construction is completed.

Otherwise, dβ is the ≺-first clause in r ∈ P \ {dξ : 0 < ξ < β} such that
prem(r) ⊆

⋃

ξ<β Mξ, cons(r)∩
⋃

ξ<β Mξ = ∅ and aβ = c(dβ) (and α is not yet
defined). Finally, Mβ =

⋃

ξ<β Mξ ∪ {aβ}.

Clearly, because of cardinality argument, there is β such that dβ is not
defined. Such β < |P |+. Therefore α is defined.

37

Given a general program P and a well-ordering ≺ of P define M≺ =
⋃

ξ<αMξ, D≺ = {dξ : 0 < ξ < α}. The following two propositions have been
proved for the case of default logic in [MT93]

Proposition 5.1 If cons(D≺) ∩M≺ = ∅, then M≺ is a stable model of P .

Proof: Let A = M≺, D = D≺. Assume cons(D) ∩ A = ∅. By an easy
induction on ξ we prove that aξ, belongs to CA(∅) for all ξ < α. Hence
A ⊆ CA(∅).

For the other inclusion, assume CA(∅)\A 6= ∅. Then consider the element
in CA(∅) \A with the shortest possible derivation. There must exist a clause
r ∈ P in such a derivation such that prem(r) ⊆ A, cons(r) ∩ A = ∅, and
c(r) /∈ A. In particular c(r) 6= aξ for all ξ < α. Thus r 6= dξ for all ξ < α. But
then the ≺-first such clause can serve as a definition of aα, which contradicts
our definition of α. 2

Conversely, every stable model of P is of the form M≺ for a suitably
chosen ≺.

Proposition 5.2 If M is a stable model of P , then for some ≺, M = M≺.

Proof: Choose ≺ in such a way that G(M,P) forms an initial segment of ≺.
We claim that M≺ = M .

By induction on ξ < α we show that aξ ∈ M . Indeed, assume that for
all ξ < β, aξ ∈ M . If dξ is not defined then β = α and so, by inductive
assumption, all aξ belong to M . If dξ is defined, then there is a clause r such
that r 6= dξ for all ξ < β, prem(r) ⊆

⋃

ξ<β Mξ, cons(r)∩
⋃

ξ<β Mξ = ∅. Select
the ≺-first such clause r. We prove that r ∈ G(M,P).

Since {aξ : ξ < β} ⊆M two cases are possible.
(a) {aξ : ξ < β} = M . Then r ∈ G(M,P) by definition.
(b) {aξ : ξ < β} ⊂M . Then, for some j < ω all elements with M -derivation
of length smaller than j are in {aξ : 0 < ξ < β} but some element with an
M -derivation of the length j is not in {aξ : 0 < ξ < β}. But then there must
be a clause r′ in such a derivation such that prem(r′) ⊆ {aξ : 0 < ξ < β}
and cons(r′) ∩M = ∅. In particular r′ ∈ G(M,P). Since r ≺ r′ or r = r′,
r′ ∈ G(M,P), and G(M,P) forms an initial segment of ≺, r ∈ G(M,P).

38

Since dβ = r, aβ = c(r). But M is a stable model, thus a supported model
of P . Hence aβ ∈M . Hence we proved that M≺ ⊆M .

To show the converse inclusion we show, as above, that if M≺ \M 6= ∅,
then dα can be defined, contradicting the choice of α. Thus M = M≺. 2

Proposition 5.2 shows that any given stable model of the program can
be constructed via our simplified Forward Chaining construction for some
ordering. However arbitrary outputs of this simplified Forward Chaining
construction may not have any nice properties. That is, the output of our
simplified Forward Chaining construction may not be a stable model of any
subprogram of the original program. Essentially what can happen is that our
simplified version of the Forward Chaining construction allows us to produce
sets which are too large to be a stable model of any subprogram of our original
program. This is illustrated in the example below.

Example 5.1 Let HP = {a, b, c, d, e} and let P consist of the following
clauses:

1. a←

2. e← b

3. c← d

4. d← a,¬b

5. b← a,¬d

6. b← c,¬e

Here, mon(P) consists of clauses (1), (2) and (3), whereas nmon(P) consists
of clauses (4), (5), and (6).
We note that this program is just a subprogram of the program of Example
3.2 and does have a stable model. Indeed in Example 3.2 we showed that
the Forward Chaining construction produces D≺′

= {a, b, e} when we assume
(6)≺′(5)≺′(4) which is a stable model of P . One can easily check that the
simplified version of the Forward Chaining construction applied to the order
≺′, (6)≺′(5)≺′(4)≺′(3)≺′(2)≺′(1) will produce the same set, i.e. M≺′ =
{a, b, e}.

39

Next consider the order

(1) ≺ (2) ≺ (3) ≺ (4) ≺ (5) ≺ (6).

Then the simplified version of Forward Chaining construction produces some-
thing very different. That is, the stages of the simplified version of the For-
ward Chaining construction are as follows:

Stage 0 M0 = ∅.
Stage 1 d1 = (1), a1 = a, and M1 = {a}.
Stage 2 d2 = (4), a2 = d, and M2 = {a, d}.
Stage 3 d3 = (3), a3 = c, and M3 = {a, c, d}.
Stage 4 d4 = (6), a4 = b, and M4 = {a, b, c, d}.
Stage 5 d5 = (2), a5 = e, and M5 = {a, b, c, d, e}.

Thus M≺ = {a, b, c, d, e} which is not a stable model of any subprogram
of P .

However for the order (4) ≺ (5) ≺ (6), the Forward Chaining construction
of D≺ produces these stages:
Stage 0 D≺

0 = clmon(∅) = {a}, R≺
0 = ∅.

Stage 1 r1 = (4), D≺
1 = clmon({a} ∪ {d}) = {a, c, d}, R≺

1 = {b}.
Stage 2 r2 is undefined and the construction stops at this stage. Hence
D≺ = D≺

1 = {a, c, d}. We check that I≺
′

consists of the clause (6). j≺
′

consists of clauses (1)-(5). Thus {a, c, d} is a stable model of the program
(1)− (5) but not of (1)− (6). 2

In fact the same relative order on the nonmonotonic clauses of the pro-
gram can lead to completely different results under the two constructions.
This is illustrated in our next example where the Forward Chaining con-
struction produces a stable model while the simplified Forward Chaining
construction produces a set which is not a stable model of any subprogram.

Example 5.2 Let HP = {a, b, c, d, e} and let P consist of the following
clauses:

1. a←

2. e← b

40

3. c← d

4. c← e

5. d← a,¬b

6. b← a,¬d

7. d← a,¬c

8. b← c,¬e

Here, mon(P) consists of clauses (1), (2), (3) and (4), whereas nmon(P) con-
sists of clauses (5), (6), (7) and (8).

