
Roles and Teams Hedonic Game

Matthew Spradling, Judy Goldsmith, Xudong Liu, Chandrima Dadi, and
Zhiyu Li

University of Kentucky, USA
mjspra2@uky.edu, goldsmit@cs.uky.edu, liu@cs.uky.edu, cda232@g.uky.edu,

zhiyu.li@uky.edu

University of Kentucky

Abstract. We introduce a new variant of hedonic coalition formation
games in which agents have two levels of preference on their own coali-
tions: preference on the set of “roles” that makes up the coalition, and
preference on their own role within the coalition. We define several sta-
bility notions and optimization problems for this model. We prove the
hardness of the decision problems related to our optimization criteria
and show easiness of finding individually stable partitions. We introduce
a heuristic optimizer for coalition formation in this setting. We evalu-
ate results of the heuristic optimizer and the results of local search for
individually stable partitions with respect to brute-force MaxSum and
MaxMin solvers.

Keywords: coalition formation, computational complexity, hedonic games, op-
timization

1 Introduction

Consider the online game, League of Legends, developed by Riot Games, Inc.
According to a recent market research study, League of Legends is the most
played PC video game in North America and Europe by number of hours played
per month [10], with 70 million registered users and an average of 12 million
daily active players [15]. Players sign on, and are matched with other players
with similar Elo ratings. Once matched in a team of 3 or 5, they each choose
an avatar (called a “champion”) from a finite set. Each team then plays against
another team, competing for Elo improvement.

The game experience could be enhanced if teams were matched on the basis of
strategic combinations of champions. This is not only our hypothesis but also the
observation of Riot Games. A senior user research employee for Riot Games, user
name davin, recently commented that “we don’t have a single way of playing the
game. ... So when you match people together, you’d need some way of pairing
together players who have agreed on a particular strategy or want to play in
a certain way.”[16] There are two criteria upon which players might express
preferences: the combination of champions on which they would like to play, and

the individual champion they would prefer to play on a given composition. These
could be expressed separately or conditionally.

Matching players by their preferences on their own teams is a hedonic coali-
tion formation game [11]. Hedonic coalition formation games are characterized
by agents’ utilities depending only on the coalition they are assigned to, not on
others. A game consists of a set of agents and their preferences for their possible
roles and team compositions.

One of the aspects of the partitioning problem for League of Legends is
the two-stage team formation: Players may be matched based on their shared
interest in a team consisting of roles A, B, and C, but it may transpire that all
three wish to play role A. A better partition algorithm would also use players’
preferences on individual roles. We refer to this notion of a hedonic game as a
Roles and Teams Hedonic Game (RTHG).

Recent work on hedonic coalition games has touched on notions comparable
to stability in the stable marriage problem [11, 4, 6, 14, 1], etc. It is known that
finding certain stable coalitions for hedonic games is NP-hard (see, for instance,
[8, 2]). Some papers considered restrictions on preferences that allow stable par-
titions, others presented heuristic algorithms for finding stable partitions.

Due to the two-stage team formation procedure in RTHG, we observe that
the notions of Nash stable (NS) and individually stable (IS) partitions are quite
different in this model compared to other hedonic games. We propose definitions
for NS and IS partitions which address both the stability of role assignments
within coalitions and permutations of agents within coalition assignments.

A different problem of optimizing social utility has also been investigated. In
graphical games with unbounded treewidth, very recent work has been done to
address the bi-criteria problem of maximizing both stability and social utility
[13]. We provide hardness results for the decision problems related to Perfect,
MaxSum and MaxMin partitions in RTHG. We define Nash stability and indi-
vidual stability in this setting and show that individually stable partitions can
always be found in time polynomial in the size of the input. We introduce a
quadratic time greedy heuristic optimizer for coalition formation and compare
to brute-force MaxSum and MaxMin solvers and the results of local search for
individually stable partitions.

