
Nondeterminism Within P

Jonathan F. Buss∗

University of Waterloo
Judy Goldsmith†

Dartmouth College

Abstract

Classes of machines using very limited amounts of nondeterminism are
studied. The P =? NP question is related to questions about classes lying
within P . Complete sets for these classes are given.

AMS(MOS) Subject Classifications: 68Q15, 68Q05.
Key Words: nondeterminism, quasilinear time, computational complexity.

∗Supported in part by a grant from the Natural Sciences and Engineering Research Council
(NSERC) of Canada. Address: Department of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada N2L 3G1.

†Supported in part by National Science Foundation grant number RII-9003056. Current address:
Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2.

1 Introduction

Traditional complexity theory gives a distinguished role to the class P of languages
that are computable in polynomial time. Languages not in P are considered to
be computationally intractable. However, the converse assertion, that languages in
P have efficient solutions, is untenable. Historically, one reason for the choice of
polynomial time bounds was that no smaller class appears to be as robust against
change of model. We consider here subclasses of P , defined (roughly) according to
the exponent of the polynomial bounding the running time and also according to
the small amount of nondeterminism allowed. Of particular interest is the class of
languages computable in deterministic “quasilinear” time, which is less robust than
P with respect to change of model, but is much closer to being a practical notion
of feasible computation. We develop a complexity theory based on quasilinear-time
many-one reducibility that is analogous to the theory of polynomial-time reducibility.

We primarily consider the trade-off between time and nondeterminism. To re-
place nondeterminism by time in Turing machine computations is easy: one binary
nondeterministic choice may be eliminated by doubling the time. Two fundamen-
tal questions are whether nondeterminism can be eliminated at less cost in time,
and whether computation time can be decreased by adding nondeterminism. We
define subclasses of P by limiting the time bound to fixed degree polynomials, and
allowing nondeterminism over a fixed, polynomial-size search space. The inclusion
relationships among the classes are particular cases of the two fundamental ques-
tions. We show that sufficient separation among these classes lying inside P implies
that P 6= NP .

Let f and g be integer functions. We will write “f ∈ Q(g)” and say “f is of quasi-
order g” if there is a positive constant k such that1 f ∈ O(g logk g). For any positive
constant l, we denote by Pl the class of languages that can be accepted by a multitape
Turing machine whose running time on inputs of length n is of quasi-order nl. For
integers l ≥ 1 and m ≥ 0, we denote by NmPl the class of languages accepted by
nondeterministic machines in time of quasi-order nl making at most m log n binary
nondeterministic choices (all logarithms are base 2). For any m and l, NmPl is
contained in Pm+l. We will also consider the classes NP l having no bound on the
amount of nondeterminism. The classes P1 and NP1 have been previously studied
by Schnorr [16] under the names QL and NQL.

The logk n factors in the allowed time bounds have a number of important con-

1We will write “log n” to mean ⌊log
2
(n+ 1)⌋ throughout the paper.

1

sequences. First, the classes are independent of the number of tapes of a multitape
Turing machine. Second, quasilinear-time reducibility is transitive and preserves
membership in NmPl, for any m and l. Third, quasilinear time is large enough to
admit basic algorithmic techniques such as sorting and multiplication. For compu-
tation of practical importance, the input size is generally less than, say, 1012; hence
log n is bounded by 40, and ignoring arbitrary logarithmic factors is no worse than
ignoring arbitrary constant factors.

The notion of classifying problems according to the amount of nondeterminism
required has appeared previously; see, e.g., Kintala and Fischer [13] and Wolf [17].
Àlvarez, Dı́az and Torán [4, 8] consider a hierarchy, similar to the present one, of
classes lying between P and NP . Their hierarchy differs from the present one in two
ways. First, any polynomial is allowed in the running times, and second, the bound
on the number of nondeterministic choices that defines each class is a power of log n
rather than a multiple. Thus each class contains all of P , and the hierarchy does not
provide a classification among computations feasible in practice.

More similar in method to the present paper is the work of Geske [9], who consid-
ers relations among classes TIME (nl) and NTIME (nl), which are similar to Pl and
NP l, but more restrictive. Weaker variants of our Theorems 12 and 13 are obtained.

In a related work, Kaye [12] gives two logical characterizations of a family of
classes L(α), α ≥ 0, lying between linear time and P . Kaye’s class L2 is precisely
quasi-linear time.

Gurevich and Shelah [10] consider quasilinear-time reductions among various
models of random-access machines. They define nearly linear time, or NLT , and
show that the models they consider, including Kolmogorov machines, Schönhage
machines and random-access Turing machines, all compute the same NLT functions
in quasilinear time. They also show that the languages accepted nondeterministically
by any of these machines in quasilinear time are precisely those languages accepted
nondeterministically in quasilinear time by a multitape Turing machine (denoted
NQL in [16], herein NP1). They conjecture that the deterministic classes NLT and
QL (herein P1) are different. We offer some candidate languages for this separation.

Quasilinear-time reductions have been studied in other contexts as well. Hunt and
Stearns [11] define the notion of Turing-SAT-hard(n polylog n, n) in order to make
precise the notion that sets in NP have deterministic time and space complexity
no less than that of SAT. Their definition restricts the reductions considered to
quasilinear time and linear space complexity. Because the sets they consider are in
NP − P unless P = NP , their results do not provide much insight into the classes
considered here.

2

Abrahamson et al. [1, 2] study the complexity of families of languages parame-
terized by the size of an associated search space. The present paper concerns the
complexity of individual problems, which may or may not be part of a larger family.
The relationship between the two approaches is investigated in Section 4 below.