Consider the order

(8) ≺ (7) ≺ (6) ≺ (5) ≺ (4) ≺ (3) ≺ (2) ≺ (1).

The stages of the simplified version of the Forward Chaining construction are
as follows:

Stage 0 M0 = ∅.
Stage 1 d1 = (1), a1 = a, and M1 = {a}.
Stage 2 d2 = (7), a2 = d, and M2 = {a, d}.
Stage 3 d3 = (5), a3 = d, and M3 = {a, d}.
Stage 4 d4 = (3), a4 = c, and M4 = {a, c, d}.
Stage 5 d5 = (8), a5 = b, and M5 = {a, b, c, d}.
Stage 6 d6 = (2), a6 = e, and M6 = {a, b, c, d, e}.
Stage 7 d7 = (4), a6 = c, and M7 = {a, b, c, d, e}.

M≺ = {a, b, c, d, e} which is not a stable model of any subprogram of P .

However for the order (8) ≺ (7) ≺ (6) ≺ (5), the Forward Chaining
construction of D≺ produces these stages:
Stage 0 D≺

0 = clmon(∅) = {a}, R≺
0 = ∅.

Stage 1 r1 = (6), D≺
1 = clmon({a} ∪ {b}) = {a, b, c, e}, R≺

1 = {d}.
Stage 2 r2 is undefined and the construction stops at this stage. Hence
D≺ = D≺

1 = {a, b, c, e}. We check that I≺ = ∅ so that D≺ is a stable
model of P . Note that clause (7) is not applicable at Stage 1 of the Forward

41

Chaining construction because clmon({a} ∪ {d}) = {a, c, d} which contains
the constraint of clause (7). 2

5.2 FC-Normal Programs

In this section we shall define FC-normal programs and state the basic results
about such programs proved in [MNR93b]. We shall see that FC-normal
programs have the property that the Forward Chaining construction always
produces a stable model. In fact for FC-normal programs, one can drop
the consistency check in the Forward Chaining construction and it will still
always produce a stable model.

Definition 5.3 Let P be a program. We say that a subset Con ⊆ P(HP)
(where P(HP) is the power set of HP) is a consistency property over P if

1. ∅ ∈ Con,

2. ∀A,B⊆HP
(A ⊆ B & Con(B)⇒ Con(A)),

3. ∀A⊆HP
(Con(A)⇒ Con(clmon(A))), and

4. whenever A ⊆ Con has the property that A,B ∈ A → ∃C∈A(A ⊆
C ∧B ⊆ C), then Con(

⋃

A).

Condition (1) says that the empty set is consistent. Condition (2) requires
that a subset of a consistent set is also consistent. Condition (3) postulates
that the closure of a consistent set under Horn clauses of the program is
consistent. Finally, the last condition says that the union of a directed family
of consistent sets is also consistent. We note that conditions (1),(2), and
(4) are Scott’s conditions for information systems. Condition (3) connects
“consistent” sets to the Horn part of the program; if A is consistent then
adding elements derivable from A via Horn clauses preserves “consistency”.

Definition 5.4 Let P be a program and let Con be a consistency property
over P .

42

1. A clause C = c ← a1, . . . , an,¬b1, . . . ,¬bk ∈ nmon(P) is FC-normal
(with respect to Con) if Con(V ∪ {c}) and not Con(V ∪ {c, bi}) for
all i ≤ k whenever V ⊆ HP is such that Con(V), clmon(V) = V ,
a1, . . . , an ∈ V , and c, b1, . . . , bk /∈ V .

2. P is a FC-normal (with respect to Con) program if all r ∈ nmon(P)
are FC-normal with respect to Con.

3. P is FC-normal program if for some property Con ⊆ P(HP), P is
FC-normal with respect to Con.

Example 5.3 Let HP = {a, b, c, d, e, f}. Let the consistency property be
defined by the following condition:
A /∈ Con if and only if either {c, d} ⊆ A or {e, f} ⊆ A.
Thus {a, b, c, e}, {a, b, c, f}, {a, b, d, e}, and {a, b, d, f} are the maximal sub-
sets of P(HP) which are in Con.

Now consider the following program, P :

(1) a←
(2) b← c
(3) c← b
(4) c← a,¬d
(5) e← c,¬f

Then for the program P , clauses (1),(2), and (3) form the monotonic (Horn)
part of P and clauses (4) and (5) form the nonmonotonic part of P . First
it is easy to check that Con is a consistency property over P . The mono-
tonically closed subsets of P(HP) which are in Con are the following sets:
{a},{a, d},{a, e},{a, f},{a, b, c}, {a, d, e}, {a, d, f}, {a, b, c, e},and {a, b, c, f}.
It is then easy to check that P is FC-normal with respect to Con. Moreover
one can easily check that P has a unique stable model M = {a, b, c, e}.

If we add to P the clause d ← c to get a program P ′, then Con is no
longer a consistency property over P ′ because {c} ∈ Con but the monotonic
closure of {c} relative to P ′ which equals {a, b, c, d} is not in Con.

If we add the clause d ← e,¬f to P to form a new program P ′′, Con
will still be a consistency property over P ′′ because the property of being a

43

consistency property depends only on the Horn part of the program. However
P ′′ is not FC-normal with respect to Con because r = d ← e,¬f is not
FC-normal with respect to Con. That is, for the monotonically closed set
{a, b, c, e}, we have prem(r) ⊆ {a, b, c, e}, cons(r) ∩ {a, b, c, e} = ∅, but
clmon({c(r)} ∪ {a, b, c, e}) = {a, b, c, d, e} is not in Con.

Finally if we add to P the clause f ← c,¬e then the resulting program P ′′′

is still FC-normal with respect to Con but now there are two stable models,
M1 = {a, b, c, e} and M2 = {a, b, c, f}. 2

FC-normal programs have all the desirable properties that are possessed
by normal default theories as defined by Reiter in [Rei80]. In fact, it is
shown in [MNR93b] that when one translates FC-normal programs back into
the language of default logics than one obtains a class of default theories
called extended FC-normal default theories which properly contains all nor-
mal default theories. We next shall state the basic results about FC-normal
programs from [MNR93b].

Theorem 5.5 Let P be a FC-normal program then there exists a stable
model of P .

Theorem 5.6 Let P be a FC-normal program with respect to consistency
property Con and let I be a subset of HP such that I ∈ Con. Then there
exists a stable model M of P such that I ⊆M .

In fact all stable models of FC-normal programs can be constructed via
a slightly simplified version of the Forward Chaining construction which we
shall call the Normal Forward Chaining construction. To this end, fix some
well-ordering ≺ of nmon(P). That is, the well-ordering ≺ determines some
listing of the clauses of nmon(P),{rα : α ∈ γ} where γ is some ordinal.
Let Θγ be the least cardinal such that γ ≤ Θγ. In what follows, we shall
assume that the ordering among ordinals is given by ∈. Our normal Forward
Chaining construction will define an increasing sequence of sets {M≺

α }α∈Θγ
.

