For each problem, explain your answer or show how it was derived.

- 1. For each of the following relations and each property { symmetric, anti-symmetric, reflexive, transitive}, state whether it has that property.
 - (a) $R_1(x, y)$ holds iff x is y's sister, where x and y are drawn from all living women. symmetric, not antisymmetric, not reflexive, transitive—if you mean full sister; not transitive if half-sisters are allowed
 - (b) $R_2(x, y)$ holds iff x + y > 0, where $x, y \in \mathbb{R}$ symmetric, not antisymmetric, not reflexive (consider x = y = -1), not transitive (consider x = z = -1 and y = 2)
 - (c) $R_3(x, y)$ holds iff there is a road with no intersections connecting x and y, and x, y are intersections in Lexington. not symmetric, not antisymmetric, not reflexive, not transitive
- 2. If $f : A \to B$ is onto and $g : B \to C$ is one-one, what can we say about the relative values of |A|, |B|, and |C|? $|A| \ge |B|$ and $|B| \le |C|$
- 3. Prove or disprove that $[(x \Rightarrow y) \Rightarrow z] \Rightarrow (x \Rightarrow z)$.
- 4. Let $A = \{1, 2, 3, 4\}$ and $B = \{1, 3, 5\}$.
 - (a) Give an element of $A \times B$ (1,5) Note that there are many right answers, all of them ordered pairs.
 - (b) What is $|A \times B|$? $4 \cdot 3 = 12$
 - (c) Give an element of $A \oplus B$ 5
 - (d) What is $|A \oplus B|$? $|A \oplus B| = \{2, 4, 5\}$, so the answer is 3.
- 5. Suppose you are told that |A| = 7, |B| = 12, and $|A \cup B| = 15$. What is $|A \oplus B|$? (To insure partial credit if you are unsure of your answer, indicate how you derived the answer, showing a formula, a Venn diagram, or other.) $|A \cup B| = |A| + |B| |A \cap B|$, so $|A \cap B| = 4$
- 6. Consider the following functions. For each function and each property from the set {one-one, onto, total}, list the properties that function has.
 - (a) $f: \mathbf{N} \to \mathbf{R}, f(x) = \log_2(x)$ one-one, onto, not total (not defined at x = 0)
 - (b) $g: \mathbf{N} \times \mathbf{N} \to \mathbf{N}, g(\langle x, y \rangle) = 2^x 3^y$ one-one, not onto (it does not map to 5, for instance), total
 - (c) $h: \mathbf{R}^+ \to (0,1), h(x) = \frac{1}{x+1}$. one-one, not onto (it does not map to $\frac{2}{3}$), total

- 7. For each of the pairs f and g, state whether f is $\mathcal{O}(g)$, g is $\mathcal{O}(f)$, or f is $\Theta(g)$.
 - (a) f(n) = n and $g(n) = n \log n$ $f \in \mathcal{O}(g)$ (b) $f(n) = n^2$ and $g(n) = n \log n$
 - $g \in \mathcal{O}(f)$ (c) $f(n) = 2^n$ and g(n) = n!

 $f \in \mathcal{O}(q)$

8. Let

$$S(n) = \sum_{\{a_1, a_2, \dots, a_k\} \subseteq \{1, 2, \dots, n\}} \frac{1}{a_1 \cdot a_2 \cdots a_k}$$

Here, the sum is over all nonempty subsets of $\{1, 2, \ldots n\}$.

Note: $S(3) = (\frac{1}{1} + \frac{1}{2} + \frac{1}{1 \cdot 2}) + (\frac{1}{3}) + (\frac{1}{3 \cdot 1} + \frac{1}{3 \cdot 2} + \frac{1}{3 \cdot 1 \cdot 2}).$

- (a) What can you say about the third group of fractions, in terms of the first? If the groups of fractions are A, B and C, then $C = \frac{1}{3} \cdot A$.
- (b) How do you express S(3) in terms of S(2)? $S(3) = S(2) + \frac{1}{3} \cdot S(2) + \frac{1}{3}$ because there are the subsets of $\{1, 2, 3\}$ that don't contain 3 (that gives us S(2)), and those with the addition of 3, and then the subset of just 3. This can be generalized, as in the proof below.
- (c) Prove S(n) = n by induction.

Base case: n = 1, where $S(1) = \frac{1}{1}$. Note that there is an implicit assumption that the subsets considered are nonempty.

Inductive hypothesis: S(k) = k.

Inductive step: We can derive that

$$S(k+1) = S(k) + \frac{1}{k+1} + \frac{1}{k+1} \cdot S(k)$$

= $k + \frac{1}{k+1} + \frac{1}{k+1} \cdot k$
= $k + \frac{1}{k+1} \cdot (1+k)$
= $k+1$.

Thus, for all $n \in \mathbb{N}$, S(n) = n.