
  Solution to CS375 Final Exam (100 points) (Spring 2025) 

Closed book & closed notes                                   May 07, 2025 

                                                

Name_______Sample___________ 

           

1. (6 points) 

Final-state acceptance and empty-stack acceptance are equivalent only for NPDA’s. They 

are not equivalent for DPDA’s. For DPDA’s the class of languages defined by final-state 

acceptance is bigger. Given the following final-state DPDA 

   

 

   and the following strings 

 

        Ʌ, b, ba, bb, bbaa 

 

which of these strings are accepted by the given final-state DPDA? Put your answer in 

the following blank. 

 

 

                                                                          (2 points) 

 

If the given final-state DPDA is considered as an empty-stack DPDA (state 0 is no longer 

a final state), then which of the given strings are accepted by the empty-stack DPDA? Put 

your answer in the following blank. 

 

 

                                                                          (1 point) 

  

Now, consider the following two general questions. First, what is the language 𝐿1 

accepted by the given final-state DPDA? Put your answer in the following blank.                   

 

Ʌ, b, ba, bb, bbaa   

 

ba, bbaa 

 



             

(2 points) 

 

Second, what is the language 𝐿2 accepted by this DPDA when viewed as an empty-stack 

DPDA? Put your answer in the following blank. 

 

             (1 point)  

 

𝐿1 obviously is bigger than 𝐿2. 

 

 

2. (6 points) 

The following empty-stack PDA accepts the language L = { w ϵ {a, b}* | 𝑛𝑏(w) = 2𝑛𝑎(w) } 

(assuming Λ ∈ 𝐿). For this PDA, first show the execution of the string bbaabb by this PDA 

in the following blanks.  (4 points) 

 

  



   
 

 Then tell which one(s) of the following four possible type 3 instructions are legitimate 

(could really happen) type 3 for this empty-stack PDA?  

 

   

 

Put your answer in the following blank. (2 points) 

 

 

 

 

 

 

3. (4 points) 

(b), (d) 



Given the following parse tree where S, A, B are non-terminals, a and b are terminals and 

Ʌ is the empty string, show the corresponding left-most derivation of the yield in the blanks 

on the right side.  (2 points) 

 

   

 
 

Does the derivation show the grammar is an LL(1) grammar? 

 

          Yes          No   (1 point)  

 

Does the derivation show the grammar is an LL(2) grammar? 

 

          Yes          No   (1 point) 

    

 

 

4. (4 points) 

The following grammar is a C-F grammar for {𝑎𝑚+𝑛𝑏𝑚𝑐𝑛 | m,n ϵ N}   

                 S → aSc | B                 B → aBb | Ʌ 

If Ʌ, ac, ab, aabc, aacc, aaabbc, aaaccc and aaabcc are considered, which one(s) do not 

satisfy the LL(1) requirement? Put the one(s) which do not satisfy the LL(1) requirement 

in the following box.   

 

 X 

 X 



  

5. (4 points) 

The following given grammar is a left recursive grammar 

 

                 S → Sabc | b 

 

This left recursive grammar can be transformed to a right recursive grammar as follows: 

 

              S  →  

 

                 B  →           | 

 

 

This right recursive grammar is an LL(       ) grammar. 

             

6. (7 points) 

In slide 48 of the notes “Contest-free Languages and Pushdown Automata IV”, it is shown 

that the set of LL(k) languages is a proper subset of the set of deterministic C-F languages 

(see the following figure). In particular, it points out that the language {𝑎𝑛, 𝑎𝑛𝑏𝑛 | 𝑛 ∈ 𝑁 } 

is a deterministic C-F, but not LL(k) for any k. 

 

         

  

To show the language is not LL(k) for any k, note that the grammar for this language is  

          

    or 

          (4 points) 

   (you only need to answer one case here, either one). The language contains Ʌ as an 

element. Now consider the case k = 1 and consider the input string ab. When the first 

symbol is scanned, we get an ‘a’. This information alone is not enough for us to make a 

bB 

abcB Ʌ 

1 



proper choice. So we don’t even know what to do with the first step in the parsing process. 

