
Learning CP-net Preferences Online from User
Queries

Joshua T. Guerin1, Thomas E. Allen2, and Judy Goldsmith2

1 The University of Tennessee at Martin jguerin@utm.edu
2 University of Kentucky {teal223,goldsmit}@cs.uky.edu

Abstract. We present an online, heuristic algorithm for learning Condi-
tional Preference networks (CP-nets) from user queries. This is the first
efficient and resolute CP-net learning algorithm: if a preference order
can be represented as a CP-net, our algorithm learns a CP-net in time
np, where p is a bound on the number of parents a node may have. The
learned CP-net is guaranteed to be consistent with the original CP-net
on all queries from the learning process. We tested the algorithm on ran-
domly generated CP-nets; the learned CP-nets agree with the originals
on a high percent of non-training preference comparisons.

1 Introduction

To support decision making, an intelligent agent often requires some way to learn
what a human user prefers and concisely represent those preferences. CP-nets
[1] offer a potentially compact qualitative representation of human preferences
that operate under ceteris paribus (“with all else being equal”) semantics. In this
paper we present a novel algorithm through which an agent learns the preferences
of a user. CP-nets are used to represent such preferences and are learned online
through a series of queries generated by the algorithm. Our algorithm builds a
CP-net for the user by creating nodes and initializing Conditional Preference
Tables (CPTs), then gradually adding edges and forming more complex CPTs
consistent with responses to queries until a confidence parameter is reached
or no further progress can occur. The algorithm does not always converge to
the original CP-net, but our experiments show that it can learn a CP-net that
closely tracks with the original for a set of outcome comparison queries not used
in the learning phase. While one could treat the model learning process as one
of replicating the structure of the original (latent) CP-net, we assume here that
this is unnecessary, as long as the preferences modeled by the two networks differ
by very little.

The problem of learning CP-nets from example data is known to be hard
in general, even for acyclic, binary CP-nets (the class we consider here), and
also for separable CP-nets (such as we use in the first phase of our algorithm;
see Def. 1) [2, 3]. This has led to a diversity of proposed methods for learning
CP-nets: a regression-based approach [4, 5], Angluin-style query learning [6, 7],
learning via reduction to 2-SAT [8], and learning a CP-net indirectly via the

exponentially larger preference graph [9]. Our work builds upon this body of
previous research, particularly that of [2, 3] and [8], but differs in several notable
respects. First, our method is designed for an active, online environment in which
the agent directly interacts with the user, rather than one in which the user’s
actions can be observed over time. Second, in our queries we allow for arbitrary
outcome comparisons rather than (as in [6, 7]) restricting to swap comparisons
where outcomes differ in at most one variable. We believe our approach better
reflects the rich environment in which human decisions are often made. Third,
our algorithm is robust ; unlike [8], for example, it will always output a CP-net.
Finally, given a constant bound on the number of parents, our algorithm can
learn a CP-net in polynomial time. This differs in particular from that of [9],
which in the worst case is of double-exponential complexity in the number of
variables.

The remainder of our paper is organized as follows: In Sec. 2 we review the
use of CP-nets to model preferences. In Sec. 3 we present the algorithm itself,
followed by analysis in Sec. 4. Section 5 consists of a series of experiments and
significant results. We conclude with opportunities for future research.

2 Modeling Preferences with CP-nets

Consider a recommender system that assists customers in purchasing a guitar.
The customer surely cannot consider every possible guitar, but will buy one that
is satisfactory, given her preferences. Various factors differentiate the possibili-
ties, such as brand, body, and color. We assume the customer can consistently
rank alternatives: presented two guitars, she can say, “I prefer the first to the
second.” We further assume the customer can make more general comparisons,
such as, “In general, I prefer the Fender brand to Gibson.” But offered several
alternatives, that customer may ultimately prefer a specific Gibson guitar based
on other factors; that is, the user’s preferences may be conditional.