We will then define M≺ = ∪α∈Θγ
M≺

α . In [MNR93b] it is shown that M≺

is always an stable model of P . Moreover it is shown in [MNR93b] that all
stable models of P arise from this construction.

44

The Normal Forward Chaining construction of M≺.

Case 0. Let M≺
0 = clmon(∅).

Case 1. α = η + 1 is a successor ordinal.
Given M≺

η , let ℓ(α) be the least λ ∈ γ such that

rλ = s← a1, . . . , ap,¬b1, . . . ,¬bk

where a1, . . . , ap ∈M
≺
η and b1, . . . , bk, s /∈M

≺
η . If there is no such ℓ(α), then

let M≺
η+1 = M≺

α = M≺
η . Otherwise, let

M≺
η+1 = M≺

α = clmon(M≺
η ∪ {cln(rℓ(α))}).

Case 2. α is a limit ordinal. Then let M≺
α =

⋃

β∈αM
≺
β .

This given, we have the following.

Corollary 5.7 If P is a FC-normal program and ≺ is any well-ordering of
nmon(p), then

1. M≺ is a stable model of P .

2. (Completeness of the construction). Every stable model of P is of the
form M≺ for a suitably chosen ordering ≺ of nmon(P).

It is quite straightforward to prove by induction that if P is FC-normal
with respect to consistency property Con, thenM≺

α ∈ Con for all α and hence
M≺ ∈ Con. Thus the following is an immediate consequence of Theorem
5.7(2).

Corollary 5.8 Let P be a FC-normal program with respect to consistency
property Con, then every stable model of P is in Con.

Example 5.4 If we consider the final extended program of Example 5.3, it
is easy to check that any ordering ≺1 in which the clause r1 = e ← c,¬f
precedes the clause r2 = f ← c,¬e will have M≺1 = M1 while any ordering
≺2 in which r2 precedes r1 will have M≺2 = M2. 2

45

We should also point out that if we restrict ourselves to countable pro-
grams P , i.e. if HP is countable, then we can restrict ourselves to orderings of
order type ω where ω is the order type of the natural numbers. That is, sup-
pose we fix some well-ordering ≺ of nmon(P) of order type ω. Thus, the well-
ordering ≺ determines some listing of the clauses of nmon(P),{rn : n ∈ ω}.
Our normal Forward Chaining construction can be presented in an even more
straightforward manner in this case. Our construction again will define an
increasing sequence of sets {M≺

n }n∈ω in stages. This given, we will then
define M≺ = ∪n∈ωM

≺
n .

The Countable Normal Forward Chaining construction of M≺.

Stage 0. Let M≺
0 = clmon(∅).

Stage n+ 1. Let ℓ(n+ 1) be the least s ∈ ω such that

rs = t← a1, . . . , ap,¬b1, . . . ,¬bk

where a1, . . . , ap ∈ M
≺
n and b1, . . . , bk, t /∈ M

≺
n . If there is no such ℓ(n + 1),

then let M≺
n+1 = M≺

n . Otherwise, let

M≺
n+1 = clmon(M≺

n ∪ {cln(rℓ(n+1))}).

This given, we then have the following.

Theorem 5.9 If P is a countable FC-normal program, then

1. M≺ is a stable model of P if M≺ is constructed via the Countable Nor-
mal Forward Chaining algorithm with respect to ≺, where ≺ is any
well-ordering of nmon(P) of order type ω.

2. (Completeness of the construction.) Every stable model of P is of the
form M≺ for a suitably chosen well-ordering ≺ of nmon(P) of order
type ω where P≺ is constructed via the Countable Normal Forward
Chaining algorithm.

FC-normal programs also possess what Reiter terms the “semi-monotoni-
city” property.

46

Theorem 5.10 Let P1 and P2 be two FC-normal program such that P1 ⊆ P2

but mon(P1) = mon(P2) (that is, P1, P2 have the same Horn part). Assume,
in addition, that both are FC-normal with respect to the same consistency
property. Then for every stable model M1 of P1, there is a stable model M2

of P2 such that

1. M1 ⊆M2 and

2. NG(M1, P1) ⊆ NG(M2, P2).

FC-normal programs also satisfy the orthogonality of stable models prop-
erty with respect to their consistency property.

Theorem 5.11 Let P be a FC-normal program with respect to a consistency
property Con. Then if M1 and M2 are two distinct stable models of P ,
M1 ∪M2 /∈ Con.

We end this section with three more theorems which are analogues of
results that hold for normal default theories.

Theorem 5.12 Let P be a FC-normal program with respect to a consistency
property Con. Suppose that clmon{cln(r) : r ∈ nmon(P)} is in Con. Then
P has a unique stable model.

Theorem 5.13 Suppose P is a FC-normal program and that D ⊆ nmon(P).
Suppose further that M ′

1 and M ′
2 are distinct stable models of D ∪mon(P)).

Then P has distinct stable models M1 and M2 such that M ′
1 ⊆ M1 and

M ′
2 ⊆M2.

We say that c ∈ U has a consistent proof scheme with respect to a
consistency property Con over P iff there is a proof scheme

p = 〈〈c0, r0, G0〉, . . . , 〈cm, rm, Gm〉〉 (4)

such that cm = c and {c0, . . . , cm} ∈ Con. We then have the following.

Theorem 5.14 Let P be a FC-normal program with respect to a consistency
property Con. Then c ∈ HP is an element of some stable model of P iff c
has a consistent proof scheme with respect to Con.

47

6 An Application to Default Logic

First of all we show that in propositional default logic, default theories with
a finite number of justification-free clauses are monotonically decidable.

Recall that a default theory 〈D,W 〉 is a pair where D is a collection of default
rules, that is, rules of form

α:Mβ1, . . . ,Mβm

ψ
, (5)

(where α, β1, . . . , βm, and ψ are formulas) and W a collection of formulas of
the language L.
We associate an operator, Γ mapping P(L) into P(L) by stipulating: Γ(S) =
T if T is the least theory in L such that W ⊆ T , T is closed under proposi-
tional consequence and T satisfies the following condition:

If d =
α:Mβ1, . . . ,Mβm

ψ
∈ D,α ∈ T,¬β1 /∈ S, . . . ,¬βm /∈ S, then ψ ∈ T

Now, a theory S ⊆ L is called default extension of 〈D,W 〉 if Γ(S) = S.