For k = 2, if we consider the input string aabb, we face the same problem. For any k > 2, 

the input string 𝑎𝑘𝑏𝑘 would cause exactly the same problem. So this grammar is not 

LL(k) for any k. 

 

On the other hand, by putting proper instructions into the blanks in the following figure, 

we get a deterministic final-state PDA that accepts the language {𝑎𝑛, 𝑎𝑛𝑏𝑛 | 𝑛 ∈ 𝑁 }. 

          

   or 

          (3 points) 

 

(again, you only need to answer one case here, either one). Hence, this language is 

indeed deterministic C-F, but not LL(k) for any k.   

 

 

7. (9 points) 

Use left-factoring to find an equivalent LL(k) grammar for the following grammar with k 

being as small as possible. In this case, left-factoring will create a production that is 

always used as the first step in the left-most derivation and the common factor contained 

on the right side of the production will provide an automatic match on the first part of the 

input string.  (9 points; 1 point for each of the first six blanks) 

 

                    S → abA | abcS           A → aA | Ʌ 

 

The language generated by the given grammar is:  

         

                                          

 {(𝑎𝑏𝑐)𝑚𝑎𝑏𝑎𝑛 | 𝑚, 𝑛 ∈ 𝑁 }    



   

The given grammar is LL(3). 

 

By factoring ab out from S → abA | abcS, the given grammar can be converted to 

                 (1) 

This grammar can also be written as 

 

          (2) 

                                                       

Grammars (1) and (2) are both LL(1). To show (2) is LL(1), it is sufficient to consider ab 

and abcaba as input strings. In the following, show a unique leftmost derivation of the 

string abcaba using grammar (2).   

                 (3 points) 

        

8. (6 points) 

The following is the instruction set of a Turing machine (TM) that computes the sum of 2 

and a given natural number represented as a binary string. The read/write head of the TM 

starts at the right end of the given natural number and halts at the left end of the output 

string. The start state of the TM is 0. 

 



          

 

       Fill out the blanks in the following sum computation process for the given natural number 

       55 (=1101112). For each step, put the instruction to be used for that step in the blank on 

       the left side, and fill out the blank(s) in the I/O tape on the right side. (0.4 points each 

       blank)  

 

          



          

 

       From this point on, every digit read by the TM will be kept the same until the left end of  

       the string is reached. 

 

 

9. (4 points) 

Fill out the following blanks for the instructions of a Turing machine that moves an input 

string over {a, b} to the right one cell position. The tape head initially is at the left end of 

the input string. The machine will move the entire string to the right one cell position and 

leave all remaining tape cells blank. The tape head ends at the right end of the output 

string.  (8 points) 

        

 

 

 

10. (9 points) 

Given an integer say 45, to find the sum of 45 with 8 in binary form (see the figure below), 

we can use the TM designed in slides 79-90 of the notes “Turing Machines and Equivalent 

Models I” twice to find the result. First, we use that TM to find the sum of the given number 



with 4, and then use that TM again to find the sum of the first sum with 4 again. A more 

effective way is to design a TM to do the addition with 8 directly. 

    

 
 

Such a TM can be designed by extending the TM designed in slides 79-90 of the notes 

“Turing Machines and Equivalent Models I”. The TM has 14 instructions and 6 states: 0, 

1, 2, 3, 4, and halt. Five instructions of such a TM have been given in the first table below. 

Fill out the remaining blanks of the first table and also blanks in the second and third 

tables to show the remaining instructions of the TM  

 

      

 

and then fill out the blanks in the following chart to make it a complete state transition 

diagram for this TM. In the diagram, state H means the halt state.  

Note that there are several ways to define the remaining instructions of the TM, but make 

sure the instructions you choose fit into the following diagram naturally and logically.  
 



      

 

 

11. (12 points) 

Given a non-empty string, we can move the string two units to the left using three different 

approaches. The first approach is to use the TM introduced in slides 44-51 of the notes 

“Turing Machines and Equivalent Models-I” twice; the second approach is to move each 

letter of the string two units to the left directly; the third approach is to use a stack to assist 

the moving process.     