2 Roles and Teams Hedonic Games

Definition 1. An RTHG instance consists of:

– P : a population of agents;
– m: a team size (we assume that |P |/m is an integer);
– R: a set of available team member roles;
– C: a set of available team compositions, where a team composition is a set

of m not necessarily unique roles in R;
– U: a utility function vector 〈u0, . . . , u|P |−1〉, where for each agent p ∈ P ,

composition t ∈ C, and role r ∈ R there is a utility function up(t, r) with
up(t, r) = −∞ if r /∈ t.

A solution to an RTHG instance is a partition π of agents into teams of size
m.

Table 1. Example RTHG instance with |P | = 4,m = 2, |R| = 2

〈r, t〉 up0(r, t) up1(r, t) up2(r, t) up3(r, t)

〈A,AA〉 2 2 0 0
〈A,AB〉 0 3 2 2
〈B,AB〉 3 0 3 3
〈B,BB〉 1 1 1 1

3 Related Work: Hedonic Partition Games

The original motivation for studying hedonic games was economic [11], but there
are also many computational applications. Saad et al. have proposed hedonic
coalition formation game models for a variety of multi-agent settings, including
distributed task allocation in wireless agents [17], communications networks [18],
and vehicular networks [19], among others.

In anonymous hedonic games [5], agents have preferences over group size
and are matched to teams for a single type of activity. The group activity se-
lection problem (GASP) includes preferences over a variety of activities given
the number of agents engaged in the activity [9]. Agents in these games are
homogeneous—every member of a coalition is equivalent. In RTHG, agents are
heterogeneous while team size and group activity are fixed for a given instance.
An RTHG agent holds preferences over its own role and the roles of its team-
mates. Furthermore, while GASP preferences are binary, RTHG agent prefer-
ences are not guaranteed to be.

Desirable partitioning in additively separable hedonic games (ASHG) [3] has
been investigated. ASHGs allow for agents to place values on each other, making
the agent population heterogeneous. The value an agent places on its coalition
in such a game is the sum total value it gives other agents in its coalition. This
model considers agent-to-agent valuation, but these values are fixed for any given
agent-to-agent relation. ASHGs do not consider the context of the composition
an agent is in. In RTHG, values are placed on team compositions and roles rather
than individual agents.

Each agent has a variable role in RTHG and has preferences over which role
to select for itself given a team composition.

For instances where |C|m is smaller than |P |, the required input data for
RTHG instances will be smaller than the required input for ASHG. Input for an
ASHG instance requires each agent to hold a specific utility for each other agent
within the population. This could be represented as a |P | × |P | matrix of utility

values, U , where U [i, j] is the utility that pi holds for pj . In RTHG, the input
can be represented as a |C|m × |P | matrix. While there are millions of players
in League of Legends [15], there are only around 10 basic roles to potentially fill
(Healer, Mage, Assassin, etc.) and a maximum team size of 5. The input required
for team formation in this setting will be orders of magnitude smaller in RTHG
than if this game were treated as an ASHG.

Consider the following setting. In capstone computer science courses, stu-
dents are sometimes grouped into equally-sized project teams. For a team of five
students, one student may prefer a team of 2 skilled programmers, 1 designer,
and 2 writers. Her second choice might be 1 programmer, 2 designers, 2 writers.
In the first case, the student wants to be a programmer. In the second, she wants
to be a designer, and definitely not a programmer.

This problem can be modeled as an RTHG. The GASP model does not apply.
The ASHG model allows students to express utility values for each other, but
ASHG preferences are context-free agent-to-agent assessments. Huxley may wish
to join Clover’s coalition when she needs a programmer, but not when she needs
a writer. In RTHG, an agent need only express preferences on which roles and
compositions she prefers. This self-evaluation may be easier to accurately poll.

Matching students to groups in a manner that optimizes utility for the class
would be a useful endeavor. In a perfect world, each student would be matched
to his or her most-preferred team. We show that such a perfect partition is not
always possible in RTHG.

A MaxSum partition would, in a utilitarian fashion, optimize the sum total
utility of the resulting coalitions. A MaxMin partition would take an egalitarian
approach. It is unclear which metric (MaxSum or MaxMin) would best raise
teaching evaluations in capstone computer science courses.

4 Evaluation of Solutions

Perfect partitions for general hedonic games have been defined such that each
agent is in one of her most preferred coalitions [1].