Represent a default theory as a program consisting of three lists:
(i) Elements γ ∈W are represented as clauses:

γ ←

(ii) Rules of form (5) are represented as clauses

γ ← α,not¬β1, . . . ,not¬βm

(That is, the restraints of the clause representing a default rule r have an
additional negation-as-failure symbol in front).
(iii) Processing rules of logic. That is, all the monotonic rules of the system
of classical logic.

We then have the following proposition from [MNR90]:

Proposition 6.1 A collection S ⊆ L is a stable model of a program consist-
ing of clauses of type (i), (ii), and (iii) if and only if S is a default extension
of 〈D,W 〉.

48

We assume that the propositional language L is effectively enumerated (that
is its atoms form an r.e. set)

Proposition 6.2 Let (D,W) be a default theory with a finite number of
justification-free rules and finite W . Then the program P corresponding to
(D,W) is monotonically decidable.

Proof: Notice that under our translation mon(P) is infinite and consists of
these clauses:

1. ϕ← for ϕ a tautology;

2. ψ ← ϕ, ϕ ⊃ ψ for ϕ, ψ ∈ L;

3. ϕ← α1, . . . , αn where α1,...,αn:
ϕ

is a justification-free rule in D.

4. γ ← for γ ∈W .

Now, given a finite A, we can construct clmon(A) in stages as follows.

Stage 0. Let W0 = A ∪W
Stage s + 1. Assume we have constructed Ws. Let Is+1 be the set of all ϕ
such that there is a clause

ϕ← α1, . . . , αn

of the form (3) such that ϕ /∈Ws and for all i ≤ n

∧

ω∈Ws

ω

 ⊃ αi

is a tautology.

If Is+1 = ∅, then set Ws+1 = Ws and stop. Otherwise let Ws+1 = Ws ∪ Is+1.

It is easy to see that since there are only finitely many clauses in (3),
there will be a stage s0 such that Ws0+1 = Ws0

. Moreover since we are
working in propositional logic, each stage is completely effective so that we
can effectively compute s0 and the corresponding finite set Ws0

. Then clearly

clmon(A) = {α :

∧

ω∈Ws0

ω

 ⊃ α}

49

is a recursive set and our procedure shows that that there exists a recursive
function f such that if Dk = A, then ϕf(k) is a characteristic function of the
set clmon(A). 2

Proposition 6.2 and Proposition 4.12 immediately imply the following corol-
lary.

Corollary 6.3 If 〈D,W 〉 is a finite propositional default theory, then every
extension of 〈D,W 〉 is recursive.

Moreover, we can translate the construction of D≺ to the context of default
logic (regardless if D or W are finite or not). This reverse translation, from
a program to a default theory produces, out of a well-ordering ≺ of the
nonmonotonic part of D, a subset D1 and a theory T such that T is an
extension of 〈D1,W 〉.

Thus, even when 〈D,W 〉 has no extension we can still effectively extract a
meaningful part out of 〈D,W 〉.

7 Forward Chaining and Stratification

In this section we investigate our Forward Chaining method for stratified pro-
grams. Following Apt, Blair and Walker [ABW87] and Przymusinski [Prz87],
we call a program P (locally) stratified if there exists an ordinal ν and a func-
tion rank : U → ν such that for every clause r = c← a1, . . . , an,¬b1, . . . ,¬bm,
rank(ai) ≤ rank(c), for all i, 1 ≤ i ≤ n and rank(bi) < rank(c), for all i,
1 ≤ i ≤ m. The ordinal ν is called the length of the stratification rank.

Using a generally well-known argument (see Marek and Truszczyński
[MT93], Section 6.7, for complete presentation) one can show that a stratified
program possesses a unique stable model.

We next consider stable submodels of stratified programs. First let us
look at an example.

Example 7.1 Let HP = {a, b, c}, P = {r1, r2}, where

r1 = a← ¬b r2 = b← ¬c

50

This is a stratified program. The rank function is given by:

rank(c) = 0, rank(b) = 1, rank(a) = 2

The unique stable model of P is {b}. Notice that mon(P) = ∅. Consider
now the ordering ≺1 given by

r2 ≺1 r1

With the ordering ≺1 our algorithm computes the stable submodel {b} which
is, as noticed above, the unique stable model of P . Now consider the ordering
≺2 given by

r1 ≺2 r2

Now, the stable submodel computed with ≺2 is {a}. Moreover the clause r2
is inconsistent. 2

Looking at this example we realize that the conclusion of the clause r1
has the rank greater than that of the clause r2, yet the clause r1 was put
earlier in the ordering ≺2. When such an anomaly is eliminated, the stable
submodels produced by such ordering will always be a stable model. That is,
we say that a well-ordering ≺ of nmon(P) is consistent with the stratification
rank if for every pair of clauses r, s ∈ nmon(P), r ≺ s implies rank(c(r)) ≤
rank(c(s)). That is the nonmonotonic clauses of P are sorted according to
the rank of their conclusions (but if these conclusions have the same rank,
then the ordering is arbitrary). We use the notion of ordering consistent with
stratification to prove the basic result of this section.

Theorem 7.1 Let P be a stratified logic program with a stratification rank
and let ≺ be a well-ordering of nmon(P) consistent with stratification rank.
Then the stable submodel of P generated by ≺ is the perfect model of P .

The proof of Theorem 7.1 requires a series of lemmas.

Lemma 7.2 Let P be a stratified program with stratification rank and let ≺
be a well-ordering of nmon(P) consistent with rank. If Z ⊆ HP then for all
x ∈ clmon(Z ∪ {c}) \ clmon(Z), rank(x) ≥ rank(c).

51

Proof: By induction on rank of c, using definition of stratified programs. 2

Next we have.

Lemma 7.3 Let P be a stratified program with stratification rank and let ≺
be a well-ordering of nmon(P) consistent with rank. Then for any λ, if rλ

is defined at stage λ of the FC-construction with respect to ≺, then for all
δ > λ such that rδ is defined, rank(c(rδ)) ≥ rank(c(rλ)).

Proof: First we make the following observation. Suppose that λ = ρ+ 1
and that

rλ = z ← a1, . . . , an,¬b1, . . . ,¬bm.

Thus z /∈ D≺
ρ , a1, . . . , an ∈ D

≺
ρ , clmon(D

≺
ρ ∪ {z}) ∩ (R≺

ρ ∪ {b1, . . . , bm}) = ∅.
Then it is easy to show that any element x ∈ clmon(D

≺
ρ ∪ {z}) \ D

≺
ρ must

have rank(x) ≥ rank(z). That is, suppose x ∈ clmon(D
≺
ρ ∪ {z}) \D

≺
ρ . Then

if x 6= z, there must be a sequence of Horn clauses 〈r0, . . . , rk〉 of the form

ri = ci ← ai
0, . . . , a

i
ki

such that

1. ck = x

2. for all 1 ≤ i ≤ k, either ai
j ∈ D

≺
ρ , ai

j = z or ai
j = cl where l < i for each

j ≤ ki, and

3. for all 1 ≤ i ≤ k, ci ∈ clmon(D
≺
ρ ∪ {z}) \ (D≺

ρ ∪ {z}).