This paper is organized as follows. Section 2 gives some basic properties of the
classes NmPl and Pl. Section 3 shows that the classes have complete sets, and some
natural problems are considered as candidate complete sets. Section 4 contains a
discussion of the relationship of the present work to that of Abrahamson, et al. Sec-
tion 5 investigates relationships among the various classes NmPl. Section 6 concludes
with some open problems and directions for future work.

2 Preliminaries

The classes NmPl can be characterized in terms of witnesses, analogously to NP .

Theorem 1 For all m and l, a set A is in NmPl if and only if there is an R in Pl

such that for all strings x, x ∈ A ⇔ ∃y [|y| ≤ m log |x| ∧R(x, y)].

The proof is left to the reader.
Like most hierarchies of complexity classes, the limited-nondeterminism classes

exhibit downward separation (upward collapse).

Theorem 2 For all m and l,

1. if N1Pl ⊆ Pl, then N1Pk ⊆ Pk for all k ≥ l, and

2. if Nm+1Pl ⊆ NmPl, then NkPl ⊆ NmPl for all k ≥ m.

Proof (sketch). Suppose that N1Pl ⊆ Pl, and fix k > l and A ∈ N1Pk. Let R

be as guaranteed in the previous result. Let A′ = { x0⌊|x|
k/l⌋−|x| | x ∈ A }. Then

x0j ∈ A′ if and only if j = ⌊|x|k/l⌋ − |x| ∧ ∃y |y| ≤ log |x| ∧ R(x, y) if and only
if ∃y |y| ≤ log |x0j| ∧ R′(x0j, y), where R′ = { 〈x0j, y〉 | j = ⌊|x|k/l⌋ − |x| ∧ y ≤
log |x| ∧ R(x, y) }. Hence A′ ∈ N1Pl ⊆ Pl, and thus A ∈ Pk.

Now suppose that Nm+1Pl ⊆ NmPl, and fix k > m + 1 and B ∈ NkPl. There
exists S such that x ∈ B ⇔ ∃y |y| ≤ k log |x| ∧ 〈x, y〉 ∈ S. The latter condition is
equivalent to ∃y |y| ≤ (k − m − 1) log |x| ∧ S ′(x, y), where S ′ = { 〈x, y〉 | ∃z z ≤
(m+1) log |x| ∧ 〈x, yz〉 ∈ S } is in Nm+1Pl and hence in NmPl by assumption. Thus
B ∈ Nk−1Pl, which is contained in NmPl by induction.

The hierarchy also exhibits a kind of upward separation.

3

Theorem 3 Suppose that for all l, there is an m such that NmP1 is not contained

in Pl. Then P 6= NP.

The result follows immediately from Theorem 4.

Theorem 4 If P = NP, then there is an l such that NPk ⊆ Pkl for all k.

Proof. Let L be a complete set for NP1 with respect to quasilinear-time reductions.
(Schnorr has shown that SAT, the set of satisfiable Boolean formulas, is such a
set [16].) Suppose P = NP ; i.e., L is in Pl for some l. Let A ∈ NPk. Membership
questions of length n about A are reducible in time Q(nk) to membership questions
of length Q(nk) about L (using a padding argument and Schnorr’s result), which are
answerable in time Q(nkl) by assumption. Hence NPk ⊆ Pkl.

3 Complete sets

The sets NmPl all have complete sets under quasilinear-time reducibility. We con-
sider first a problem concerning acceptance by Turing machines. Let 〈 · 〉 be a coding
function for Turing machines such that given 〈M〉, a single step of M can be sim-
ulated by a multitape Turing machine in time proportional to log |〈M〉|. A unary
code will have the required property.

Define Gm
l = { 〈M〉#x#1j | M accepts input x within j|x|l−1 steps using at most

m log |x| nondeterministic choices }.

Theorem 5 For all m and l, Gm
l is complete for NmPl with respect to quasilinear-

time reductions.

Proof (sketch). The coding convention ensures that Gm
l ∈ NmPl. For A ∈ NmPl,

fix a machine M and constants r and s such that M halts in at most rnl logs n
steps, uses m log n nondeterministic choices on inputs of length n, and accepts A.
Let f(x) = 〈M〉#x#1r|x| log

s |x|. Then x ∈ A if and only if f(x) ∈ Gm
l , and f is

computable in time in Q(n). Hence f is the desired reduction from A to Gm
l .

In some cases, complete sets for NmPl can be obtained from NP -complete prob-
lems by bounding the size of allowable witnesses for membership. We first consider
topologically ordered Boolean circuits.2 A circuit is satisfiable if some setting of the

2A circuit is topologically ordered if each gate is numbered, and the inputs to a gate all have
lower numbers than the gate itself.

4

inputs results in an output of 1. Let CSAT(k) be the set of satisfiable, topologically
ordered circuits that have fewer than k log n inputs, where n is the number of gates
in the circuit. (Constants 0 and 1 are not counted as inputs.)

Theorem 6 For all k, CSAT(k) is complete for NkP1 with respect to quasilinear-

time reductions.3

Proof (sketch). The standard methods for proving the formula-satisfiability prob-
lem to be NP -complete can easily be modified to produce a circuit rather than a
formula. Schnorr [16] and Cook [7] have shown that the circuit (or formula) corre-
sponding to a given input for a fixed Turing machine may be constructed in quasi-
linear time. In particular, the circuit has quasilinear size. Also, it is topologically
ordered.