A TM that can move the string two units to the left directly requires 14 instructions and 11 

states. In the following, eight instructions for such a TM are given in the tables. Fill out the 

remaining blanks to make the resulting instruction set the instruction set for such a TM 

and then fill out the blanks in the next chart to make it a complete state transition diagram 

for this TM. In the diagram, state H means the halt state.    

 

     

 

Note that there are several ways to define the remaining instructions of the TM, but make 

sure the instructions you choose fit into the following diagram naturally and logically.   



      

 

 

12. (3 points) 

We know how to design a TM to accept the language {𝑎𝑛𝑏𝑛 | 𝑛 ∈ 𝑁}. The state transition 

diagram of this TM is shown below. This TM has 8 instructions and 5 states: 0, 1, 2, 3 and 

halt. It uses an implicit stack to match the number of a’s in the string with the number of 

b’s in the string. 

 

       

 

One can extends the concept of this TM to design a new TM to accept the language 

{𝑎𝑛𝑏𝑛𝑐𝑛 | 𝑛 ∈ 𝑁}. The new TM has 14 distinct instructions and 6 states: 0, 1, 2, 3, 4, and 

halt. It uses two implicit stacks to match the number of a’s in the string with the number 

of b’s and the number of c’s in the string. 

 



Fill out the blanks in the following diagram to make it a complete state transition diagram 

for the new TM. 

 

    

 

           

 

13. (2 points) 

   The ‘P versus NP’ problem is a major unsolved problem in computer science. It is an 

important problem because if we can prove that P = NP (i.e., all problems can be solved 

in polynomial time) then 

 

 

        

14. (3 points) 

To build a TM to perform addition on three non-zero positive numbers m, n, and p in unary 

form (see the first figure below for the case m=4, n=3 and p=3), a better approach is to 

perform the addition (n+p) first, and then perform m+(n+p). To perform the addition (n+p) 

first, on its way moving right, the TM will ignore the first ‘+’ sign (not change it to ‘1’), only 

change the second ‘+’ to ‘1’, then look for a ‘Ʌ’. When a ‘Ʌ’ is reached, the TM keeps that 

‘Ʌ’, turns left and changes the ‘1’ in the next cell to ‘∗’ (instead of ‘1’) and then turns left 

(see the second figure below). To perform m+(n+p), the TM then moves left to find the first 

‘+’, changes it to ‘1’ and turns right (see the third figure below). It then moves right to find 

‘∗’. Once ‘∗’ is reached, the TM converts ‘∗’ to ‘Ʌ’, turns left, changes the ‘1’ in the next cell 

to ‘Ʌ’, moves one unit to the left and stop.   

 

 

there will be no need to build quantum computers. 



 

 

 
  Your task here is to fill out the five blanks in the following figure to make it a TM that can perform addition on three 

given non-zero positive numbers in unary form using the above approach. 

    

 

15. (3 points) 

The TM that can perform the subtraction function 𝑓(𝑎 − 𝑏) = 𝑐 on two unary numbers a 

and b when a is bigger than or equal to b in notes “Turing Machines and Equivalent 

Models-II” can be modified to cover the case when b is bigger than a as well. Consider 

the following input string with a=2 and b=5. After two 1’s have been converted to ‘∗’ in both 

a and b, when the third 1 in b is converted to ‘∗’, we don’t have a 1 in a to convert, instead, 

we find a ‘Ʌ’ (see the second figure below). We change that ‘Ʌ’ to ‘0’ and turn right to find 

another 1 in b to convert to ‘∗’. Again, there is no 1 in a to match this ‘∗, but a ‘0’. We skip 



this ‘0’ to reach a ‘Ʌ’ on the left-hand side (see the third figure below). We convert this ‘Ʌ’ 

to 0 and turn right to find another 1 in b to convert to ‘∗’. We repeat the same process 

again, get one more 0 on the a side (we have three 0’s now) and turn right to find another 

1 in b to convert. We don’t find any 1, but a ‘Ʌ’ (see the fourth figure below). That is, no 

more 1’s in b to convert. So we turn left to find the left end of the 0 string to stop. This is 

done by moving left to find a ‘Ʌ’ (see figure five below) and then turn right, move one cell 

to the right and stop (see figure six below).   

