
CS 115 Lecture
Conditionals and if statements

Taken from notes by Dr. Neil Moore

Selection

Sometimes we want to execute code only
sometimes.

– “Run this code in a certain situation.”

• How do you express “in a certain situation” in code?

– “Run this code if this expression is true.”

• So we’ll need expressions that can be True or False

• We mentioned a type that has 2 values, True or False,
the second week of class

• bool (Booleans)

The boolean type

• The type bool in Python represents a value that
is either true or false.
– Two literals (constants): True and False

• Case-sensitive as always!

– You can have boolean variables:
is_finished = False

• Sometimes they are called flags (more later)

– … and boolean expressions:

is_smallest = number < minimum

can_run = have_file and is_valid

Naming boolean variables

This isn’t a hard-and-fast rule but try to name boolean
variables as a sentence or sentence fragment:

– Is this item selected? is_selected

– Is the user a new user? user_is_new (or
is_user_new)

– Does the program have an input file?
have_input_file

– Does the user want the answer in meters? want_meters

Why is_selected and not just selected?
– Ambiguous: it could also mean “which item is selected?”

Equality

Other than literal True and False, the simplest
boolean expressions compare the values of two
expressions.
• Less than, greater than, …
• Even simpler: “is equal to” and “is not equal to”

– The equal sign is already taken for assignment
– So equality testing uses the symbol ==

logged_in = password == “hunter1”

– No spaces between the two equal signs

• Contrast: “==“ compares values, the “is” operator asks
“are they aliases?” (names for the same object)
– is operator will not be needed in this class

Inequality

• It’s kind of hard to type ≠ so Python uses != for
the relationship “is not equal to”

need_plural = quantity != 1

did_fail = actual != expected

• How does an assignment statement like this
work? Like any other!
– Evaluate the right hand side (the != gives a True or

False value)

– Store that True or False value in the variable on the
left hand side

Comparisons

Besides equality and inequality, Python has four
more comparison (relational) operators:

• Less than (<) and greater than (>):

score < 60

damage > hit_points

• Less than or equal to (<=), greater than or equal
to (>=)

students <= seats

score >= 60

Comparisons

• Precedence: all relational operators are lower
than arithmetic operators, and are higher than
the assignment operator and logical operators
need_alert = points + bonus < possible
* 0.60

is the same as
need_alert = ((points + bonus) <
(possible * 0.60))

• Relational operators are all of equal precedence
to each other, so if you have more than one in an
expression, they are evaluated left to right

Relational operators and types

• What type does the relational operators
return? (that is, the result)
– bool

• What types can be compared using relational
operators?

– Numbers: ints and floats

– Bools: True and False

– Strings

Comparisons

• Relational operators cannot mix strings and
number values

3 < “Hello”

TypeError: unorderable types: int() < str()

• It’s ok to mix ints and floats though

• Be careful comparing floats to floats –
they may NOT be equal though we think they
are, especially if the float was generated by
repeated arithmetic operators

Comparing strings

– What does it mean to compare two strings?
• When computers were new, each hardware manufacturer had

their own code of numbers to stand for alphabetic characters

• Users didn’t care as long as they press ‘A’ on keyboard and got ‘A’
on screen

• When people wanted to swap data between hardware brands,
found out they needed a Standard Code for encoding characters

• Some competition, but ASCII won out! Being used by
microcomputers didn’t hurt ASCII’s popularity either.

• ASCII (and its superset, Unicode) is used more today than any
other character code by FAR, 90% of the computers in the world
use it

• ASCII – American Standard Code for Information Interchange,
created in the 70’s, Unicode created later (90’s, 2000’s)

Comparing strings

• Each character is assigned a numeric value, those values are
actually what’s compared

• Alphabetic characters are in alphabetic order
– ‘A’ < ‘B’ < ‘C’ < … < ‘X’ < ‘Y’ < ‘Z’ (upper case)

– ‘a’ < ‘b’ < ‘c’ < … < ‘x’ < ‘y’ < ‘z’ (lower case)