Let A ∈ NkP1, and let R ∈ P1 be such that x ∈ A ⇔ ∃y |y| ≤ k log |x| ∧
〈x, y〉 ∈ R, for all strings x. Let M accept R in quasilinear time. The circuit
CM(x) corresponding to M with input 〈x, y〉, for fixed x and undetermined y, has
size quasilinear in |x| and only k log |x| inputs. Hence x ∈ A if and only if CM(x) ∈
CSAT(k), and CSAT(k) is hard for NkP1.

Evaluation of a circuit at given inputs can be accomplished in quasilinear time
on a Turing machine using an algorithm of Pippenger [14]. Hence CSAT(k) is in
NkP1.

The satisfiability problem for formulas with a limited number of variables, SAT(k),
is perhaps easier than CSAT(k). The above proof of hardness of CSAT(k) does
not apply to SAT(k), because too many auxiliary variables are required in a for-
mula to simulate a Turing machine.4 In the absence of a hardness proof for the
restricted formula-satisfiability problem, hardness proofs for restrictions of other
standard NP -complete problems are problematic. In some cases, the natural restric-
tion is essentially as hard as the general case. For example, graph k-colorability
remains NP -complete when k is fixed at 3.

The restricted vertex-cover problem exhibits different behaviour. Let VC(k) be
the language of undirected graphs that have a vertex cover of size k. It is easy
to show that VC(k) is in Nk−1P1: the first k − 1 vertices of a cover can be chosen
nondeterministically, and the last vertex found by linear search. In fact, the language

3Dı́az and Torán [8] have shown that a variant of CSAT(k) is complete under logspace reductions
for their class βk, for each k.

4We return to the formula-satisfiability problem in section 4.

5

VC(k) can be accepted in linear time by the following algorithm due to S. Buss [6].
Given a graph G = (V,E),

1. Let U be the set of vertices of degree more than k. If |U | > k, then reject;
there is no cover of size k or less.

2. Let G′ be the subgraph of G induced by V −U . Every k-cover of G consists of
U together with a (k− |U |)-cover of G′. If G′ has more than k(k− |U |) edges,
then reject; G′ has no (k − |U |)-cover.

3. If G′ has a cover of size k − |U |, then accept; otherwise reject.

Steps 1 and 2 can easily be implemented in quasilinear time. If step 3 is reached,
then G′ has a bounded number of edges; hence step 3 requires Q(1) time. Therefore,
VC(k) is in P1, and a completeness proof for VC(k) would have strong consequences.

Theorem 7 If VC(k) is hard for N jP1 for some j ≥ 1, then NmP1 ⊆ P1 for all m.

The result follows immediately from Theorem 2.
The k-clique problem, although often regarded as a trivial variation on the k-

vertex cover problem, cannot be substituted for VC(k) in the above proof, because
the condition on the degrees does not hold. Clique remains as a candidate hard
problem for Nk−1P1.

Next, we consider the following problem concerning context-free grammars. Given
a grammar G = (N,Σ, P, S), does G generate any string comprising repetitions of a
single terminal; i.e., is L(G)∩

⋃

σ∈Σ σ∗ 6= ∅? Let UnaryGen be the set of grammars
for which the answer is yes.

Theorem 8 CSAT(1) ≤ql UnaryGen.

Proof. Let C be a circuit with n gates g1, . . . , gn. Assume without loss of generality
that gates gi with i ≤ log n are the inputs and gn is the output. Each gate gj is
represented by two nonterminal symbols Aj and A′

j. There are also n terminal
symbols b0, . . . , bn−1, each corresponding to one setting of the values of the input
variables. The start symbol is An.

The productions are determined as follows.

• If gi is an and-gate with predecessors gj and gk, use productions Ai 7−→ AjAk

and A′
i 7−→ A′

j | A
′
k.

6

• If gi is an or-gate with predecessors gj and gk, use productions Ai 7−→ Aj | Ak

and A′
i 7−→ A′

jA
′
k.

• If gi is a not-gate with predecessor gj, use productions Ai 7−→ A′
j and A′

i 7−→
Aj.

• For 1 ≤ i ≤ log n, for all j such that bit i of the binary expansion of j is 1, use
Ai 7−→ bj.

• For 1 ≤ i ≤ log n, for all j such that bit i of the binary expansion of j is 0, use
A′

i 7−→ bj.

The variable Aj derives a unary word if and only if gj evaluates to 1, and A′
j derives

a unary word if and only if gj evaluates to 0.

Lemma 8.1 For all 1 ≤ i ≤ n and 0 ≤ j ≤ n−1, Ai 7−→
∗ bkj for some k if and only

if gi evaluates to 1 when the input vector is the binary expansion of j. Similarly,

A′
i 7−→

∗ bkj for some k if and only if gi evaluates to 0 when the input vector is the

binary expansion of j.

Proof of lemma. Fix j. Define the level of a gate to be the length of the longest
directed path from the gate to any input. We use induction on the level of gate gi.

The base case is that gi is an input. Then gi evaluates to 1 iff bit i of j is 1 iff
Ai 7−→ bj iff Ai 7−→

∗ bj. Also gi evaluates to 0 iff bit i of j is 0 iff A′
i 7−→ bj iff

A′
i 7−→

∗ bj.
Suppose that the lemma holds for all gates with level at most l − 1, and let gi

have level l. If gi is an and-gate with predecessors gi1 and gi2 , then gi evaluates to
1 iff both gi1 and gi2 evaluate to 1 iff Ai1 7−→

∗ bk1j and Ai2 7−→
∗ bk2j for some k1 and

k2 iff Ai 7−→
∗ bk1+k2

j . Likewise, gi evaluates to 0 iff either gi1 or gi2 evaluates to 0 iff
A′

i1
7−→∗ bkj or A′

i2
7−→∗ bkj for some k iff A′

i 7−→
∗ bkj . The cases where gi is a negation

gate or an or-gate are similar.