More formally, by preference, we mean a strict partial order � over a finite
set of outcomes O by a user. Such outcomes can be factored into variables V
with associated (binary) domains Dom(V): O = v1 × v2 × · · · × vn. We call o[i]
the projection of outcome o onto variable vi and o[U] the projection onto a set of
variables U ⊆ V. Note that the number of outcomes and orderings is exponential
in the number of variables. CP-nets can offer a more compact representation.

Definition 1. A CP-net N is a directed graph. Each node vi represents a pref-
erence over a finite domain. An edge (vi, vj) indicates that the preference over
vj depends on the value of vi. If a node has no incoming edges, the preference
involving its variable is not conditioned on values represented elsewhere in the
graph. A separable CP-net is one in which no variable depends on any other.

Definition 2. A conditional preference table (CPT) is associated with each node
vi and specifies the preference over Dom(vi) as a function of the values assigned
to its parent nodes Pa(vi). If a CPT has an entry for every combination of
values from the domains of its parents, we say it is complete.

We define the size of a CPT as its number of rows. The size of a CP-net is the
sum of the sizes of its CPTs. One can observe that if a node vj has incoming edges
from k parents, each representing binary variables, then size(CPT(vj)) = 2k.
Thus size grows exponentially in the number of parents. To guarantee tractabil-
ity, we make some simplifying assumptions: 1. Cycles are disallowed. 2. We re-
strict to binary domains. 3. A maximum bound p is placed on the number of
parents a node may have: We conjecture that most human preferences are con-
ditioned on 3–5 nodes and thus feel justified in assuming such a bound.

Example 1. Consider the CP-net to the right
representing a conditional preference: The edge
from brand to color indicates that the cus-
tomer’s preference of color depends on brand.
The CPTs associated with each node provide the
ordering. In general, the customer prefers Fender
to Gibson. If a Fender is available, she prefers red,
but if only a Gibson is available, she prefers gold.

COLOR

Fender Gibson≻

Fender : red gold≻
Gibson : gold red≻

BRAND

Fig. 1. Simple CP-net

3 Algorithm

Our algorithm consists of two phases. First, it constructs a separable CP-net with
default CPTs. Next, it successively attempts to refine the model, adding edges
and learning more complex CPTs consistent with evidence from user queries.
(See Learn-CP-Net and its subroutine Find-Parents [Alg. 1 and 2]).

3.1 Phase 1: The Separable CP-net Basis

In Phase 1 (Alg. 1, lines 1–9), our algorithm constructs a separable CP-net basis
by asking the user to provide a default preference for each vi ∈ V. This initial
CP-net could be characterized as a first impression of the user’s preferences.

Definition 3. Let vi be a binary variable with Dom(vi) = {xi, yi}. An attribute
comparison query is one in which we ask the user whether xi � yi or yi � xi.

Here we assume that the user is able to reflect on possible outcomes and discern
what she prefers most of the time. (In our experiments, as discussed in Sec. 5.1,
we simulate the user’s response to such queries by reporting a preference that
occurs most frequently in CPT(vi).) The result is a CP-net with default CPTs
and no edges. If we were confident that the user’s preference over each attribute
did not depend on the value of any other attribute, we could return N as the CP-
net that consistently modeled the user’s preferences. At this point, however, we
are unconfident of each node’s parentage. We maintain disjoint sets Confident
and Unconfident such that vi ∈ Confident iff enough data has been collected
via user queries to conclude that the preferences over vi are conditioned only
by its parent variables in the graph of N ; otherwise vi ∈ Unconfident . Initially
Unconfident = V and Confident = ∅.