• Uppercase Z comes before lowercase a
– ‘A’ < … < ‘Z’ < … < ‘a’ < … < ‘z’

• Digits are in numeric order ‘0’ < ‘1’ < ‘2’ < … < ‘9’

• Digits come before alphabetic characters

• And “ “ (one space) comes before all other printable
characters

• ‘ ‘ < ‘0’ < … < ‘9’ < … < ‘A’ < … < ‘Z’ < … < ‘a’ < … < ‘z’

ASCII and Unicode

• http://unicode-table.com/en/#control-
character

• ASCII table

A note about “characters”

• Character vs. Letter

• A Character is ANY symbol you can get from the
keyboard (actually any element of the ASCII
character code, or these days, of the Unicode
character code)

• A Letter is specifically an upper or lower case
letter of the alphabet - a total of 52 characters

A note about “characters”

• Computer scientists use terms carefully
– Number vs. numeric string

• A number is a value that is stored in RAM where it can be
accessed, in some pattern of bits. It has the data type of
“integer” or “float” (in Python): examples: 4, 3.5, 9.e51
– You use arithmetic operators with this data type

• A numeric string is a string of characters which has only
digits, a “+” or a “-” at the front, possibly a decimal point “.”,
possibly an “e”, in the right order. It is a string, not an int or
a float
– You cannot use arithmetic operators with this type

– Digits vs. Letters: ‘0’…’9’ vs. ‘A’…’Z’,’a’…’z’
• There is no overlap between these two sets of characters

Relationship of groups of characters

Comparing strings

• Comparing single character strings means comparing their
ASCII (Unicode) codes, but what if they are longer strings?

• The algorithm says
– Start at characters at left end of each string
– Compare – are they the same or different?
– If they’re different, you can decide which is less and you’re

done!
– If they are the same, move one character to the right in each

string and repeat comparison of characters
– You’ll either run out of string or find a difference
– If run out of both strings at same time, they’re equal
– If run out of one before the other, the shorter is less

Chaining comparisons

• In Python, comparisons can be chained
together:
if 0 < x < y <= 100:

• It means: 0 < x and x < y and y <= 100

• This notation is common in mathematics

– But not in most programming languages!

– Python is rather unusual in allowing it

The if statement

Now that we can write some boolean statements, how do we
use those to control whether or not certain statements
execute?
• Use an if statement
• Syntax

if expression:

body

• The expression should evaluate to True or False
• The body is an indented block of code
• Semantics: 1. Evaluate the expression on the first line

2. Runs the body if the expression was True
3. Goes on to the code line after the body, either way

Flowchart for if

Alternatives: else

Commonly we want to do either this or that (but
not both).

• In Python we can use an else block. Syntax:
if expression:

if-body

else:

else-body

– Both bodies are indented blocks

– No expression on the line with else!

– Cannot have an else without an if first!

Alternatives: else

• Semantics:
– Always evaluates the expression on first line

– If the expression is True, runs the if-body

– If the expression is False, runs the else-body

– Either way, goes on to the code line after the else-
body

• Only use else if there is something to do in
the False case
– It’s ok not to have an else for an if!

Flowchart for if-else

Many alternatives

Sometimes there are more than two alternatives
• Converting a numeric score into a letter grade:

– If the score is greater than or equal to 90, print A
– Otherwise, if score is greater than or equal to 80, print B
– Otherwise, if score is greater than or equal to 70, print C
– And so on…

• We want to run exactly one piece of that code
– even though 95 >= 70, we don’t want 95 to cause C to print too!
– First check if score is >= 90
– If that was False, check if score >= 80
– If that is False too, check if score >= 70, …

• The order matters!
– What would happen if we swapped the order of the B and C tests?
– Then we’d never report a B!

Chained alternatives: elif

• Syntax:
if expression 1:

body 1

elif expression 2:

body 2

elif expression 3:

body 3

…

• Each elif is followed
by an expression and a
colon

• Each body is an
indented block

• You can have an else
block at the very end. It
is not required.