The theorem follows immediately from the lemma.

The reduction given in the proof holds even if the circuit is not topologically or-
dered. If the circuit is ordered, then in the resulting grammar, every appearance of
each non-terminal in the left-hand side of a production occurs after every appearance
of the non-terminal on the right-hand side of a production. Call a grammar satis-
fying this condition an ordered grammar. Let UnaryGenord be the set of ordered
grammars in UnaryGen.

7

Theorem 9 UnaryGenord is complete for N1P1.

Proof. Because the reduction of the previous theorem produces an ordered gram-
mar from an ordered circuit, UnaryGenord is hard for N1P1.

To show that UnaryGenord is in N1P1, we use the following lemma.

Lemma 9.1 The emptiness problem for ordered context-free grammars is in deter-

ministic quasilinear time.

Proof of lemma. Call a nonterminal “true” if some terminal string can be derived
from it, and “false” otherwise. The grammar is then a network in the sense of
Pippenger [14], and thus can be evaluated in time Q(n).

Let G = (N,Σ, P, S) be an ordered grammar. Nondeterministically guess a
terminal σ ∈ Σ, using log |Σ| ≤ log |G| bits. Then eliminate all productions involving
terminals other than σ. Accept if an only if the resulting grammar generates a non-
empty language.

The above algorithm places UnaryGenord in N1P1, and hence it is complete.

4 Families of constrained-search problems

Many NP -complete problems involve a parameter that defines a constraint on the
associated search problem. Restriction of this parameter produces a problem whose
complexity falls into one of at least three classes. (1) The restricted problem may
be NP -complete; e.g., graph k-coloring, for any k ≥ 3. (2) Every fixed value of the
parameter may give the same polynomial complexity; e.g., vertex k-cover. (3) Every
fixed value of the parameter may give polynomial-time complexity, but the exponent
of the polynomial may depend on k. No instances of case 3 are proven, butCSAT(k),
k-clique and many other problems are candidates. The distinction between cases 2
and 3 has been recently investigated by Abrahamson, et al. [1, 2], who considered
families of associated search problems. We show here that limited nondeterminism
provides an alternative to their methods.

Consider the case of CSAT(k), for k ≥ 1. These languages form an infinite
collection of complete sets, one for each class NkP1. It is not an arbitrary collection,
however, since the complete set for NkP1 can easily be determined given k. We
describe this situation using the concept of language family. A language family

8

is a subset of Σ × N. The kth slice of a family B, denoted Bk, is the language
{x | (x, k) ∈ B }.

The class N∗Pj (for all j ≥ 1) consists of all families B with the following prop-
erties.

• The kth slice of B is a language in NkPj.

• There is a quasilinear-time-computable function f such that for all k, the value
of f(k) is the code of a Turing machine witnessing that the kth slice of B is
in NkPj. (An object x witnesses an existential property ∃y p(y) if and only if
p(x) is true.)

A language family C in N∗Pj is ≤ql-complete for N∗Pj if the following hold.

• For all k, the slice Ck is complete for NkPj .

• There is a quasilinear-time-computable function f such that for all k, the value
of f(k) is the code of a Turing machine witnessing that Ck is complete for NkPj.

For example, the family CSAT(∗) = { (x, k) | x ∈ CSAT(k) } is complete for N∗P1.
We draw a second example from Abrahamson, et al. [2]. Consider a Boolean

formula. A partial assignment of truth values to variables in the formula may induce
values on other variables if the formula is to be true. Consider a formula in conjunc-
tive normal form with three or fewer variables per clause (3CNF). If (a1 ∨ a2 ∨ a3) is
a clause, and all but one of the ai’s are false, then the remaining variable is induced
to assume the value true; if one variable ai is true, then the clause is true, and no
additional assignment is induced. If this procedure can be applied iteratively until
all clauses evaluate to true, then we say the original partial assignment caused the
formula to unravel. Let ShortSAT(k) be the set of 3CNF formulas B such that
some assignment to the first k log |B| variables causes B to unravel.5

A formula B =
∧k

i=1 Ci in conjunctive normal form unravels in order if each
initial subformula

∧j
i=1 Ci unravels. Let ShortSATord(k) be the set of formulas

B such that some assignment to the first k log |B| variables causes B to unravel in
order.

Theorem 10 ShortSATord(k) is ≤ql-complete for NkP1, and ShortSAT(k) is

≤ql-hard for NkP1, for all k.

5The definition in [2] allowed arbitrary CNF formulas instead of 3CNF. The difference appears
to be necessary for Theorem 10. It does not affect the results of [1].

9

Proof (sketch). We first show that CSAT(k) ≤ql ShortSATord(k). Let Γ be
an instance of CSAT(k). The corresponding formula ϕ has one variable for each
gate of the circuit, and two additional variables denoted z1 and z2. The first k log n
clauses of ϕ represent the input. The connections of a gate g in Γ are represented
in ϕ by a conjunction B of clauses. The conjunction B always unravels in ϕ, and
the only unravelling induces the variable representing g to take on the value of g.
The final clause of ϕ unravels if and only if the circuit evaluates to 1.

The clauses are as follows.