Example 2. Nodes body and brand have
been inserted into N along with their default
CPTs. A node and CPT must now be created
for color. The agent asks the customer,
“In general, do you prefer a guitar that is
red or gold?” The user replies that gold is
usually preferred, and a node and CPT is in-
serted. The resulting CP-net basis is shown.

heavy light≻

BODY COLORBRAND

Gibson Fender≻ gold red≻

Fig. 2. Separable CP-net Basis

Algorithm 1 Learn-CP-Net(V, p, q)

Input: V a set of binary variables
p maximum number of parents
q confidence threshold parameter

Global: Comparisons responses to user queries
Confident set of learned nodes

Output: N the CP-net learned from the user

1: N ← ∅
2: Comparisons ← ∅
3: Confident ← ∅
4: Unconfident ← V
5: for vi ∈ V do
6: query user: do you prefer xi � yi or yi � xi?
7: vi.CPT ← default CPT based on user response
8: insert vi into N
9: end for

10: repeat
11: for r ← 0 to p do
12: for vi ∈ Unconfident do
13: (P,C)← Find-Parents(vi, r, q)
14: if C 6= FAIL then
15: vi.CPT ← C
16: add edges from all P to vi
17: move vi from Unconfident to Confident
18: end if
19: end for
20: end for
21: until no parents added this iteration
22: return N

3.2 Phase 2: Refining the CP-net Model

In Phase 2 we refine N by discovering such conditional relationships as may
exist between variables by asking the user’s preference over pairs of outcomes.

Algorithm 2 Find-Parents(vi, r, q)

Input: vi node representing ith variable
r the number of parents in the trials
q confidence threshold parameter

Global: Comparisons responses to user queries
Confident set of learned nodes

Output: C a CPT with 2r rows or FAIL
P newly parents discovered for vi or ∅

1: for P ∈ {all subsets of Confident of size r} do
2: (C, evidCount)← Create-CPT(vi, P)
3: while (C 6= FAIL) and (evidCount < q) do
4: (o1, o2)← generate random query for vi
5: query user: do you prefer outcome o1 or o2?
6: add o1, o2 to Comparisons in specified order
7: (C, evidCount)← Create-CPT(vi, P)
8: end while
9: if C 6= FAIL then

10: return (P,C)
11: end if
12: end for
13: return (∅, FAIL)

Definition 4. In an outcome comparison query, we provide the user a pair of
outcomes, {o1, o2} ∈ O such that o1 6= o2. The user responds with o1 � o2,
o2 � o1 or o1 on o2, respectively indicating that she strictly prefers the first
outcome to the second, the second to the first, or is unable to state a preference.

If the user is able to answer an outcome comparison query with either o1 � o2
or o2 � o1, we treat the response as evidence of the user’s underlying preference
model. If the user cannot state a preference, we treat that as an indication that
the two outcomes are incomparable. We expect that the user will provide consis-
tent answers to the same outcome query and hence ensure that each unordered
pair of outcomes is asked at most once. Responses are stored in a Comparisons
database, gradually adding to the evidence used to construct the model CP-net.
Outcome pairs are generated randomly, with the constraint that the pair must
be relevant to the node under consideration and not already in Comparisons.

Definition 5. For any given vi, random query is an outcome comparison query
in which o1 and o2 are selected uniformly randomly from their domains, with
the requirement that the query must be relevant to node vi: o1[i] 6= o2[i]. A ran-
dom adaptive query adds the additional requirement that for all vj ∈ Confident,
o1[j] = o2[j].

Random adaptive queries provide a heuristic that may reduce the search space
for a CP-net by not continuing to analyze nodes once they are labeled Confident .

Using random queries, our search proceeds as follows. In the repeat–until
loop of Learn-CP-Net (Alg. 1, lines 10–21), we search first for nodes that do
not need parents (i.e., nodes that represent features for which the user’s prefer-
ences are unconditional). For each target node vi ∈ V, we call Find-Parents.
If Find-Parents is confident that the preferences over vi are unconditional, it
returns (∅, C), where C is a CPT for vi consistent with all queries stored in
Comparisons; otherwise, it returns (∅, FAIL), indicating failure. In the former
case, the default CPT of vi is replaced with C and vi is reclassified as Confident ;
in the latter, the search continues with the next Unconfident node.