Note that since ci ∈ clmon(D
≺
ρ ∪ {z}) \ (D≺

ρ ∪ {z}) it must be the case that

{ai
0, . . . , a

i
ki
} ∩ {z, c0, . . . , ci−1} 6= ∅

since otherwise {ai
0, . . . , a

i
ki
} ⊆ D≺

ρ and hence ci ∈ clmon(D
≺
ρ) = D≺

ρ . Thus in
particular z ∈ {a0

0, . . . , a
0
k0
} and hence rank(c0) ≥ rank(z). Then if we assume

by induction on j that rank(cj) ≥ rank(z) for all j < i, then rank(ci) ≥
max({rank(ai

0), . . . , rank(ai
ki

)}) ≥ min({rank(z), rank(c0), . . . , rank(ci−1)})
≥ rank(z). Thus rank(x) ≥ rank(z). This in turn implies that D≺

ρ+1 \D
≺
ρ ⊆

{x : rank(x) ≥ rank(c(rλ))}.

52

Now suppose that there is a δ > λ such that rδ is defined and

rank(c(rδ)) < rank(c(rλ)).

Then pick δ as small as possible and let µ + 1 = δ. Thus for all λ ≤ γ ≤ µ,
rank(c(rγ)) ≥ rank(c(rλ)). Hence using the observation above, it is easy to
prove by induction on γ that D≺

γ \D
≺
ρ ⊆ {x : rank(x) ≥ rank(c(rλ))}. Hence

D≺
µ \D

≺
ρ ⊆ {x : rank(x) ≥ rank(c(rλ))}. But now consider

rδ = z′ ← a′1, . . . , a
′
n¬b

′
1, . . . ,¬b

′
m.

Thus z′ /∈ D≺
µ , a1, . . . , an ∈ D

≺
µ , clmon(D

≺
µ ∪ {z

′}) ∩ (R≺
µ ∪ {b

′
1, . . . , b

′
m}) = ∅.

But then for each i, rank(a′i) ≤ rank(z′) < rank(c(rλ)) so that it must
be the case that a′i ∈ Dρ since D≺

µ \ D
≺
ρ ⊆ {x : rank(x) ≥ rank(c(rλ))}.

Moreover, since clmon(D
≺
µ ∪ {z

′}) ∩ (R≺
µ ∪ {b

′
1, . . . , b

′
m}) = ∅ , we certainly

have clmon(D
≺
ρ ∪ {z

′}) ∩ (R≺
ρ ∪ {b

′
1, . . . , b

′
m}) = ∅. But this means that rδ

is a candidate to be rλ at stage λ. But since rank(c(rδ)) < rank(c(rλ)), rδ

precedes rλ in our ordering of clauses which would violate the fact that rλ is
the least applicable clause at stage λ. Thus there can be no such δ. 2

Lemma 7.3 implies immediately the following corollary:

Corollary 7.4 Let P be a stratified program with stratification rank and let
≺ be a well-ordering of nmon(P) consistent with stratification rank. Then
for any λ, if rλ is defined at stage λ of the FC-construction with respect to
≺, and rank(c(rλ)) = ξ, then R≺

λ ⊆ {x : rank(x) < ξ}.

We next have the following lemma.

Lemma 7.5 Let P be a stratified program. If an atom y ∈ HP possesses
a derivation from a set Z ⊆ Hρ using only the clauses in mon(P), then y
possesses such derivation from the set Z ∩ {x : rank(x) ≤ rank(y)}.

Proof: We proceed by induction on the length of derivation. If y is a conclu-
sion of an axiom, then y possesses a derivation from empty set, ∅, which is
identical with ∅ ∩ {x : rank(x) ≤ rank(y)}.

For the inductive step, note that if y is a conclusion of a Horn clause

r = y ← a1, . . . , am,

53

then by since P is stratified, rank(a1), . . . rank(am) ≤ rank(y). But then each
of the ai has a derivation shorter than the derivation of y and hence by
induction, each ai has a derivation from Z ∩ {x : rank(x) ≤ rank(ai)} and
thus from Z∩{x : rank(x) ≤ rank(y)}. Combining these derivations together
with r, we get the desired result. 2

Corollary 7.6 If P is a stratified logic program with stratification rank and
y ∈ clmon(Z), then y ∈ clmon(Z ∩ {x : rank(x) ≤ rank(y)}).

Next, Lemma 7.5 is used to prove the following:

Lemma 7.7 Let P be a stratified program with stratification rank and let ≺
be a well-ordering of nmon(P) consistent with stratification rank. Then for
any α, if rα is defined at stage α of the FC-construction with respect to ≺
and rank(c(rα)) = ξ, then

D≺
α ∩ {x : rank(x) < ξ} = (

⋃

β<α

D≺
β) ∩ {x : rank(x) < ξ}

Proof: Clearly, α is not a limit ordinal since if α is a limit ordinal, rα is
not defined. So let α = γ + 1. The inclusion ⊇ is immediate. To prove the
inclusion ⊆ recall that

D≺
α = clmon(D

≺
γ ∪ {c(rα)}) (6)

If y ∈ D≺
α , rank(y) < ξ, then there is a derivation of y from D≺

γ ∪ {c(rα)}
that uses Horn clauses only. But since our system is stratified, there is a
derivation of y from (D≺

γ ∪ {c(rα)}) ∩ {x : rank(x) ≤ rank(z)} = D≺
γ ∩ {x :

rank(x) ≤ rank(z)} (Lemma 7.5). This implies that y belongs to the right
hand side of (6). 2

Next, we characterize D≺
ξ as the closure of a set of conclusions of clauses

in nmon(P) by means of Horn clauses.

Lemma 7.8 Let P be a stratified logic program with stratification rank and
let ≺ be a well-ordering of nmon(P) consistent with stratification rank. Then
for any α,

D≺
α = clmon({c(rη) : η ≤ α ∧ rη is defined})

54

Proof: Only the case when rα is defined needs proof since if α is a limit
ordinal, the result is obvious, and if α is a nonlimit ordinal where rα is not
defined, the construction stopped.