For RTHG, we define a perfect partition to be one in which each agent gets
a most-preferred coalition composition and role within that composition. Note
that, in the general RTHG model, there may be multiple equivalently-valued
compositions and roles. Therefore these preferences are not necessarily strict.

Definition 2. A perfect partition is a partition of agents to coalitions so that,
for each p ∈ P , up(r, t) = min{up(r, t) : r ∈ R ∧ t ∈ C}.

A perfect partition is impossible for some RTHG instances. Consider an
RTHG instance where m = 2 and P = {Alice,Bob}. Both Alice and Bob strictly
prefer the team composition of 〈Mage, Assassin〉 with the role Assassin to all
other 〈r, t〉 pairs. No perfect partition is possible.

We consider the following notions of utility optimization.

Definition 3. Given an instance I of RTHG, a MaxSum partition is one that
achieves the maximum value of Σi<|P |upi .

MaxSum is a utilitarian optimality criterion.

Definition 4. Given an instance I of RTHG, a MaxMin partition is one that
achieves the maximum value of minp∈P up.

MaxMin is an egalitarian optimality criterion.
In most hedonic game variants, a partition is considered Nash stable (NS)

iff no agent pi can benefit by moving from her coalition to another (possibly
empty) coalition T . A partition is considered individually stable (IS) iff no agent
can benefit by moving to another coalition T while not making the members of
T worse off [1]. These definitions of stability do not fit well with RTHG.

Because team sizes in RTHG are fixed at m, an agent cannot simply choose
to leave her coalition and join another. Rather, if an agent pi is to move from
coalition S to T , she must take the position (role in a particular coalition)
of another agent pj in T . This could be done as a swap, or it could be a more
complex set of moves made among several agents. Note that should some X ⊆ P
collaboratively change positions, this permutation would not change the utilities
of the compositions for the agents in X. All existing compositions remain intact.

Definition 5. A partition π is Nash team stable (NTS) iff no set X ⊆ P of
agents can improve the sum of their utilities by a new permutation of their po-
sitions in their coalitions.

A partition π is individually team stable (ITS) iff no set X ⊆ P of agents
can improve the sum of their utilities by a new permutation of their positions in
their coalitions without reducing the utility of the partition for any single agent
in X.

There will always be a NTS partition πNTS where all agents select the same
role. In this case, no agent can improve her utility by changing positions since the
new position would be identical to her previous position. Some RTHG instances
may lack a non-uniform NTS partition πNTSNU

, where rpi
6= rpj

for at least one
pair of agents pi, pj . Consider the following RTHG instance:

Table 2. RTHG instance with |P | = 2,m = 2, |R| = 2 where no πNTSNU exists

〈r, t〉 up0(r, t) up1(r, t)

〈A,AA〉 1 1
〈A,AB〉 1 1
〈B,AB〉 0 0
〈B,BB〉 1 1

No πNTSNU
exists in this instance. Consider each of the two possible non-

uniform partitions:

– π0, where rp0
= B and rp1

= A. p0 prefers to swap positions. Not NTS.

– π1, where rp0
= A and rp1

= B. p1 prefers to swap positions. Not NTS.

To construct an individually team stable partition πITS , start with any par-
tition π of I and iteratively improve it until no improvements are possible. At
that point, the resulting partition will be ITS. To find an improvement, if one
exists, construct a graph G = 〈V,Eb ∪ Er〉, where the vertices correspond to
players, and there is an edge in Eb from pi to pj iff upi

(ri, ti) = upi
(rj , tj), and

there is an edge in Er from pi to pj iff upi
(ri, ti) > upi

(rj , tj). If there exists a
cycle in the graph containing as least one edge er ∈ Er, then the partition is not
ITS.

Another movement option in RTHG is for an agent to remain within her
coalition but change roles. This converts the existing composition to another the
agent may prefer. Note that this would change the utility of the composition for
her coalition, but otherwise does not affect the utility of the partition for any
agent outside of her coalition.

Definition 6. A partition π is Nash role stable (NRS) iff no agent pi can im-
prove her utility by changing from her current role r to a new role r′.