As long as Unconfident 6= ∅, we continue trying to refine our model with
new conditional relationships, represented as edges and correspondingly more
complex CPTs. For each remaining Unconfident node, we iterate over potential
sets of parent nodes, starting with single-parent relationships, then two parents,
three, and so on, up to the bound on parents p. If a set P of parents can be
found, edges are added from each newly discovered parent to target node vi, the
default CPT is replaced with C, and vi is reclassified as Confident . If at any
point, however, we iterate from 0 to p and fail to add parents to any node, we
stop refinement and are satisfied with the CP-net that we have thus generated to
that point, even if some nodes remain Unconfident . For such nodes, the default
CPT assigned in Phase 1 would be output in the finalized CP-net. Indeed, in the
worst case, it is possible that all of the nodes could be output with the CPTs in
their default state. However, in practice we find that this rarely happens. In all
cases, though, Learn-CP-Net will return a CP-net; it will never output failure.

Example 3. Algorithm Learn-CP-Net has determined from outcome compar-
ison queries that body and brand each has 0 parents. As such, their status was
moved from Unconfident to Confident, and the entries in their CPTs are thus
finalized. However, the status of color at this point is still undetermined.

BODY : heavy light

heavy, Gibson : gold red

heavy, Fender : gold red

light, Gibson : gold red

light, Fender : red gold

COLOR

BRAND : Gibson Fender

Fig. 3. The Fully Learned CP-net

An inspection of Comparisons
indicates that the preference over
color is not independent. Some-
times the customer prefers gold,
sometimes red. Additional queries
are generated; e.g., “Do you prefer
a heavy gold Gibson or a heavy red
Gibson?” Nonetheless, all attempts
to prove that body or brand is the
sole parent of color fail to yield a
CPT.

The algorithm next attempts to establish whether both body and brand
are parents of color. This time a CPT is produced and sufficient evidence is
gathered. While the user does indeed generally prefer gold, she prefers a red
guitar only if it is light and a Fender. Figure 3 shows completed CP-net N .

Subroutine Find-Parents iterates over all subsets of Confident of the spec-
ified size r. For each subset P , Find-Parents calls Create-CPT to determine

whether P is consistent with all queries stored in Comparisons. For a given tar-
get node and set of possible parents, Create-CPT constructs a 2-SAT instance
such that (1) a satisfying assignment tells us that the target node’s values are
consistent with the given set of parents and (2) the assignment to variables gives
us the entries of the target node’s CPT. Our method for this closely follows [8],
to which the reader is referred for specifics. It should be noted that this method
converges to the original network only for a restricted class of CP-nets; however,
our objective is not to recover the original network, but to learn one that closely
approximates the original for possible outcome comparison queries. If the CPT
returned from Create-CPT is not complete, the default values from Phase 1
are used to provide the ordering. Find-Parents continues generating random
queries and calling Create-CPT until the evidence to support P as the parents
of vi reaches a specified confidence threshold q. Specifically, the evidence count
is the number of queries in Comparisons relevant to node vi, and confidence
parameter q is the number of outcome pairs required before we are confident
that P is in fact the parent set of vi. (We discuss the use of the q threshold for
minimum evidence in Section 3.2 and metrics for confidence in 5.)

4 Analysis

Theorem 1. Learn-CP-Net is resolute—that is, it is guaranteed to output a
consistent CP-net N .

Proof. (Sketch.) An initial N is created in the algorithm’s phase 1. The repeat–
until loop that follows will iterate at most once per variable. Since V is finite, the
algorithm will terminate and output a CP-net. Moreover, since edges are added
only from nodes in Confident to those in disjoint set Unconfident , N will not
contain a cycle; hence it will be consistent.

Theorem 2. The learning algorithm Learn-CP-Net is time polynomial in np

and q in the worst case.

Proof. (Sketch.) Using Tarjan’s algorithm, we implement the Create-CPT 2-
SAT algorithm in linear time [10]. Given this, the polynomial time complexity
of Learn-CP-Net and Find-Parents follows directly from Alg. 1 and 2.