So, assuming that rα is defined, then α = β + 1 and

D≺
α = clmon(D

≺
β ∪ {c(rα})

Now using the inductive assumption and the fact that clmon(·) is monotonic
and idempotent we get the desired conclusion. 2

Now recall the construction of the unique stable model of a stratified logic
program as presented in [MT93]. Define

nmonξ = {r : r ∈ nmon(P) ∧ rank(c(r)) = ξ}

monξ = {r : r ∈ mon(P) ∧ rank(c(r)) = ξ}

We also define

nmon≤ξ =
⋃

η≤ξ

nmonη mon≤ξ =
⋃

η≤ξ

monη

nmon<ξ =
⋃

η<ξ

nmonη mon<ξ =
⋃

η<ξ

monη

Let us now look at the construction of [MT93], Section 6.7. This is, essen-
tially, the construction of [ABW87] extended to transfinite. One constructs
a family of subsets of HP , 〈Mξ〉ξ<ν as follows:

1. Since P is stratified, nmon0 = ∅ and M0 is defined as the closure of ∅
under the clauses in mon0.

2. If Mη, η < ξ is defined, we put M<ξ =
⋃

η<ξ Mξ. Next, we reduce
the clauses in nmonξ by M<ξ. That is, for each clause r = c ←
a1, . . . , an¬b1, . . . ,¬bm in nmonξ, if for some i, 1 ≤ i ≤ m, bi ∈ M<ξ,
then this clause is eliminated. In the remaining clauses the negative
parts are eliminated. In this fashion we get a set Qξ of Horn clauses.
Then Mξ is defined as the closure of M<ξ under clauses in monξ ∪Qξ.

3. Finally we set M =
⋃

ξ<ν Mξ (recall that ν is the length of stratifica-
tion). It has been proved in [MT93] that M is the unique stable model
of P .

55

Since all the clauses in monξ∪Qξ have the conclusion of the rank precisely
ξ it follows that for every ξ < ν,

M ∩ {x : rank(x) ≤ ξ} = Mξ

Define now p(ξ) as the least ordinal greater or equal than all α such that
rα is defined and rank(rα) ≤ ξ. Clearly, function p(·) is well defined. Lemma
7.3 implies the following.

Lemma 7.9 Function p(·) is (weakly) monotonic, that is

ξ1 < ξ2 implies p(ξ1) ≤ p(ξ2)

We shall prove now the crucial lemma in the proof of Theorem 7.1.

Lemma 7.10 Let P be a stratified logic program with stratification rank and
let ≺ be a well-ordering of nmon(P) consistent with stratification rank. Then
for any ξ smaller than the length of stratification rank

D≺
p(ξ) ∩ {x : rank(x) ≤ ξ} = Mξ. (7)

Proof: We proceed by induction on ξ. If ξ = 0, then the left hand side of 7 is
the closure of ∅ under mon(P) whereas the right hand side is the closure of
∅ under the clauses in mon0. The desired equality then follows from Lemma
7.5.

Now assume that for all η < ξ,

D≺
p(η) ∩ {x : rank(x) ≤ η} = Mη.

We prove that D≺
p(ξ) ∩ {x : rank(x) ≤ ξ} = Mξ. To this end we show the

inclusion of the left hand side in the right hand side and conversely. For the
inclusion ⊆, we proceed by induction on ordinals η such that rank(c(rη)) ≤ ξ.
The base step is very similar to the base step of outer induction and we leave
it to the reader. The limit step is obvious.

Now assume that α = γ + 1 and that D≺
γ ∩ {x : rank(x) ≤ ξ} ⊆ Mξ.

Consider the clause rα. By Corollary 7.4, the elements of negative part
of the body of of rα all have the rank smaller than ξ. It is easy to see

56

that cons(rα) ∩ M<ξ = ∅ since the negative literals of rα are all of rank
smaller than ξ and do not belong to clmon(D

≺
γ) and by the (outer) induction

hypothesis D≺
γ contains all Mη for η < ξ. This implies that the Horn clause

c(rα) ← prem(rα) belongs to Qξ. Since prem(rα) ⊆ D≺
γ , by the (inner)

induction hypothesis, prem(rα) ⊆ Mξ. Since Mξ is closed under the clauses
of Qξ, c(rα) ∈ Mξ. This, in turn implies that the set of c(rη) for all η ≤
α for nonlimit ordinals is included in M . Indeed, by the inner inductive
assumption, the conclusions of all clauses rη with η < α belong to Mξ and
thus to M as well. We can now use Lemma 7.8 to prove that since M is
closed under all Horn clauses in N , D≺

α is entirely included in M . But then

D≺
α ∩ {x : rank(x) ≤ ξ} ⊆M ∩ {x : rank(x) ≤ ξ} = Mξ

This completes the (inner) induction argument for the inclusion ⊆.

We now show the inclusion ⊇. Clearly, we only need to prove that when-
ever z ∈ Mξ and rank(z) = ξ, then z ∈ Dp(ξ). (for z’s of smaller rank the
inductive assumption immediately implies the result). But if z ∈ Mξ and
rank(z) = ξ, then z possesses a (monotonic) derivation from

⋃

η<ξ Mη using
the clauses in monξ ∪ Qξ. By induction on the length of such derivation,
we prove that z ∈ D≺

p(ξ). Notice that whenever d = y ← a1, . . . , am is a
clause in Qξ, then rank(y) = ξ. Also for some b1, . . . bn /∈ Mξ, rd = y ←
a1, . . . , am¬b1, . . . ,¬bn belongs to N . But then the rank of each b1, . . . , bn
is strictly smaller than ξ. Since b1, . . . , bn /∈ M<ξ, it follows that for each
η < p(ξ), b1, . . . , bn /∈ D≺

η . Indeed,

M<ξ = D≺
⋃

η<ξ
p(η)
∩ {x : rank(x) < ξ}

and at stages above
⋃

η<ξ p(η), no element of rank smaller than ξ is added to
D≺.

Now suppose z ∈ Mξ, rank(z) = ξ, and z has a derivation of length 1
from M<ξ using the clauses from monξ ∪ Qξ. Then either z is a conclusion
of an axiom in monξ, in which case z ∈ D≺

0 , or else there is an axiom d in
Qξ with conclusion z. In that case there is a clause

rd = z ← ¬b1, . . . ,¬bn

in N , b1, . . . , bn /∈ D≺
p(ξ). The clause rd is, thus, always applicable. Eventually

by some stage ρ the clause rd becomes the first clause which can be applied
if z is not already in D≺

ρ . Thus z ∈ D≺
p(ξ).