A partition π is individually role stable (IRS) iff no agent pi can improve
her utility by changing from her current role r to a new role r′ without reducing
the utility of any other agent in her coalition.

Some RTHG instances may lack a NRS partition πNRS . Consider the follow-
ing RTHG instance:

Table 3. RTHG instance with |P | = 2,m = 2, |R| = 2 where no πNRS exists

〈r, t〉 up0(r, t) up1(r, t)

〈A,AA〉 0 1
〈A,AB〉 1 0
〈B,AB〉 1 0
〈B,BB〉 0 1

No πNRS exists in this instance. Consider each of the four possible partitions:

– π0, where rp0
= A and rp1

= B. p1 prefers to switch to role A. Not NRS.
– π1, where rp0 = B and rp1 = A. p1 prefers to switch to role B. Not NRS.
– π2, where rp0

= A and rp1
= A. p0 prefers to switch to role B. Not NRS.

– π3, where rp0
= B and rp1

= B. p0 prefers to switch to role A. Not NRS.

An IRS partition πIRS of an RTHG instance I can be found in time polyno-
mial in |I|. Given any partition π of I, perform a local search where the neigh-
borhood is one individual in one coalition changing her role and improvement is
evaluated in terms of changes to that coalition’s utility. Since this improves the
overall utility of the partition, there are a limited number of possible improve-
ments; when no improvements are possible, the partition is IRS.

Definition 7. A partition π is Nash stable (NS) iff it is both NTS and NRS.
A partition π is individually stable (IS) iff it is both ITS and IRS.

A NS partition πNS may not always exist for some RTHG instances, given
that a partition πNRS may not exist.

An IS partition πIS of an RTHG instance I can be found in time polynomial
in |I|. Given any partition π of I, alternatively perform IRS local search and
ITS local search until neither finds an improvement. The resulting partition π′

will be IS.

Theorem 1. Every instance of RTHG has an IS partition. Not every instance
of RTHG has a NS partition.

5 Complexity

Definition 8. An instance of Special RTHG is an instance of RTHG such that
for each agent p ∈ P , each t ∈ C, and each r ∈ t; up(t, r)→ {0, 1} and up(t, r) =
1 only if t is uniform, namely it consists of m copies of a single role r.

In other words, each agent finds some non-empty set of single-role team com-
positions acceptable (utility 1), and no other types of team compositions accept-
able.

Definition 9. The language Perfect RTHG consists of those instances of
RTHG for which a perfect partition exists, and Perfect Special RTHG con-
sists of those instances of Special RTHG for which a perfect partition exists.

In Special RTHG instances, the question of a perfect partition reduces to
the problem of finding a MaxMin partition, or the decision problem of whether
there’s a partition with MaxMin value m.

Consider the Exact Cover problem:
GIVEN a set S ⊆ P({1, ..., r}) where all elements of S have size 3,
IS THERE a subset T ⊆ S such that T partitions {1, ..., r}?

Exact Cover is NP-complete [12].

Theorem 2. Perfect Special RTHG is NP-complete.

Proof. To show that Perfect Special RTHG is in NP, consider the following
NP algorithm. Given an instance of Perfect Special RTHG, guess a partition
and evaluate its MaxMin value. To compute the MaxMin value, compute the
utility of each of the |P |/m coalitions (time O(mt) for each coalition, where t is
the complexity of table lookup for an individual’s utility for a particular team
and role), stopping and rejecting if any coalition has utility 0, else accepting.
This checking is in time polynomial in the size of the input.

To show NP-hardness, we show that Exact Cover ≤P
m Special Perfect

RTHG. In other words, given an instance E = 〈r, S〉 of Exact Cover, we
construct an instance RE of Special Perfect RTHG such that E ∈ Exact
Cover iff RE ∈ Special Perfect RTHG.

RE will have the property that, for each agent, the only acceptable teams are
uniform, i.e., consist of m copies of a single role. Thus, the question is whether
they can be assigned to an acceptable team; the role for that team will be
acceptable.