5 Experiments

5.1 Experiment Design

We evaluate the effectiveness of our algorithm through an experimental ap-
proach. First, we generate a random CP-net training model NT that simulates
the preferences of a hypothetical user. We then apply Learn-CP-net to the
model, posing queries that are answered by an agent on the basis of NT . Finally,
we evaluate the success of the learned model NL in terms of the likelihood that it
will correctly predict the response of NT to a randomly drawn pair of outcomes

from O. We assume here that a user’s preferences can be modeled by a CP-net.
(Whether human preferences can actually be modeled by CP-nets is a subject
the authors are presently exploring through interdisciplinary research.) We fur-
ther assume that the attribute variables and their binary values are common
knowledge and not additional parameters that must be learned.

A number of questions guided our experiments, such as: How many queries
are required to learn a CP-net model? Does the choice of outcome compari-
son querying strategies (random and adaptive) affect CP-net learnability? How
does quality of CP-net learning change as the size and density of its graphical
structure changes? Do algorithm runtimes conform to expectations?

To evaluate the algorithm, we generated a set of random CP-nets. Since
variables and domains are common knowledge, the nodes of NT are an input
to the generation algorithm, as are the number of directed edges e in the graph
and the maximum number of parents p. (Note that while V is the same for NT
and NL, e and p may differ.) The edges of NT are inserted at random with
equal probability, such that no node has more than p parents and no cycles are
introduced. Complete CPTs for each node are then generated by selecting, again
uniformly randomly, an entry xi � yi or yi � xi for each row (with the provision
that the CPT implies dependence on the value of each parent node).

Algorithm 3 Generate-Random-CP-Net(V, e, p)

Input: V a set of binary variables
e number of edges in graph
p maximum number of parents

Output: NT the randomly generated CP-net

1: initialize N : nodes V, no edges, empty CPTs
2: for k ← 1 to e do
3: add a randomly selected edge (vi, vj) to NT s.t. 1 ≤ i < j ≤ n and |Pa(vj)| ≤ p
4: end for
5: for k = 1 to |V| do
6: for each of the 2|Pa(vk)| entries in CPT(vk) do
7: insert xk � yk or yk � xk at random
8: end for
9: end for

10: return NT

Our simulations do not employ human subjects. The learning algorithm
queries an agent that answers on the basis of a given CP-net model NT . Re-
call that in Phase 1, an attribute comparison query is asked for each binary
variable: “In general, do you prefer xi or yi?” We assume that the human user
has the capacity to reflect on such outcomes and determine whether she usually
prefers xi or yi. An agent that simulates such a capacity we call attribute aware.

Definition 6. An agent is attribute aware if it replies to an attribute comparison
query with the preference that occurs in the majority of its CPT entries. If xi � yi
and yi � xi occur equally often, the agent outputs one of these at random.

Learn-CP-net also asks the user a series of outcome comparison queries:
“Do you prefer o1 � o2, o2 � o1, or neither?” In response, the agent consults
its CP-net to determine if a preference is entailed. It has been shown that, in
general, determining whether one outcome dominates another given a CP-net
(N |= o1 � o2) is hard [11]. However, [1] introduce the weaker notion of an
ordering query, which we employ in our simulations.

Definition 7. Given outcomes o1 and o2, we say o1 is consistently orderable
over o2 with respect to N iff there exists a node vi ∈ N such that (1) o1 and o2
assign the same value to all ancestors of vi and (2) o1 assigns a more preferred
value to vi than o2. A search for such a node is called an ordering query.