57

In the inductive step we reason similarly. If z possesses a derivation from
M<ξ of length k+ 1 using the clauses from monξ ∪Qξ, then there is a clause
d = z ← a1, . . . , am belonging to monξ ∪ Qξ used in this derivation. Since
a1, . . . , am have derivations of length at most k, they belong to D≺

p(ξ) by our
inductive assumption. Thus for some η < p(ξ), all a1, . . . , am belong to
D≺

η . As in the base case of our induction, we need to consider two cases. If
d ∈ monξ, then z ∈ D≺

η since the latter set is closed under all Horn clauses.
If d ∈ Qξ, then for some b1, . . . , bm all of which do not belong to D≺

p(ξ) the
clause

rd = z ← a1, . . . , am,¬b1, . . . ,¬bn

belongs to N . The clause rd is, therefore, applicable starting at η (if z is not
already in D≺

η). Thus it, eventually, at some stage ρ, rd will becomes the
first applicable clause (again, if z is not derived earlier). Therefore, definitely,
z ∈ D≺

p(ξ). This completes the proof of inclusion ⊇ and of the lemma. 2

Proof of Theorem 7.1: Let ν be the length of stratification. We need to
prove that D≺ = M . But

D≺ =
⋃

η

D≺
η =

⋃

ξ<ν

D≺
p(ξ)

since the hierarchy of sets D≺
p(ξ) is increasing and cofinal in the hierarchy of

sets D≺
η . By Lemma 7.10

⋃

ξ<ν

D≺
p(ξ) =

⋃

ξ<ν

Mξ = M.

Thus D≺ = M as claimed. 2

8 Modifications of the Construction

We will briefly discuss several modifications of the forward chaining con-
struction described in our paper. To this end we need a short introduction
to various three-valued interpretations. A general survey of these construc-
tions (and their generalizations, for instance in bilattice setting) can be found
in [Fi96].

A three-valued interpretation of a program is a pair I = 〈T, F 〉 of sets of
atoms so that T ∩ F = ∅. Such interpretation assigns to an atom a truth

58

value from the set {0,⊥, 1}. Namely, I(a) = 1 if a ∈ T , I(a) = 0 if a ∈ F
and I(a) = ⊥ otherwise. Truth value can be easily extended to literals, by
defining ¬0 = 1, ¬1 = 0, and ¬⊥ = ⊥.

Given a propositional program P (or a ground version of a predicate
program) we can assign to it various operators in the space of interpretations.

The Kunen-Fitting operator (called “Kripke-Kleene” in [Fi96]) assigns to
an interpretation I an interpretation I ′ as follows:

1. I ′(p) = 1 if for some clause C = p ← l1, . . . , ln in P , I(l1) = . . . =
I(ln) = 1

2. I ′(p) = 0 if for every clause C = p ← l1, . . . , ln in P , for some j ≤ n,
I(lj) = 0

3. I ′(p) = ⊥ otherwise.

This operator possesses a least fixpoint. This fixpoint is a three-valued
model of the program.

Van Gelder, Ross and Schlipf [VGRS91] introduced another operator,
leading to other three-valued model of a logic program. It is based on the
notion of unfounded set. Given a three-valued interpretation I, an unfounded
set with respect to I is any set of atoms X with the following property:

- Whenever p ∈ X, then for every clause C = p ← l1, . . . , ln in program P ,
for some j ≤ n either I(lj) = 0 or lj is an atom which belongs to X (or
is not exclusive here).

There is always a largest unfounded set with respect to any interpretation I.
Now define a new interpretation I ′ as follows. I ′(p) = 1 if for some clause
C ∈ P , C = p ← l1, . . . , ln, I(l1) = . . . = I(ln) = 1. I ′(p) = 0 if p belongs
to the largest unfounded set with respect to I. Finally, I ′(p) = ⊥ for the
remaining atoms p. It is clear that we defined a three-valued interpretation.
The operator assigning I ′ to I can be iterated and it also possesses the least
fixpoint. This fixpoint is called well-founded model of P .

Well-founded model generalizes stable model, in the sense that if M is
a stable model of P than the interpretation 〈M,At \ M〉 is a fixpoint of

59

the operator described above. Moreover, well-founded model approximates
stable models. That is positive part of well-founded models is included in the
intersection of all stable models, whereas the negative part of it is included
in the intersection of the complements of stable models. Fitting’s paper
[Fi96] contains an extensive discussion of abstract treatment of well-founded
semantics and its generalizations.

Since D≺
ξ ∩ R

≺
ξ = ∅, the pair 〈D≺

ξ , R
≺
ξ 〉 is a three-valued interpretation.

In particular 〈D≺, R≺〉 is a three-valued interpretation. It is natural to ask
about the relationship of this interpretation to the well-founded interpreta-
tion. Observe that 〈D≺, R≺〉 does not need to be a three-valued model of the
program. This happens when there are inconsistent clauses.

On the other hand, the well-founded interpretation is not always included
in 〈D≺, R≺〉. Indeed, for a Horn program P = {p← q, q ← p} the interpre-
tation 〈D≺, R≺〉 = 〈∅, ∅〉, whereas the well-founded interpretation fails both
p and q.

It should be clear that the construction of 〈D≺, R≺〉 admits various mod-
ifications. Notice that we can increase at each stage ξ of the construction
the negative side of the construction. Specifically, at each stage of the con-
struction we can modify the set R≺

ξ extending it to a larger set S≺
ξ (as long

as D≺
ξ ∩ S

≺
ξ = ∅) and use S≺

ξ instead of R≺
ξ in the later stages of the con-

struction. What is the effect of such modifications? The result is that more
clauses may become inconsistent and some clauses that could be applied in
the Forward Chaining construction may become inapplicable. But the basic
result, namely that D≺ is a stable model of P \ I≺ remains true. That is,
some previously applicable clauses may become inapplicable or inconsistent,
but when the latter are eliminated the constructed set is a stable model of the
resulting program. The intervention is, however, drastic. That is, since some
clauses previously applicable may become inapplicable, there is no natural
relationship between the models obtained from the modified construction and
those obtained from the original one.

Moreover, once we select a clause for application, we can close the sets D≺
ξ

and R≺
ξ under various operators. Specifically we can apply Kunen-Fitting

operator (with the iteration to ω or further) or Van Gelder, Ross, Schlipf
construction. All such modifications are possible and lead to a cross over of
our theory with other three-valued approaches.

60

Finally, notice that in the case of finite propositional programs (or finite
predicate programs without function symbols) all these constructions can
be performed in polynomial time. The “straightforward” Forward Chaining
construction seems to be the simplest.

9 Conclusions

We introduced a novel technique for computing stable models of programs
(and so, by interpretability results, also of default extensions, and answer sets
for logic programs with classical negation). In contrast with other techniques
of finding stable models our algorithm always computes a subset of the base
of the program. Moreover, this subset is a stable model of a subprogram of
the original program. We feel that the technique introduced in this paper
will have applications in real-time systems for computing values of default
statements and parameters. The class of stable submodels (which properly
contains stable models) is interesting in its own right and deserves further
study. For example, our Forward Chaining construction suggests a new se-
mantics for logic programs and default theories. That is, given a program
P , we say a stable submodel D≺ is maximal if there is no ordering ≺′ such
that A≺ ⊂ A≺′

. That is the set of inconsistent clauses is minimal (recall
that A≺ = P \ I≺). Note that if P has a stable model M , then there is an
ordering ≺′ such that D≺′

= M and so A≺′

= P . Thus every maximal stable
submodel must also have A≺ = P and so, in this case, every maximal stable
submodel is in fact an stable model. Thus if P has a stable model then the
set of maximal stable submodels, MSS(P) is just the set of stable models.
However MSS(P) is nonempty for all programs. Thus the set of maximal
stable submodels extends the usual stable semantics. We shall explore the
properties of maximal stable submodels in later papers.

