
Comments on Logic and Knowledge
Representation

Victor W. Marek

Occasions such as this one, make people look back. It is almost 44 years
since I started research, in a far away land, and in an area quite different
from that I pursue today.

As I look around, I see friends and collaborators. First of all Mirek
Truszczynski and Jeff Remmel, friends and coauthors, each of over 20 papers.
It was quite an adventure, no doubt.

It is a great day for a scientist to look around and recognize so many
colleagues and coauthors, also students. A few people who are not with
us today need to be mentioned. First of all late Witold Lipski, my second
Ph.D. student, who quickly became a friend. Witold was a strong combina-
torist, computer scientist and logician. His achievements stand even today
in database theory and other areas of computer science. It was him who told
me that nonmonotonic logic will be the “next big thing”. It certainly was -
for me and so many of you in this room. I also need to mention Anil Nerode,
the first among mainstream logicians to see the need to research the non-
monotonic logic, and to incorporate it into the mainstream of foundational
studies. It is relevant to this meeting to remember that it was Anil and
Peter Hammer who got the idea of founding of “Annals of Mathematics and
Artificial Intelligence” (I was present when they negotiated this during 1986
ORSA meeting in Miami, Fl.) and the first Symposium on Mathematics and
Artificial Intelligence (it so happened that I was there, too).

Looking back, at the area of nonmonotonic logic, the one with which I
am closely associated, it is necessary to say that after the pioneers (John
McCarthy, Ray Reiter, Drew McDermott, Robert Moore) the next group
of people who followed was led by Vlad Lifschitz, Michael Gelfond, Mel Fit-
ting, Allen van Gelder, John Schlipf, Teodor Przymusinski, Mirek Truszczyn-
ski, Ilkka Niemelä, Jeff Remmel and others. I want to mention especially

1



Vladimir’s work. It is hard to overestimate his contributions, many of those
together with Michael Gelfond. It was, actually, Michael, who realized that
autoepistemic logic allows to provide a semantics for negation in logic pro-
gramming. The stable semantics followed shortly. Coming back to Vladimir’s
and Michael’s contributions I do not only mean the introduction of stable
semantics. The fundamental understanding of the role of stable semantics
and its generalizations in basic problems of AI is due to them. Vladimir led
the effort to understand the proof theoretic-aspects of stable semantics, an
effort which is not yet (in my opinion) finished.

It took us some time to understand Default Logic of Ray Reiter, its cen-
tral place in nonmonotonic reasoning, and see its relationship with the other
modes of nonmonotonic reasoning. It took us even more effort to recognize
that the theory of operators in lattices is the true foundation of nonmonotonic
reasoning. Understanding of the role of algebraic constructions in nonmono-
tonic logic is fundamentally due to the work of Mel Fitting. The work of
Marc Denecker, of Jeff Remmel, and of Mirek Truszczynski explained a vari-
ety of phenomena related to nonmonotonicity. All these people showed that
the same methods so successfully applied to classical logic by Alfred Tarski
equally well apply in nonmonotonic case.

The complexity issues for nonmonotonic reasoning were studied by many,
with the significant results due to Thomas Eiter and George Gottlob. We
learned that there is no “free lunch” promised to us by the pioneers, including
John McCarthy. Nonmonotonic reasoning (in its many forms) turned out to
be complete for various levels of polynomial hierarchy (in the propositional
case) and even more complex in its predicate form (here the work of John
Schlipf, of Krzysztof Apt and Howard Blair and also of Doug Cenzer and Jeff
Remmel must be mentioned).

It took us almost 15 years to move from pure theorizing to the com-
putational systems based on nonmonotonic logic. The premonitions of the
computational character of nonmonotonic logic, in the hindsight present in
many contributions, led to a number of systems, with long-forgotten names
(like DeReS), and the still going strong systems such as smodels of Ilkka
Niemel”a and collaborators, dlv of Thomas Eiter, Nicola Leone and collab-
orators, ASSAT of Fangzhen Lin and Yuting Zhao, of aspps of Deborah East
and Mirek Truszczynski, of cmodels of Yuliya Lierer and Vlad Lifschitz, of
clasp of Torsten Schaub and many others.

Nonmonotonic logic, in its computational form, Answer Set Program-
ming, is going strong. The need for understanding foundations of software

2



engineering in ASP resulted in amazing discoveries of Vlad Lifschitz, David
Pierce and Augustin Valverde, of Thomas Eiter and collaborators, and of
Mirek Truszczynski of the relationships of this area to very interesting, while
quite exotic, logical systems such as the modal logic S4F and also the maxi-
mal intermediate logic, the Gödel-Smetanich, or Here-and-There logic. Why
is it so - was explained by the work of Alex Bochman.

The relationships between ASP and SAT, discovered by Fangzhen Lin
and Yuting Zhao are not yet completely understood. The amazing progress
of SAT during the past 10 years is helping us to find ways to improve ASP
systems, I am convinced that we did not say the last word on these connec-
tions.