Rather than asking if N |= o1 � o2, an ordering query asks if N 6|= o2 � o1. Note
that while N |= o1 � o2 implies N 6|= o2 � o1, the reverse does not hold: it may
be that N 6|= o1 � o2 and N 6|= o2 � o1. As Boutilier, et al. [1] showed, ordering
queries can be answered in time polynomial in size(N). In response to outcome
queries in our simulations, NT ’s agent answers o1 � o2 if o1 is consistently order-
able over o2, o2 � o1 if the reverse is true, and o1 on o2 if a preference cannot be
determined. Note that, according to [1]’s definition of consistently orderability,
we could have o1 consistently orderable over o2 based on some variables, and
vice versa based on others. For purposes of answering ordering queries, we check
all variables, and say that o1 is consistently orderable over o2 if there is some
variable for which that holds, and no variables that witness that o2 is consis-
tently orderable over o1. This is a stronger condition than [1]’s. However, the
disadvantage of using ordering queries instead of dominance testing is that an
agent using the former is more likely to report that o1 on o2, especially as n
grows large.

Our primary measure of how well the learned CP-net NL agrees with the
training model NT is to compare directly the preference ordering induced by NL
with that of NT for all unordered pairs of possible outcomes.

Definition 8. Given an outcome comparison involving o1 and o2, we say that
CP-net NL agrees with NT , disagrees, or is indecisive as follows:

NT NL : o1 � o2 o2 � o1 o1 on o2
o1 � o2 agrees disagrees indecisive
o2 � o1 disagrees agrees indecisive

The agreement metric M is then a vector representing the percentage of total
outcome comparisons for which NL agrees, disagrees, or is indecisive w.r.t. NT .

Note that we do not include in our counts outcome comparisons for which train-
ing model NT is indecisive. Because of this, the agreement metric is not sym-
metric; that is, in general M(NT ,NL) 6= M(NL,NT).

Since the number of outcomes is 2n for n binary variables, the number of
unordered outcome pairs {o1, o2} is O(22n). Hence, while our algorithm is of
polynomial complexity, our method of evaluation is exponential in the number
of variables if we calculate M exactly. However, we can approximate M satis-
factorily through sampling. For our sample size we chose 20 000 > z2α/2/(4ε

2),
where zα/2 is obtained from the normal distribution, ε is the desired bound of
±0.5%, and 1 − α provides a 95%-confidence interval. We calculate M exactly
for n ≤ 7 and estimate through sampling for n > 7.

5.2 Experimental Results

Tables 1 and 2 show metrics of NL w.r.t. NT over a series of experiments for n
nodes and confidence threshold q. Density δ = e/n is the desired ratio of edges
to nodes (δ = ∞ implies a maximally dense acyclic graph, given the bound p
on parents). The results shown are for p = 5 and represent averages over 30
trials. The data reflect random adaptive queries and an attribute aware agent;
our results for random non-adaptive queries (not shown) reflected slightly lower
levels of agreement [12]. Table 2 shows agreement for a higher granularity of q,
along with the choice of q in this range that maximized agreement (q∗).

Table 1. Agreement of NL with NT

Agreement Disagreement Indecision

n q=5 10 15 20 q=5 10 15 20 q=5 10 15 20

δ = 1

4 0.96 0.98 0.98 0.98 0.03 0.01 0.02 0.01 0.01 0.00 0.00 0.00
6 0.79 0.94 0.97 0.98 0.07 0.04 0.02 0.02 0.14 0.02 0.00 0.00
8 0.69 0.77 0.77 0.75 0.07 0.03 0.02 0.02 0.24 0.20 0.21 0.23
10 0.65 0.65 0.58 0.53 0.04 0.02 0.02 0.01 0.31 0.33 0.41 0.46
12 0.57 0.65 0.56 0.42 0.02 0.02 0.01 0.01 0.41 0.34 0.43 0.58

δ = 2

4 0.92 0.98 0.98 0.98 0.06 0.02 0.02 0.02 0.02 0.00 0.00 0.00
6 0.72 0.97 0.98 0.98 0.13 0.03 0.02 0.02 0.16 0.00 0.00 0.00
8 0.60 0.76 0.76 0.76 0.11 0.04 0.03 0.02 0.29 0.20 0.21 0.22
10 0.53 0.64 0.60 0.52 0.09 0.04 0.02 0.01 0.38 0.33 0.38 0.47
12 0.52 0.64 0.41 0.36 0.07 0.03 0.02 0.01 0.41 0.33 0.57 0.63