Chained alternatives: semantics

Semantics:

• Evaluates expression 1

• If expression 1 was True, run body 1 (and that’s ALL)

• If expression 1 was False, evaluate expression 2

• If expression 2 was True, run body 2 (and that’s ALL)

• If expression 2 was False, evaluates expression 3

• After running at most one body, goes on to the next
line of code after the end of the chained if statement

• Only runs one body, or none

• It runs the body of the first True expression

Flowchart for if / elif

Open and closed selection

• If there is an else in a chained if/elif, the selection is called closed
– Meaning that exactly one of the bodies will run

• Otherwise it is open: zero or more bodies will be run
• If the last elif is supposed to cover all the remaining cases, you should

prefer else instead:
if score >= 90:

grade = ‘A’
elif score >= 80:

grade = ‘B’
elif score >= 70:

grade = ‘C’
elif score >= 60:

grade = ‘D’
else:

grade = ‘E’

Thinking about ifs

• How is the problem you are solving expressed?

– Are you looking for specific values, nothing else is of
interest?

– Are you dividing a range up into specific segments, so
that everything is of interest?

– Are you testing for conditions that are mutually
exclusive? (if one is True, the rest cannot be)

– Or conditions that overlap? (that are independent of
each other, if one is True, the others may or may not
be)

Example for specific values

if x == 5:

print(“do the 5 thing”)

elif x == 19:

print(“do the 19 thing”)

elif x == -2:

print(“do the -2 thing”)

nothing else to do here, if it’s not 5, 19 or -2 I don’t
#care

there is NO else here!

does order matter here?

Dividing a range

if x > 100:

print(“wonderful!”)

elif x >= 70:

print(“ok”)

elif x >= 55:

print(“meh”)

else:

print(“bleah”)

need the last else to catch
#“everything lower”

#Note that order matters here!

Mutually exclusive conditions

if x % 10 == 5:

print(“that’s a number ending in 5”)

else:

print(“not a 5 on the end!”)

you do NOT need “elif x % 10 != 5:”

if the first test is False, the other must be True

Overlapping conditions

if x > 50:

print(“too high!”)

if x % 2 == 0:

print(“that’s even”)

two separate, independent if’s, because the

tests were independent of each other.

if one is True, the other may or may not be True

does the order of the if’s matter?

Using elif

If you want more than one branch to execute,
you don’t want elif. There you would use a
sequence of separate if statements

“Factoring out” code

• If you write an if with more than one branch, look carefully at the
code in the branches. If the SAME statement appears in both the
branches (for an if/else) or in ALL the branches for a multiway
if/elif/else statement, see if you can “factor it out”.

• Example:
if z > b:

print(z)

z = b * 2

else:

print(z)

z = 9 * b

• The code that is common to both branches should be done
OUTSIDE the if statement altogether. In this case, do it before the if
statement.

“Factoring out” code

• Why is this a big deal?
– Efficiency – why write code twice?

– Less code to debug

– More likely to get it right if it only appears in ONE
place instead of 2 or 3!

• Be careful! It may not always be possible. In this
example, If the print in the else-block had come
AFTER the assignment statement, then the prints
would have been doing different things and
should NOT be factored out

Testing if statements

When testing programs with if statements, be sure to consider and
test all the possible outcomes.
• If your tests never execute a particular line of code, you don’t know

if it works!
• For every if or if-else, you should have two cases:

– one where the test is True
– one where the test is False – even if there is no explicit else branch.

• For a chained if/elif, you should test
– Expression 1 is True
– Expression 1 is False, expression 2 is True
– Expression 1 and 2 are False, expression 3 is True
– …
– All the expressions are False
– If you had a chain with N elif’s, you should have N+2 test cases

More testing

• It helps to consider combinations of separate if
statements too
– Especially when they use the same variables

if userID != “admin”:

is_valid = False

if password != “password”:

is_valid = False

• You can get four test cases for these two if’s
– UserID right, password right
– UserID right, password wrong
– UserID wrong, password right
– UserID wrong, password wrong

More testing

• Don’t forget to check the boundary cases

– what if the score is exactly 60.0?

– what if the score is 59.9?

– what if the score is 0?

– what if the score is 101?