 

 

 

 

 

 



 

 

Your task here is to fill out the blanks in the following figure to make it a TM that can 

subtract a bigger number from a smaller number as well. 

 

            

    

16. (6 points) 

A TM that can perform multiplication on two positive unary numbers is developed based on the concept 

that “multiplication is extended addition”. For instance, 4 × 5 can be viewed as the addition of five 4’s 

in unary form (see the first figure below). The process is to repeatedly perform addition on these five 

4’s two at a time (in unary form; see the second and the third figures below) until four additions have 

been performed.  

 

 
 



 

 

 

 

The TM looks like as follows. The portion circled by the red dotted curve is to perform the addition job 

(putting a copy of m 1’s at the end of n) and the portion circled by the blue dotted curve is the portion 

that does the counting (making sure n copies of m in unary form are put at the end of n.  

 

 

 



 

 

For the above given input (m=3, n=2), put the location of the read/write head (index of the tape cell), 

contents of cell 5 and cell 6 in the following three boxes when the TM halts.  

 

Location of the read/write head:  

  

Content of cell 5:                  Content of cell 6:       

 

For the same input, when cell 9 is set to ‘1’ by the instruction ‘Ʌ/1,L’ of the TM, what are the contents of 

cell1, cell2, and cell3? 

 

Content of cell 1:                Content of cell 2:                

 

Content of cell 3:   

 

 

 

17. (6 points) 

A TM that can perform division on two positive unary numbers is developed based on the concept that 

“division is extended subtraction”. That concept and the implementation steps have been clearly 

described in the notes “Turing Machines and Equivalent Models-II’’. The main body of this TM is shown 

in the first figure below and the portions that perform Step 3 and Step 4 are shown in the second and 

the third figures separately. Your tasks here is to fill out the blanks in the second and the third figures 

so that these two portions can be connected to the proper nodes of the main body of the TM correctly. 

 

8 

X X 

1 Y 

Y 



 

 

 

 



 

   

    
For the above given input (n=2, m=5), put the location of the read/write head (index of the tape cell), 

contents of cell 6, cell 7 and cell 8 in the following three boxes when the TM halts.  

 

Location of the read/write head:  

  

Content of cell 6:               Content of cell 7:                

 

Content of cell 8:    

 

For the same input, when cell 11 is set to ‘1’ by the instruction ‘Ʌ/1,L’ of the TM (step 3), what are the 

contents of cell1, cell2, cell5 and cell 6? 

 

Content of cell 1:                Content of cell 5:                

    

      

                  

18. (4 points) 

The Church-Turing Thesis has two versions. The following is the second version: 

 

10 

X 

1 

B X 

X 

Anything that is intuitively computable can be computed by a Turing 

machine. 



 

 

 

The first version is shown below. Fill out the blue blank in the following box to make it a complete 

statement.  

 

 

                                                                                (1 point) 

 

The first version is an if and only if statement and the second version is not. Does this mean the other 

direction of the second version (‘Anything that can be computed by a Turing machine is intuitively 

computable’) is not true? 

 

            YES                      NO                       (1 point) 

 

Justify your answer in the following text box. 

 

 

 

 

                                                                                 (2 points) 

 

 

19. (2 points) 

Church-Turing Thesis is not a theorem, but a thesis. Why? Put your answer in the following test box. 

 

 

 

 

A problem can be solved by an                if and only if it can be 

solved by a Turing machine. 

algorithm 

 X 

The other direction is obviously true because a Turing machine is a step-by-

step process, i.e, an algorithm. Therefore, anything that is computable by a 

Turing machine is intuitively computable (algorithmically solvable). 

 

Because we cannot prove it. Nor can we disprove it. 