δ = 3

4 0.94 0.97 0.98 0.98 0.04 0.03 0.02 0.02 0.02 0.00 0.00 0.00
6 0.82 0.95 0.98 0.98 0.11 0.04 0.02 0.02 0.08 0.01 0.00 0.00
8 0.63 0.80 0.73 0.76 0.13 0.04 0.02 0.01 0.24 0.16 0.25 0.22
10 0.61 0.65 0.48 0.47 0.13 0.04 0.01 0.01 0.26 0.31 0.51 0.52
12 0.57 0.62 0.44 0.28 0.13 0.04 0.02 0.01 0.30 0.34 0.55 0.72

δ = ∞

4 0.91 0.98 0.98 0.98 0.06 0.02 0.02 0.02 0.03 0.00 0.00 0.00
6 0.84 0.96 0.97 0.98 0.11 0.03 0.03 0.02 0.05 0.01 0.00 0.00
8 0.66 0.76 0.76 0.75 0.13 0.03 0.02 0.01 0.21 0.21 0.22 0.24
10 0.62 0.56 0.48 0.40 0.13 0.04 0.02 0.01 0.25 0.39 0.50 0.59
12 0.54 0.54 0.37 0.26 0.13 0.04 0.01 0.01 0.33 0.42 0.61 0.74

Table 2. Agreement for various choices of q

Agreement δ = 1

n q=6 7 8 9 10 11 12 13 14 q∗ max

6 0.90 0.90 0.91 0.96 0.96 0.97 0.97 0.97 0.97 13 97%
7 0.77 0.80 0.85 0.87 0.83 0.87 0.84 0.89 0.89 14 89%
8 0.69 0.75 0.77 0.83 0.77 0.84 0.77 0.80 0.79 11 85%
9 0.76 0.76 0.75 0.70 0.81 0.74 0.78 0.70 0.72 10 81%
10 0.61 0.69 0.70 0.72 0.66 0.70 0.69 0.68 0.60 9 72%

Table 3. Effect of decreasing p for NL below that of NT

Agreement Disagreement Indecision

n p=1 2 3 4 5 p=1 2 3 4 5 p=1 2 3 4 5

NT : p = 5, δ = ∞

6 0.33 0.42 0.67 0.86 0.96 0.05 0.03 0.03 0.03 0.03 0.63 0.55 0.30 0.11 0.00
7 0.25 0.33 0.44 0.70 0.90 0.04 0.03 0.02 0.03 0.03 0.71 0.64 0.54 0.28 0.07
8 0.19 0.24 0.34 0.55 0.76 0.03 0.02 0.02 0.02 0.03 0.78 0.74 0.64 0.43 0.21
9 0.14 0.20 0.27 0.45 0.60 0.02 0.02 0.02 0.02 0.03 0.83 0.79 0.71 0.53 0.37

Overall, the learned model exhibited a high level of agreement with the train-
ing model. For n ≤ 10 agreement was 70–90% or higher with the proper choice
of q. Significantly, we found that the learned model rarely disagreed with the
training model. As n increases, however, the learned model is increasingly likely
to be indecisive about a preference over which the training model is able to
reason. For example, for n = 20 nodes, we found that agreement ranged from
50 to 60% for q = 10, depending on density δ, but disagreement was < 1%. As
discussed in Sec. 5.1, this increased indecision as n grows results in part from
the use of ordering queries instead of dominance testing as the primary metric.

A question of particular interest was the number of queries per node required.
One can observe that an exponential number of outcome comparison queries
could be required in the worst case. However, we found that often just a few
queries—8 to 14 (even for larger values of n)—proved optimal. The choice of
q is something of an art. As the data show, increasing the number of queries
required to become confident about a node sometimes has an adverse effect on
the agreement of the learned model with the training model. We take this to be
an indication that if q is too high, then overfitting can occur.