Consider E = 〈r, S〉. For each set in S, RE will have a role and a correspond-
ing team composition. P = {1, ..., r}. The desired team size is m = 3. Each agent
i desires those team compositions s such that i ∈ s.

There is an exact cover of {1, ..., r} iff there is an assignment of agents to
teams of size 3 such that each team corresponds to an element of S.

Therefore, the Perfect Special RTHG problem is NP-hard.

Corollary 1. The general case of Perfect RTHG is NP-hard.

Proof. We observe that if there were a fast algorithm to decide the general case of
Perfect RTHG then this same algorithm would also decide Perfect Special
RTHG.

Therefore the general case of Perfect RTHG is NP-hard.

Definition 10. The language MaxSum RTHG consists of pairs 〈G, k〉, where
G is an instance of RTHG, k is an integer, and the MaxSum value of G is
≤ k; MaxSum Special RTHG consists of those instances of Special RTHG
for which the MaxSum value is |P |.

Definition 11. The language MaxMin RTHG consists of pairs 〈G, k〉, where
G is an instance of RTHG, k is an integer, and the MaxMin value is ≤ k;
MaxMin Special RTHG consists of those instances of Special RTHG for which
the MaxMin value is m.

Theorem 3. MaxMin RTHG and MaxSum RTHG are both NP-hard.

Proof. A Special RTHG partition π for G is perfect iff
∑

p∈P up(π) = |P |
iff MaxMin(π) = m iff 〈G, |P |〉 ∈ MaxSum RTHG iff MaxSum(π) = |P | iff
〈G,m〉 ∈ MaxMin RTHG. Therefore MaxMin RTHG and MaxSum RTHG
are both NP-hard.

6 Greedy Heuristic Partitioning

By modeling agents as voters in an election and their preferences over team
compositions and roles as votes, the scoring voting rule can be applied to hold
a series of elections and democratically (but not necessarily optimally) assign
agents to teams. A voting rule is a function mapping a vector a of voters’ votes
to one of the b candidates in a candidate set c.

Definition 12. [7] We define scoring rules for elections as follows. Let a =
〈a1, · · · , am〉 be a vector of integers such that a1 < a2 < . . . < am. For each
voter, a candidate receives a1 points if it is ranked first by the voter, a2 points if
it is ranked second, etc. The score sc of candidate c is the total number of points
the candidate receives .

For our procedure, a |C|m × |P | matrix of agent utility values becomes the
candidate set c. An “election” is run upon the candidate set to select the most-
preferred coalition. A set of m voters with the highest utility for that coalition
is selected to form a team and removed from the population. Their votes are
removed, and a new election is held on the reduced candidate set. This procedure
continues until all |P | agents have been matched to |P |/m teams. We assume that
m evenly divides |P |. The following pseudocode describes this greedy algorithm:

Algorithm 1 GreedyRTHGPartiton(RTHG instance G, empty partition π)

for |C| compositions c0 → c|C|−1 do
for m positions r0 → rm−1 ∈ ci do

calculate the sum of agent votes on 〈ci, rj〉. O(|P |)
end for

end for
for |P |/m coalitions t0 → t|P |/m−1 to assign to π do

find the set of compositions Cmax for which the sum of total votes is maximized.
O(|C| ·m)
select one composition ci uniformly at random from within the set.
for m positions r0 → rm−1 ∈ ci do

find the set of agents Pmax(ci, rj) for whom the individual agent’s vote for
〈ci, rj〉 is maximized. This takes time O(|P |/m), given that the population
shrinks by m agents as each team is formed and removed.
select one agent pj uniformly at random from within the set.
add agent pj to the coalition tk.
for |C| compositions c0 → c|C|−1 do

for m positions r0 → rm−1 ∈ ci do
remove agent pj ’s vote from the population, decrementing the sum total
vote on 〈ci, rj〉.

end for
end for

end for
append team tk to the partition π.

end for

Observation 4 The time complexity of GreedyRTHGPartiton is O(|P |2/m), or
O(|P | · |C| ·m) if |P | < |C| ·m2.