• For each input variable xi of Γ, the corresponding clause is (xi ∨ ¬xi).

• If g is an and-gate with predecessors a and b, then the corresponding conjunc-
tion is (¬a ∨ ¬b ∨ g) ∧ (a ∨ ¬g) ∧ (b ∨ ¬g).

• If g is an or-gate with predecessors a and b, then the corresponding conjunction
is (a ∨ b ∨ ¬g) ∧ (¬a ∨ g) ∧ (¬b ∨ g).

• If g is a not-gate with predecessor a, then the corresponding conjunction is
(a ∨ ¬g) ∧ (¬a ∨ g).

• If the output gate is gout, the final clause is (gout ∨ z1 ∨ z2).

The reader can easily check that the formula has the required properties.
To show that ShortSATord(k) ≤ql CSAT(k), let ϕ be a formula in 3CNF, with

clauses {ϕi}
c
i=1. Each clause ϕi will be represented by a circuit Ci, whose inputs will

be outputs of the circuits representing earlier clauses. We assume without loss of
generality that no variable appears twice in any one clause.

Consider ϕi = vi1∨vi2∨vi3. The corresponding circuit Ci will have six inputs and
six outputs. The circuit Ci will compute the status of each literal vij (either a variable
or a negated variable) and produce two corresponding output values. Output vij(1)
is given value 1 iff the unravelling procedure assigns a value to vij at or before clause
ϕi. If vij(1) = 1, then output vij(2) is given the value assigned to vij.

The inputs to Ci are determined by the last occurrences of the variables of ϕi

previous to ϕi itself. Denote by v′ij the last literal containing the variable of vij
appearing in ϕ before ϕi. The first input corresponding to vij is v

′
ij(1). The second

input corresponding to vij is v′ij(2) if vij and v′ij are both positive or both negative
literals, and is ¬v′ij(2) otherwise. The construction of Ci is straightforward except
for the identification of the input literals v′ij.

10

If each v′ij is found individually, the construction of the entire circuit may take
quadratic time. Hence the successive occurrences of each variable must all be deter-
mined at once, as follows. For each vij, form a triple (x, i, j), where x is the index
of the variable ocurring in vij. Sort the triples, using the order (x, i, j) < (y, k, l) iff
x < y or x = y and i < k. If (x, i, j) and (x, k, l) are adjacent in the sorted list, then
v′kl = vij; form a quadruple (i, j, k, l). Sorting these quadruples gives the required
adjacency information, in the order needed to construct the circuit in topological
order.

The final circuit comprises all subcircuits Ci and an additional output subcircuit.
The output subcircuit computes

∧c
i=1

∨3
j=1

(

vij(1) ∧ vij(2)
)

, which has value 1 if and

only if the original formula ϕ unravels in order.

The family ShortSATord(∗) = { (x, k) | x ∈ ShortSATord(k) } is thus com-
plete for N∗P1.

Theorem 11 For all k, ShortSAT(k) ∈ NkP2.

Proof (sketch). To determine whether a formula ϕ is in ShortSAT(k), it suffices
to nondeterministically guess the values of the initial k log |ϕ| variables, and then
make at most |ϕ| passes through ϕ, inducing variables and propagating their values.

A language family C is ≤ql-hard for N∗Pj if the following hold.

• For all k, there is a k′ ≥ k such that Ck′ is ≤ql-hard for NkPj.

• There is a quasilinear-time-computable function f such that for all k, the value
of f(k) is the code of a Turing machine witnessing that Ck′ is ≤ql-hard for NkPj.

For example, ShortSAT(∗) = { (x, k) | x ∈ ShortSAT(k) } is ≤ql-hard for N∗P1.
The family G∗ = { (G0

k, k) | k ≥ 1 } is ≤ql-hard for N∗Pl, for every l.
Finally, a language family C is weakly ≤ql-complete for N∗Pj if it is both in

N∗Pj and ≤ql-hard for N∗Pj . One example of a weakly complete set for N∗P1 is
{ (x, 2k) | x ∈ CSAT(k).

The definition of N∗Pj is motivated by the work of Abrahamson, et al. [1, 2]
on their class PGT . Their work focused on families of problems in P , usually
generated by parameterized problems in NP , such as ShortSAT() and CSAT().
The class PGT is roughly equivalent to the notion “in some N∗Pj and hard for
some N∗Pk.” The major differences are that PGT includes non-uniform families and

11

that reductions may be non-uniform; in the terms of this paper, the functions f
above are not required to be computable. All of the complete families considered
by Abrahamson, et al., hovever, are uniform and are examples of families in some
N∗Pj and hard for some N∗Pk. Thus, their work provided examples of sets in the
classes N iPk, some of which were also hard for classes N iP1. Further work on limited
nondeterminism is likely to yield additional complete sets for PGT .

5 Relationships among the classes

The classes NmPl bear a strong analogy to NP ; however, the analogy should not be
taken too far. For example, one might conclude from Theorem 3 that NP l behaves
as a limiting case of NmPl as m goes to infinity. This conclusion, however, can be
false in the presence of an oracle. Denote by CX the class C relative to oracle X.
The results of Section 2 hold relative to any oracle X.

Theorem 12 There is an oracle A such that NmPA
k = PA

k for all m and k, and yet

NPA 6⊆ PA.

Proof. By Theorem 2, we need only show that N1PA
1 = PA

1 and PA 6= NPA.
Fix an enumeration {Mi}

∞
i=1 of nondeterministic machines such that Mi runs

in quasilinear time and makes at most log n nondeterministic choices on inputs of
length n. Fix an enumeration {Ti}

∞
i=1 of deterministic machines such that Ti runs

for at most pi(n) = ni + i steps on inputs of length n.
We construct A to have the following two properties for all i.