We also explored the effect of decreasing the maximum number of parents for
the learned model below that of the training model (see Table 3). We found, for
example, that for NT a maximally dense 7-node graph with maximum 5 parents
(n = 7, p = 5, δ = ∞) and p is set to 5 for NL, agreement is 90%. If p for NL

is then reduced to 4, agreement decreases to 70%—still a modestly good result.
Furthermore, while indecision is increased, disagreement remained static.

3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
e

ra
g

e
 r

u
n

n
in

g
 t

im
e

 i
n

 s
e

c
o

n
d

s

Number of nodes in training network (δ=1)

q=5

q=10

q=15

q=20

q=25

q=30

Fig. 4. Algorithm Running Times (δ = 1)

We were also interested in the computation time required, since it is known
that learning a CP-net is NP-hard in the general case. The relative running times
for inputs of various size (Fig. 4 provides data for the case of δ = 1) coincide with
our expectations. While the size of the training graph is the primary determinate
of running time, the number of queries required by q also plays a role. We also
observed that running time can vary significantly from model to model depending
on the preference relation that is being learned. Notice, also, that for some q
values, time complexity does not grow monotonically. When we generate queries
in order to learn the CPT for vi, those queries may be relevant to other nodes
vj in the Unconfident set. It may be that, when we come to vj , we already have
q many relevant comparisons.

6 Summary and Future Research

We have presented an algorithm for learning CP-nets from queries that is efficient
and is guaranteed to produce output. Our tests show that the output CP-nets
are close approximations to the underlying CP-nets used to generate answers to
queries, particularly if we have a close match between the parameters δ and p.

The next step in our research plan is to extend our algorithm to handle noisy
and possibly inconsistent responses to queries.

7 Acknowledgments

We would like to thank the anonymous referees for their valuable comments. This
material is based upon work supported by the National Science Foundation under
Grants No. CCF-1215985 and CCF-1049360. The content reflects the views of
the authors and not necessarily those of NSF.

References

1. Boutilier, C., Brafman, R.I., Hoos, H.H., Poole, D.: Reasoning with conditional
ceteris paribus preference statements. In: UAI-99. (1999) 71–80

2. Lang, J., Mengin, J.: Learning preference relations over combinatorial domains.
In: NMR-08. (2008)

3. Lang, J., Mengin, J.: The complexity of learning separable ceteris paribus prefer-
ences. In: IJCAI-09, San Francisco, CA, USA, Morgan Kaufmann. (2009) 848–853

4. Eckhardt, A., Vojtás̆, P.: How to learn fuzzy user preferences with variable objec-
tives. In: IFSA/EUSFLAT. (2009) 938–943

5. Eckhardt, A., Vojtás̆, P.: Learning user preferences for 2CP-regression for a rec-
ommender system. In: SOFSEM-10. (2010) 346–357

6. Koriche, F., Zanuttini, B.: Learning conditional preference networks with queries.
In: IJCAI-09. (2009) 1930–1935

7. Koriche, F., Zanuttini, B.: Learning conditional preference networks. Artificial
Intelligence 174 (2010) 685–703

8. Dimopoulos, Y., Michael, L., Athienitou, F.: Ceteris paribus preference elicita-
tion with predictive guarantees. In: IJCAI-09, San Francisco, CA, USA, Morgan
Kaufmann (2009) 1890–1895

9. Liu, J., Xiong, Y., Wu, C., Yao, Z., Liu, W.: Learning conditional preference
networks from inconsistent examples. TKDE PP(99) (2012) 1

10. Knuth, D.E.: The Art of Computer Programming. Volume 4A. Addison–Wesley
(1997)

11. Goldsmith, J., Lang, J., Truszczyński, M., Wilson, N.: The computational com-
plexity of dominance and consistency in CP-nets. JAIR 33 (November 2008)
403–432

12. Guerin, J.T.: Graphical Models for Decision Support in Academic Advising. PhD
thesis, University of Kentucky (2012)