7 Testing and Results

For our experiments we chose Strictly Ordered RTHG instances. In a Strictly Or-
dered RTHG instance, each agent’s first choice of composition or role is weighted
equivalently to other agents’ first choices, as is her second choice, etc. The system
does not value one agent’s preferences over another.

Two hundred and forty instances of Strictly Ordered RTHG were generated
by a uniformly random procedure we developed. This number of cases allowed us

to test |P | ranging from 6 to 15 agents, |R| ranging from 3 to 6, and m ranging
from 3 to 5.

We began with |P | = 6, |R| = 3, and m = 3 in the minimal case. Ten random
preference matrices were generated with these arguments. We then incremented
|R| by 1 and generated ten new random preference matrices, up to |R| = 6. This
process was repeated for 〈m, |P |〉 = 〈4, 8〉, 〈5, 10〉, 〈3, 12〉, 〈4, 12〉, 〈5, 15〉. These
upper bounds were chosen because larger inputs dramatically increased the time
required for the brute force solvers to process the data.

Optimal results were calculated for each of these instances by MaxSum and
MaxMin brute force implementations we developed. There are

O(|P |! · (|C|+ |P |/m)|P |/m)

possible partitions in an instance of RTHG. We generate all of them and find the
MaxSum and MaxMin values for each instance considered. Our implementation
of GreedyRTHGPartiton ran each instance 500 times, in order to limit random
error. For the same instances, IS solutions were constructed by our implementa-
tion of ISLocalSearch. Fifty initial partitions were selected uniformly at random
for each instance as starting points for ISLocalSearch. We compared the mean
utilities of partitions generated by GreedyRTHGPartiton and ISLocalSearch to
the optimal results as |P | increased.

Computations were run on a machine using 8 GB of RAM and a 2.50 GHz
Intel(R) Core(TM) i5-3210M CPU. MaxSum and MaxMin brute force algorithms
were implemented in C++, while GreedyRTHGPartiton and ISLocalSearch were
implemented in Python 3.3.

Fig. 1. Percent underestimate of op-
timal MaxSum and MaxMin using
GreedyRTHGPartiton as |P | increases

Fig. 2. Percent underestimate of opti-
mal MaxSum and MaxMin using ISLo-
calSearch as |P | increases

Results are presented in Figures 1 and 2. We show the percentages by which
GreedyRTHGPartiton and ISLocalSearch overestimate optimal MaxSum and
MaxMin for each test case. The lower the percent overestimation the better.
Each figure shows the mean overestimation as |P | increases.

GreedyRTHGPartiton produces consistently better results for estimating Max-
Sum compared to MaxMin. The greedy heuristic may leave a very poor coali-
tion at the end, lowering MaxMin performance. Suppose there are 6 agents
A,B,C,D,E, and F being matched to 3 teams each of size 2. The best coalition
is AB, while the four worst coalitions are CDCE,CF, and EF. If A and B
form a coalition together in the first iteration, then the remaining two coalitions
selected will be among the worst possible. It may transpire that CD is the next
team to be formed, even if EF happens to be the worst coalition of all.

Total utility is balanced out by strong selections made at the beginning, rais-
ing the performance against MaxSum. In our experiments, GreedyRTHGPartiton
underestimates MaxSum utility by 68.38% and MaxMin by 105.76% on average.

ISLocalSearch performance against MaxMin and MaxSum optimal solutions
is close. There is an approximately linear increase in overestimation as |P | in-
creases, because there are increasingly many local optima as the size of the
input increases. In our experiments, ISLocalSearch underestimates the MaxSum
optimal utility by 93.62% and the MaxMin optimal by 90.88% on average.

To test the stability of GreedyRTHGPartition solutions, we ran each of its
outputs as input to the ISLocalSearch algorithm. We included an additional 80
inputs with |R| = 5 and m = 5, with |P | increased for every 10 inputs. The
results are shown in Figures 3 and 4. Defining Q as the number of iterations
required for ISLocalSearch to form an IS partition from GreedyRTHGPartition,
Q increases as |P | increases. The speed with which Q grows relative to |P | is
the ratio Q/|P |. This is the number of local search iterations required per unit
population. This ratio decreases at |P | increases, suggesting that fewer local
searches per unit population are required as |P | grows.