Ci: The coding condition: For all strings x and all positive integers s, the string
02s#i#x is in A if and only if MA

i (x) accepts within s steps. (Note that MA
i (x)

cannot query whether 02s#i#x is in A within s steps.)

Di: The diagonalization condition: The language LA = { 1n | ∃y |y| = n ∧ 1ny ∈
A } is not accepted by Ti.

The construction proceeds in stages. During stage k, all strings of length k are fixed
to be in or out of A, in such a way that conditions Ci hold up to length k. In
addition, some strings of length longer than k may be fixed to satisfy some condition
Di. Because each string is fixed exactly once during the construction, the oracle A
is well-defined. In fact, A is computable in space nO(log n).

12

Initially, all strings are unfixed. Set k = d = l = 1; k is the stage number, d is
the current diagonalization condition, and l is a lower bound on the input at which
condition Dd can be satisfied.

Stage k: For all strings z of length k of the form z = 02s#i#x for some i, x
and s, fix z in A if Mi accepts x with oracle A in ≤ s steps, and otherwise fix z
out of A. (Note that this condition is determined by the preceding stages of the
construction.) Fix all strings of length k not of the above form out of A. If k < l or
2k ≤ pd(k)

1+log pd(k), then stage k is complete—continue to stage k + 1.
If k ≥ l and 2k > pd(k)

1+log pd(k), then a diagonalization condition can be satisfied.
Simulate Td on input 1k. When Td queries a string z not yet fixed, there are two
cases.

1. If z = 02s#i#x for some i, x and s, then simulate Mi on input x for s steps,
and fix z accordingly. Fix strings queried during the simulation by applying
these cases recursively.

2. Otherwise, fix z out of A.

If Td accepts 1k, then fix all remaining strings of the form 1ky with |y| = k out of A.
If Td rejects 1

k, then fix all remaining strings of the form 1ky with |y| = k to be in A.
In either case, set l = pd(k), increase d by one, and continue to stage k + 1.

End of stage k.

We first show that the construction can be carried out.

Lemma 12.1 If the construction simulates Td on input 1k, then some string 1ky
with |y| = k remains unfixed at the end of the simulation.

Proof of lemma. The parameter l is an upper bound on the length of strings
that have been fixed due to any diagonalization attempt prior to stage k. Because
k ≥ l at the start of the simulation of Td, all of the 2

k strings 1ky are unfixed at that
time.

Let S(n) be the maximum number of strings fixed during the simulation of some
MA

i (x) for s steps, where |02s#i#x| = n. In s steps, MA
i (x) queries fewer than

s2log |x| < n2 strings over all of its nondeterministic computations, and each queried
string has length less than n/2. Hence S(n) < n2S(n/2), and S(1) = 1. Therefore,
S(n) ≤ nlogn.

13

Td runs for at most pd(k) steps; therefore, the total number of strings queried
during the simulation is at most pd(k) · S(pd(k)) ≤ pd(k)

1+log pd(k) < 2k. Hence some
string of the form 1ky with |y| = k remains unfixed.

Lemma 12.2 The set A constructed as above satisfies conditions Ci and Di for all i.

Proof of lemma. Each string of the form 02s#i#x is eventually fixed in or out
of A. Such a string is fixed only after the acceptance or rejection of MA

i (x) within
s steps is determined, and is fixed according to that acceptance or rejection. Hence
condition Ci holds for all i.

Because pd(n)
1+log pd(n) = o(2n), each value of d is eventually considered at some

stage k. The previous lemma ensures that condition Dd is established following the
completion of stage k.

Conditions Ci together imply that N1PA
1 = PA

1 , and hence NmPA
k = PA

k for all k
and m by Theorem 2. Conditions Di together imply that LA ∈ NPA − PA.

Informally, Theorem 12 shows that large amounts of nondeterminism can be
useful even if small amounts are not. The reverse is also possible—a large amount
of nondeterminism may be no more advantageous than a small amount.

Theorem 13 There is an oracle B such that PB
m 6= N1PB

m and N1PB
m = NPB

m for

all m.

Proof. The proof depends in a small way on the definition of an oracle machine.
There are two possibilities to be considered. If the query tape is erased following
a query, define δ = 0. If the query tape is not erased following a query, define
δ = 1. Although the relativized classes depend on the model used (see Buss [5]), the
necessary properties for the present proof are captured by the value of δ.

Let {Ml,i}
∞
l,i=1 be an enumeration of nondeterministic oracle machines, and let

{Tl,i}
∞
l,i=1 be an enumeration of deterministic oracle machines, such that both Ml,i

and Tl,i are clocked to run for pl,i(n) = nl logi n + i steps. We construct B to meet
the following conditions.

1. Coding conditions: For all l and i, for all sufficiently large x, MB
l,i(x) ac-

cepts if and only if there is a string y of length (1 + δl) log |x| such that
0pl,i(|x|)#l#i#x#y is in B.

14

2. Diagonalization conditions: For all l, the language

Ll = {x | ∃y |y| = (1 + δl) log |x| ∧ 1|x|
l

xy ∈ B }

is not accepted by TB
l,i for any i.

Condition 1 implies that NPB
l ⊆ N1PB

l for all l, because log |x| bits of y can
be guessed nondeterministically, and if δ = 1, the remaining l log |x| bits found by
exhaustive search in time O(nl). (If a string is erased upon being queried, each
query of a coding string requires Q(nl) steps, and the search cannot be carried out
deterministically.) Condition 2 implies that Ll ∈ N1PB

l − PB
l .

