

AAAI-16 Tutorial

- Thomas E. Allen
- Judy Goldsmith
- Francesca Rossi

Università degli Studi di Padova

Francesca Rossi

Motivation

Noise, uncertainty, missing data

 probabilities in CP-nets (PCP-nets)

 Preferences coming from multiple sources

 voting theory to aggregate several CP-nets
 PCP-nets to model the aggregation

Uncertainty in CP-nets

- CP-nets require that we know exactly what we prefer
 - Although we may leave out some items, or say we are indifferent to some of them
- What if we are not really sure that we prefer Paris to Rome?
 - Or we want to model the percentage of people with a certain preference?
- CP-nets were inspired by Bayesian nets
 - Replacing probabilities by preferences
- To allow for uncertainty, we add probabilities back
 - Instead of a total order, a probability distribution over all possible total orders

PROBABILISTIC CP-NETS: PCP-NETS

Adding probabilities to CP-nets

Add probabilities to cp-statements

- associating to each feature a PCP-table indicating for each combination of values of the parents a probability distribution over the orderings on the domain of the feature
- $\blacksquare \rightarrow$ Probabilistic CP nets (PCP-nets)

[Bigot, Zanuttini, Fargier, Mengin 2013]

[Cornelio, Goldsmith, Mattei, Rossi, Venable 2013]

PCP-net: example

PCP-nets and induced CP-nets

- A PCP-net models a probability distribution over a collection of CP-nets (induced CP-nets)
- Each induced CP-nets is obtained from the PCP-net by choosing
 - a specific ordering on the domain value for each parent assignment
- An induced CP-net will have a subset of edges of the PCPnet

Probability of induced CP-nets

- Each induced CP-net has an associated probability obtained from the PCP-net by taking the product of:
 - the probability of the chosen orderings
- A PCP-net defines a probability distribution over the set of induced CP-nets

Reasoning with PCP-nets: optimality

- What is an optimal outcome in a PCP-net?
 - The most probable optimal outcome
 - the outcome with the highest probability defined as the sum of the probabilities of the induced CP-nets with that outcome as optimal
 - The optimal outcome of the most probable induced CPnet

(sometimes not the same)

- Both polynomial if low connectivity in the dependency graph
 - Bounded number of parents for each feature
 - Bounded induced width of dependency graph

Reasoning with PCP-nets: dominance

- Given two outcomes O1 and O2, return the probability that O1 is preferred to O2
 - Difficult even in acyclic PCP-nets and in tree PCP-nets

PCP-NETS FOR AGGREGATING CP-NETS

RPI, March 17, 2015

CP-net preference aggregation

- Since PCP-nets model a collection of CP-nets, they seem suitable for multi-agent settings
- Given a collection of CP-nets modelling the preferences of several agents
 - Can we aggregate them into a single PCP-net?
 - Can we use probabilities to model conflicting preferences?

Multi-agent setting

- A collection of CP-nets
- Each agent expresses his preferences with a CP net
- All CP nets have the same features and the same domains
- Possibly different CP-tables
- Compatibility condition:
 - There is an ordering of the features such that all dependency arcs go in the same direction
 - Ordering 0 s.t., in every CP-net, arc (X_i, X_j) iff $X_i <_0 X_j$

Example

10 Rovers must decide

- Where to go: Location A or Location B
- What to do: Analyze a rock or Take and image

Proportion Aggregation Method

- From the CP-nets to a PCP-net which induces a probability distribution over CP-nets which approximates the given one
- PCP-net dependency graph = union of the dependency graphs of all the CP-nets
- PCP-tables defined using the probability of the CP-nets in the profile

Given feature *X* and assignment *u* to its parents:

$$P(x > \overline{x} u) = \sum_{C_i: x > \overline{x} u} P(C_i) \qquad P(\overline{x} > x \mid u) = 1 - P(x > \overline{x} \mid u)$$

Proportion Aggregation Method: example

Least Square Aggregation Method

- PCP-net dependency graph = union of the dependency graphs of all the CP-nets
- PCP-tables defined by minimizing the mean square error between the probability distribution induced by the PCP-net and the one in the profile

Least square method: example

Complexity of aggregation methods

Proportion aggregation

- May be exponential even if in each CP-net the number of parents of a feature is bounded by a constant k
- Polynomial if the maximum number of parents in the PCP-net is bounded as well by constant k'>k
- Least square aggregation
 - Requires considering all possible CP-nets induced by a PCP-net, which can be exponential
 - Can be approximated by just considering the CP-nets that have non-zero probabilities in the formula

Which collective optimal outcome?

	Proportional aggregation	Least square Aggregation
Most probable optimal outcome	PR ₀	LS ₀
Optimal outcome of the most probable induced CP-net	PR	LS

Properties

Given any profile of CP-nets, PR_I produces the same result as sequential majority voting

The four results can all be different

- There exist cases P where
 - $PR_0(P) \neq PR_1(P), LS_0(P) \neq LS_1(P)$
 - { $PR_0(P), PR_1(P)$ } disjoint from { $LS_0(P), LS_1(P)$ }

Sequential Majority: example

Rovers must decide:

Where to go: Location A or Location B

- What to do: Analyze a rock or Take and image
- Which station to downlink the data to: Station 1 or Station 2

Desirable properties

	Anonymity	Neutrality	Homogeneity	Opt-Monoton.	Consistency	Participation	Consensus
PR _o	Y	Y	Y	Y	Y	Y	Y
PR _I	Y	Y	Y	Y	Y	Y	Y
LS ₀	Y	Y	Y	?	?	?	?
LSI	Y	Y	Y	?	?	?	?

It does not help much to choose one of the four method!

Experimental Analysis

Compute a score for each result
 Counting how many CP-nets prefer it to the others

 In their preference ordering

 Averaging over all cases considered

Copeland Score, varying number of CPnets

Copeland Score, varying number of features

Which collective optimal outcome?

- PR_I (optimal outcome of the most probable CP-net) is the best
 - Sequential majority -> polynomial to compute

Dominance queries in PCP-nets

- Given O1 and O2, return the probability that O1 is preferred to O2
 - Def.: the sum of the probabilities of the induced CP-nets where O1 is preferred to O2
- Computing it is NP-hard
 - Upper and a lower bound in polynomial time on polytrees
 - Lower bound: O(n x 2^k), k max number of parents, n features
 - Upper bound: O(n)

Example

Upper bound: $0.12 \ (= 0.4 \cdot 0.3)$ Lower bound: $0.108 \ (= 0.4 \cdot 0.3 \cdot 0.9)$

Usually very small interval

- Maximal interval size: 0.24
- Mean interval size: 0.15

- number of features $n \in [0, 35]$
- 30 PCP-net each iteration
- 30 outcomes couple for each PCP-net
- parents $\leq n/2$

How to learn a (P)CP-net?

- From examples of dominance pairs (01 > 02)
- Active or passive learning
- Conversational recommender systems
- Special cases
 - Ex. Lexicographic preferences
- How to extract dominance pairs from text/blogs/tweets/ news/likes/scores/...?

Summary

- (P)CP-nets are useful to
 - Model the preferences of a single individual
 - Probabilities model noise or uncertainty
 - Represent accurately the collective preferences of a collection of CP-nets
 - Probabilities model conflict resolution
- Optimality and dominance are computationally difficult in general, but easy under some reasonable restrictions

Future work

- Techniques to extract dominance pairs
- Eliciting methods for both CP-nets and PCP-nets
- Approaches to learn a PCP-net from dominance pairs and conditional statements
- Constrained (P)CP-nets
 - Usually some outcomes are not available