It is tempting to compare the situation in ASP with that of SAT. After
all, these formalisms solve the same class of problems (at least when ASP is
limited to SLP). It is also revealing for it shows clearly that some aspects of
ASP need the community attention.

The first, and most obvious question that still lacks an answer is the
issue of proof systems associated with ASP. After all computations (of stable
models, say) are proofs of literals. Let us recall that the lower bounds in SAT
are obtained by looking at proof systems. As of today, the proof systems for
ASP are two: one is the system inherited from the logic HT (Gödel-Smetanich
maximal non-classical logic) and another is the idea of proof schemes (and
M -proofs). I doubt that these are the last words in proof-theory of ASP.
From the point of view of logic we need more such systems. The quest for
proof systems for ASP started with the work of Vlad Lifschitz in the middle
of 90ies. We need more of this kind of work.

The algorithms for ASP also need our attention. DPLL-like algorithms
are not the only way to compute stable models. The introduction of the
idea of learning was the great leap forward of SAT. But learning is partial
closure under resolution and is a kind of hybrid approach between Quine
and Davis-Putnam approaches. Learning was tried in the context of ASP
by John Schlipf. I am not claiming that this is the path to be taken in
computation of stable models, but certainly something needs to be done to
speed up computation.

To make the task of programming in ASP easier Ilkka Niemelä and collab-
orators (but later also other system designers) introduced grounders. Next,
considerable effort went into understanding the nature of stable semantics
for programs admitting constraints. It is all about making the life of pro-
grammers easier with more concise programs and more elaborate program

3



constructs. Starting with Ilkka Niemelä and collaborators, then Jeff Rem-
mel, and more recently Mirek Truszczynski and collaborators we gained great
insights into programs with constraints and their stable semantics. But we
do not have an authoritative, general consensus approach to the stable se-
mantics of programs with constraints. Worse, we do not even know which
constraints are truly important in Knowledge Representation.

We know that SLP which, after all, is most important part of ASP cap-
tures the same class of problems as SAT. But we do not know where ASP is
better than SAT, that is we do not have reasonable guidelines which would
allow for the use of ASP in tandem with SAT in portfolio arrangement. This,
despite the fact that Michael Gelfond and Nicola Leone looked at the Knowl-
edge Representation with ASP, and despite the fact that Chitta Baral wrote
a book on ASP. We may need a kind of “How to solve it with ASP” book
of examples and techniques. While Marc Denecker attempted the “grand
synthesis” of ASP and SAT with his ID-Logic, we do not know whether it is
the only way to do so.

We do know that ASP may be used in model checking (Eugenia Ter-
novska), but we do not know if ASP can serve as a glue for decision pro-
cedures and other tasks, in a way analogical to SAT (this is known as SAT
modulo theories, SMT.)

Let me list a number of steps that need to be taken if we ever want
to make ASP “industrial strength”. Let me prequalify this list with the
statement that some of these features, in some form, are already present,
especially in dlv. First of all, we need to be able to handle data types
such as strings and associated operations such as concatenation and regular
expressions evaluation. We need to be able to connect to remote databases
both for reading the data and writing results. We need to be able to call
imperative languages from within the ASP programs and specify interfaces
for such programming languages when those need to use ASP systems for
search. Systems such as dlv, smodels, and aspps have some of these features.
But we need a consensus for standards for all these features. We need to
be able to use data described by means of XML documents to be translated
into extensional databases, and we need tools for outputting the collections
of stable models as XML documents. We need to be able to tie Semantic
Web with ASP. The work of Thomas Eiter and collaborators offers a step in
this direction.

I am not aware of programming environments that would make possible
real programming in ASP. There were proposals of some tools (viz. Marina

4



De Vos). Yet, we did not do the real effort in this area. Anyone who wrote
even a simplest program in imperative language knows that the current sit-
uation of programming in ASP is a major block in the development of ASP
as a viable mainstream programming tool.

I limited my remarks to ASP, because it is what I know. I was present as
it emerged from the widely understood Knowledge Representation area and
tried to help in its development.

But widely understood Logic and more generally Foundations are not lim-
ited to ASP, SAT and their relatives. While logicians, especially those with
mainstream mathematics continue their research, logic systematically spawns
various smaller applicable areas (for instance automata theory, automated
theorem proving, applications of model-theoretic techniques to electronic de-
sign automation). It is a triumph of logic that so many of its subspecialties
have applications. Even the most elusive areas (recursion theory, model the-
ory, proof theory) found important applications. What a satisfaction!

At the same time the center of gravity of Foundations shifted. So many
of us either moved from mathematics into computer science or did not even
try in mathematics. It is not an accident that foundations with the computer
science twist are strongly represented in such places as IAS in Princeton.

Time to complete these chaotic remarks. I want to thank all of you who
contributed to this session. There is nothing more gratifying for a scientist
to see that the effort was not in vain.

5