Let 〈·, ·〉 be a pairing function from positive integers to positive integers; e.g., let
〈l, i〉 = (l2 + i2 + 2li − 3l − i + 2)/2. To start the construction, set k = d = b = 1;
k is the stage number, d the current diagonalization condition, and b the barrier so
that diagonalizations do not overlap. Throughout, l and i will be determined by
d = 〈l, i〉. Once again, at stage k, all strings of length k will be fixed in or out of B.

Stage k: If possible, pick an integer k̂ such that b < k̂ < k1/l, pl,i(k̂) < k̂l+(1/d)

and k̂l + k̂ + (1 + δl) log k̂ ≥ k. If k̂ exists, then a diagonalization condition can be
satisfied. Otherwise, continue immediately to the coding part of the stage.

To satisfy the diagonalization condition, simulate Td on input 1k̂. If Td queries a
string not yet fixed, fix that string to be out of B. (This may fix a coding string. See

below.) At the end of the simulation, if TB
d (1k̂) accepts, fix all strings of the form

1k̂
l+k̂y with |y| = (1 + δl) log k to be out of B. If TB

d (1k̂) rejects, fix all remaining

strings 1k̂
l+k̂y with |y| = (1 + δl) log k to be in B. Set b = pl,i(k̂) + 1, and increase d

by one.
After the diagonalization condition is considered, satisfy the possible coding con-

ditions up to length k, as follows. For all unfixed strings z of length k having the
form 0pm,j(|x|)#m#j#x#y for some m, j, x and y with |y| = (1 + δm) log |x|, fix z
in B if MB

m,j(x) accepts and fix z out of B if MB
m,j(x) rejects.

End of stage k.

For each fixed l, i and d, the conditions on k̂ are satisfied for infinitely many
values of k. Therefore, each diagonalization condition will eventually be satisfied,
and Ll ∈ N1PB

l − PB
l for all l.

Coding strings may be fixed during diagonalization stages. However, for each
fixed m and j, there is a bound on the size of x such that a coding string for Mm,j(x)

15

may be fixed during a diagonalization. A given coding string for Mm,j may be fixed
out of B during the diagonalization against at most one Tl,i, at some stage k. Since
all strings of length less than k are fixed before stage k, the stage number satisfies
k ≤ |0pm,j(|x|)#m#j#x#y| = Q(|x|m). Note that k < c|x|m+1/3 for some c and all
sufficiently long strings x. At most pl,i(k̂)/k

1−δ strings of length k are fixed during

the diagonalization. The conditions on k̂ imply that pl,i(k̂)/k
1−δ is bounded by

k̂l+(1/d)kδ−1 < kδ+(1/dl), which is less than |x|1+δm when d > 3m and x is sufficiently
long. Since d is nondecreasing and unbounded, each Mm,j will be correctly coded for
all but finitely many x, and condition 1 will be satisfied.

Therefore, the oracle B meets the required conditions.

We expect that neither oracle A nor B represents the unrelativized case. The
following result seems more likely.

Theorem 14 There is an oracle C such that N iPC
j 6= NkPC

l for all distinct pairs

(i, j) and (k, l). Also PC 6= NPC.

Proof. Each class N iPj satisfies the following conditions.

1. Let X be any oracle, and let A ∈ N iPX
j . For each string x, to test if x ∈ A

requires only finite knowledge of X.

2. For all oraclesX and Y that differ on only finitely many strings, N iPX
j = N iP Y

j .

3. For all oracles X, and for all sets A and B that differ on only finitely many
strings, A ∈ N iPX

j if and only if B ∈ N iPX
j .

4. Let X be any oracle, and let machine M accept A in N iPX
j . Then there are

an oracle X∗ and machine M∗ running in N iPj such that

• N iPX
j = N iPX∗

j ,

• M∗ with oracle X∗ accepts the language A, and

• for all oracles Y and Z that differ on only finitely many strings, the
language accepted byM∗ with oracle Y differs from the language accepted
by M with oracle Z on at most finitely many strings.

Conditions 1, 2, and 3 are immediate. The oracle X∗ of condition 4 is simply X×N.
Machine M∗ acts as M except that a query s is replaced by 〈s, n〉, where n is the
length of the input.

These properties permit the use of a result of Poizat [15].

16

Lemma 14.1 (Poizat) Let S and T be two classes that satisfy conditions 1–4

above, with the same mapping X 7→ X∗. Suppose that there is an oracle X such

that SX 6= T X . Then SG 6= T G for all generic sets G.

Hence one may reverse the order of quantifiers in the statement of the theorem.

Lemma 14.2 For all distinct pairs (i, j) and (k, l), there is an oracle C such that

N iPC
j 6= NkPC

l .

Proof (sketch). If j 6= l, the desired oracle is the set A of Theorem 12, because
PA
j 6= PA

l . (An alternative proof may be obtained via a diagonalization using queries

of length nmax{j,l} on inputs of length n.)
Suppose j = l and i < k. For an oracle C, define LC = {x | ∃y |y| = k log x ∧

xy ∈ C }. A standard diagonalization constructs a C such that LC /∈ PC
i+j. Because

LC ∈ NkPC
l , the desired result follows.

The previous lemmas imply that N iPC
j 6= NkPC

l for all generic oracles C.