References

[AvE82] K.R. Apt and M.H. van Emden. Contributions too the theory of
logic programming. Journal of the ACM, 29:841–862, 1982

61

[ABW87] K. Apt, H.A. Blair, and A. Walker. Towards a theory of declar-
ative knowledge. In J. Minker, editor, Foundations of Deductive
Databases and Logic Programming, pages 89–142, Los Altos, CA,
1987. Morgan Kaufmann.

[Apt90] K. Apt. Logic programming. In J. van Leeuven, editor, Hand-
book of Theoretical Computer Science, pages 493–574. Cambridge,
MA, 1990, MIT Press.

[Cla78] K.L. Clark. Negation as failure. In H. Gallaire and J. Minker,
editors, Logic and data bases, pages 293–322. Plenum Press, 1978.

[DG84] W.F. Dowling and J.H. Gallier. Linear-time algorithms for testing
the satisfiability of propositional Horn formulae. Journal of Logic
Programming, 3:267–284, 1984.o

[Doy79] J. Doyle. A truth maintenance system. Artificial Intelligence,
12:231–272, 1979.

[Fi85] M. Fitting. A Kripke-Kleene semantics for logic programs. Jour-
nal of Logic Programming, 2:295-312, 1985.

[Fi96] M. Fitting. Fixpoint Semantics for Logic Programming, A sur-
vey Proceedings of the 12th Workshop on Mathematical Foun-
dations of Programming Semantics. Special issue of Theoretical
Computer Science, to appear.

[GL88] M. Gelfond and V. Lifschitz. The stable semantics for logic pro-
grams. In R. Kowalski and K. Bowen, editors, Proceedings of
the 5th International Symposium on Logic Programming, pages
1070–1080, Cambridge, MA., 1988. MIT Press.

[GL90] M. Gelfond and V. Lifschitz. Logic programs with classical nega-
tion. In D. Warren and P. Szeredi, editors, Logic Programming:
Proceedings of the 7th International Conference, pages 579–597,
Cambridge, MA., 1990. MIT Press.

[GS92] J. Grant and V.S. Subrahmanian. Reasoning about inconsistent
knowledge bases. IEEE Trans. on Knowledge and Data Engineer-
ing, to appear.

62

[GS93] J. Grant and V.S. Subrahmanian. The optimistic and cautious
semantics for inconsistent knowledge bases. Department of Com-
puter Science, University of Maryland, 1993.

[JS72a] C.G. Jockusch and R.I. Soare. Degrees of members of π0
1 classes.

Pacific Journal of Mathematics, 40:605–616, 1972.

[JS72b] C.G. Jockusch and R.I. Soare. π0
1 classes and degrees of theories.

Transactions of American Mathematical Society, 173:33–56, 1972.

[KL89] M. Kifer and E. Lozinskii. RI: A logic for reasoning about incon-
sistency. TARK IV, Asilomar, CA, pages 253-262, 1989.

[KN93a] W. Kohn and A. Nerode. Models for Hybrid Systems: Automata,
Topologies, Controllability, Observability. In: Hybrid Systems,
R.L. Grossman, A. Nerode, A.P. Ravn, H. Rischel, eds. Springer
Lecture Notes in Computer Science 736, pages 317-356, 1993.

[Ku87] K. Kunen. Negation in Logic Programming. Journal of Logic
Programming, 4:289-308, 1987.

[MNR90] W. Marek, A. Nerode, and J.B. Remmel. Nonmonotonic rule sys-
tems I. Annals of Mathematics and Artificial Intelligence, 1:241–
273, 1990.

[MNR92c] W. Marek, A. Nerode, and J.B. Remmel. Nonmonotonic rule
systems II. Annals of Mathematics and Artificial Intelligence,
5:229–263, 1992.

[MNR92a] W. Marek, A. Nerode, and J. B. Remmel. The stable models of
predicate logic programs. In K.R. Apt, editor, Proceedings of In-
ternational Joint Conference and Symposium on Logic Program-
ming, pages 446–460, Boston, MA, 1992. MIT Press, to appear
in Journal of Logic Programming.

[MNR95] W. Marek, A. Nerode, and J. B. Remmel. Complexity of Normal
Default Logic and Related Modes of Nonmonotonic Reasoning,
Proceedings of 10th Annual IEEE Symposium on Logic in Com-
puter Science, pp. 178-187, 1995.

63

[MNR93b] W. Marek, A. Nerode, and J. B. Remmel. Context for Belief
Revision: FC-Normal Nonmonotonic Rule Systems, Annals of
Pure and Applied Logic 67(1994) pp. 269-324.

[MT91] W. Marek and M. Truszczyński. Autoepistemic logic. Journal of
the ACM, 38:588 – 619, 1991.

[MT93] W. Marek and M. Truszczyński. Nonmonotonic Logic – Context-
dependent reasonings Berlin, Heidelberg, New York, 1993,
Springer.

[McD82] D. McDermott. Nonmonotonic logic II: Nonmonotonic modal
theories. Journal of the ACM, 29:33–57, 1982.

[MD80] D. McDermott and J. Doyle. Nonmonotonic logic I Artificial
Intelligence, 13:41–72, 1980.

[Prz87] T. Przymusinski, On the declarative semantics of stratified deduc-
tive databases and logic programs, In J. Minker, editor, Foun-
dations of Deductive Databases and Logic Programming, pages
193–216, Los Altos, CA, 1987. Morgan Kaufmann.

[RDB89] M. Reinfrank, O. Dressler, and G. Brewka. On the relation be-
tween truth maintenance and non-monotonic logics. In Proceed-
ings of IJCAI-89, pages 1206–1212, San Mateo, CA., 1989. Mor-
gan Kaufmann.

[Rei80] R. Reiter. A logic for default reasoning. Artificial Intelligence,
13:81–132, 1980.

[Sco82] D. Scott. Domains for denotational semantics. In Proceedings of
ICALP-82, pages 577–613, Heidelberg, 1982. Springer Verlag.

[VGRS91] A. Van Gelder, K.A. Ross and J.S. Schlipf. Unfounded sets and
well-founded semantics for general logic programs. Journal of the
ACM 38(1991).

[YBB92] F. Yang, H. Blair, and A. Brown. Programming in default logic.
University of Syracuse, 1992.

64