Fig. 3. Number of local searches to find
IS partition as |P | increases.

Fig. 4. Number of local searches per
unit population as |P | increases.

References

1. Haris Aziz and Florian Brandl. Existence of stability in hedonic coalition forma-
tion games. In Proc. Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2012),, 2012.

2. Haris Aziz, Felix Brandt, and Paul Harrenstein. Pareto optimality in coalition
formation. In G. Persiano, editor, Proc. International Symposium on Algorithmic
Game Theory (SAGT), Lecture Notes in Computer Science. Springer, 2011.

3. Haris Aziz, Felix Brandt, and Hans Georg Seedig. Computing desirable partitions
in additively separable hedonic games. Artificial Intelligence, 2012.

4. S. Banerjee, H. Konishi, and T. Sönmez. Core in a simple coalition formation
game. Social Choice and Welfare, 18:135–153, 2001.

5. Suryapratim Banerjee, Hideo Konishi, and Tayfun Sönmez. Core in a simple coali-
tion formation game. Social Choice and Welfare, 18(1):135–153, 2001.

6. A. Bogomolnaia and M.O. Jackson. The stability of hedonic coalition structures.
Games and Economic Behavior, 38(2):201–230, 2002.

7. Vincent Conitzer and Tuomas Sandholm. Communication complexity of common
voting rules. In Proceedings of the 6th ACM conference on Electronic commerce,
EC ’05, pages 78–87, New York, NY, USA, 2005. ACM.

8. Vincent Conitzer and Tuomas Sandholm. Complexity of constructing solutions in
the core based on synergies among coalitions. Artificial Intelligence, 170:607–619,
2006.

9. Andreas Darmann, Edith Elkind, Sascha Kurz, Jérôme Lang, Joachim Schauer,
and Gerhard Woeginger. Group activity selection problem. In Workshop Notes of
COMSOC-2012, 2012.

10. DFC. League of Legends Most Played PC Game. DFC Intelligence, 2012. http:

//www.dfcint.com/wp/?p=343.
11. J.H. Drèze and J. Greenberg. Hedonic coalitions: Optimality and stability. Econo-

metrica, 48(4):987–?, 1980.
12. Oded Goldreich. Computational Complexity, A Conceptual Perspective. Cambridge

University Press, 2008.
13. Anisse Ismaili, Evripidis Bampis, Nicolas Maudet, and Patrice Perny. A study

on the stability and efficiency of graphical games with unbounded treewidth. In
Proceedings of the 12th International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS-2013), 2013. To appear.

14. Maria Silvia Pini, Francesca Rossi, Kristen Brent Venable, and Toby Walsh. Sta-
bility in matching problems with weighted preferences. Proc. ICAART11, 2011.

15. Riot. League of Legends’ Growth Spells Bad News for Teemo — Riot Games.
Riot Games Inc, 2012. http://www.riotgames.com/articles/20121015/138/

league-legends-growth-spells-bad-news-teemo.
16. Riot. Let’s talk about Champ Select - Page 5 - League of Legends. Riot

Games Inc, 2013. http://na.leagueoflegends.com/board/showthread.php?p=

35559688#35559688.
17. Walid Saad, Zhu Han, Tamer Basar, M. Debbah, and Are Hjorungnes. Hedonic

coalition formation for distributed task allocation among wireless agents. In Proc.
IEEE Transactions on Mobile Computing, 2011.

18. Walid Saad, Zhu Han, Tamer Basar, Are Hjorungnes, and Ju Bin Song. Hedonic
coalition formation games for secondary base station cooperation in cognitive ra-
dio networks. In Wireless Communications and Networking Conference (WCNC),
pages 1–6, 2010.

19. Walid Saad, Zhu Han, Are Hjørungnes, Dusit Niyato, and Ekram Hossain. Coali-
tion formation games for distributed cooperation among roadside units in vehicular
networks. IEEE Journal on Selected Areas in Communications (JSAC), Special is-
sue on Vehicular Communications and Networks, 2011.