Theorems 12 and 13 indicate that mere equality or inequality among the classes
NmPl is insufficient to determine whether P = NP . It is consistent either that small
amounts of nondeterminism (m log n bits) are useful, but large amounts (polyno-
mially many bits) are no more useful, or that small amounts of nondeterminism
are useless, but large amounts are quite powerful. However, additional information
about the complexity of these classes, such as in the hypothesis of Theorem 3, can
suffice to decide P =? NP .

6 Conclusions and open problems

We have shown several problems to be complete for quasilinear time with restricted
nondeterminism. Satisfiability of topologically ordered circuits with k log n inputs
and ordered unravelling of Boolean formulas are each complete for NkP1, and a prob-
lem concerning context-free grammars is complete for N1P1. All of these complete
problems require that the input be ordered appropriately. The corresponding un-
ordered problems remain hard for NkP1, but do not appear to be in any class below
NkP2. If random-access machines were used as the underlying model of computation
instead of Turing machines, then the unordered problems would be in quasilinear
time, but the hardness proofs would fail, due to our inability to simulate random
access.

17

One motivation for this work, as yet unrealized, was to provide general lower
bounds for problems of “nearly feasible” complexity. Existing lower bounds usually
apply to restricted models of computation, such as one-tape Turing machines or
constant-depth circuits, or prove only very large lower bounds, as in the proofs of
hardness for exponential time. A proof that some problem S is hard for a particular
Pk or N jPk (k > 1) is a general lower bound on the time complexity of problem S.
Although S may already be known to be in P , and thus be considered “feasible,” such
a hardness proof would give concrete information about the practical complexity of S.
The only results of this kind known to the authors are for certain pebble games [3].

This paper leaves many questions unanswered. Although the most dramatic
question is whether the hypothesis of Theorem 3 holds, there are other, more ap-
proachable questions. There are several problems that are easily shown to be in
Gurevich and Shelah’s class NLT , but are not known to be in QL. These include
topological sorting, and the problem of generalized Boolean formulas (shown to be
NLT -complete in [10]). Providing QL algorithms for these problems, or showing
that none exist (i.e., that NLT 6= QL), would give us important information about
the power of random access.

The fundamental question remains whether there are problems in P that can be
computed more quickly with limited nondeterminism than without it. For instance,
can one show a Q(nk) deterministic lower bound for (k+1)-clique, or for CSAT(k)?

Acknowledgements

The authors thank N. Immerman, M. Groszek, A. Klapper, A. Peterson, W. L.
Ruzzo and A. Selman for useful discussions of this material.

References

[1] K. R. Abrahamson, J. A. Ellis, M. R. Fellows and M. E. Mata, “On the Complex-
ity of Fixed Parameter Problems,” in 30th Annual Symposium on Foundations

of Computer Science, IEEE Computer Society Press, 1989, pp. 210–215.

[2] K. R. Abrahamson, J. A. Ellis, M. R. Fellows and M. E. Mata, “Completeness
for Families of Fixed Parameter Problems,” U. Victoria (Canada) report DCS-
141-IR, 1990.

18

[3] A. Adachi, S. Iwata and T. Kasai, “Some Combinatorial Game Problems Re-
quire Ω(nk) Time,” J. Assoc. Comput. Mach. 31 (1984) 361–376.

[4] C. Àlvarez, J. Dı́az and J. Torán, “Complexity Classes With Complete Problems
Between P and NP -Complete,” in Foundations of Computation Theory, Lecture
Notes in Computer Science 380, Springer-Verlag, 1989, pp. 13-24.

[5] J. F. Buss, “Relativized Alternation and Space-Bounded Computation,” J.

Comput. System Sci. 36 (1988) 351–378.

[6] S. R. Buss, personal communication.

[7] S. A. Cook, “Short Propositional Formulas Represent Nondeterministic Com-
putations,” Inform. Process. Lett. 26 (1987/88) 269–270.

[8] J. Dı́az and J. Torán, “Classes of Bounded Nondeterminism,” Math. Systems

Theory 23 (1990) 21–32.

[9] J. G. Geske, On the Structure of Intractable Sets, Ph.D. thesis, Iowa State
University, 1987.

[10] Y. Gurevich and S. Shelah, “Nearly Linear Time,” in A. R. Meyer and M.
A. Taitslin, eds., Logic at Botik ’89, Lecture Notes in Computer Science 363,
Springer-Verlag, 1989, pp. 108–118.

[11] H. B. Hunt, III, and R. E. Stearns, “The Complexity of Very Simple Boolean
Formulas with Applications,” SIAM J. Comput. 19 (1990) 44–70.

[12] R. Kaye, “Characterizing some low complexity classes using theories of arith-
metic,” M.Sc. thesis, University of Manchester, 1985.

[13] C. M. R. Kintala and P. C. Fischer, “Refining Nondeterminism in Relativized
Polynomial-Time Bounded Computations,” SIAM J. Comput. 9 (1980) 46–53.

[14] N. Pippenger, “Fast Simulation of Combinational Logic Circuits by Machines
without Random-Access Storage,” in Fifteenth Allerton Conference on Com-

munication, Control, and Computing, 1977, pp. 25–33.

[15] B. Poizat, “Q = NQ?,” J. Symbolic Logic 51 (1986) pp. 22–32.

19

[16] C. P. Schnorr, “Satisfiability is Quasilinear Complete in NQL,” J. Assoc. Com-

put. Mach. 25 (1978) 136–145.

[17] M. J. Wolf, Limited Nondeterminism in Parallel Models of Computation, Ph.D.
Dissertation, University of Wisconsin, 1990.

20

