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Abstract A new method for constructing interpolating Loop subdivision surfaces is presented. The new method is an
extension of the progressive interpolation technique for B-splines. Given a triangular mesh M , the idea is to iteratively
upgrade the vertices of M to generate a new control mesh M such that limit surface of M would interpolate M . It can
be shown that the iterative process is convergent for Loop subdivision surfaces. Hence, the method is well-defined. The
new method has the advantages of both a local method and a global method, i.e., it can handle meshes of any size and any
topology while generating smooth interpolating subdivision surfaces that faithfully resemble the shape of the given meshes.
The meshes considered here can be open or closed.
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1 Introduction

Subdivision surfaces are becoming popular in many
areas such as animation, geometric modeling and games
because of their capability in representing any shape
with only one surface. A subdivision surface is gen-
erated by repeatedly refining a control mesh to get a
limit surface. Hence, a subdivision surface is deter-
mined by the way the control mesh is refined, i.e., the
subdivision scheme. A subdivision scheme is called an
interpolating scheme if the limit surface interpolates
the given control mesh. Otherwise, it is called an ap-
proximating scheme. Popular subdivision schemes such
as Catmull-Clark scheme[1], Doo-Sabin scheme[2], and
Loop scheme[3] are approximating schemes while the
Butterfly scheme[4], the improved Butterfly scheme[5]

and the Kobbelt scheme[6] are interpolating schemes.
An interpolating subdivision scheme generates new

vertices by performing local affine combinations on
nearby vertices. This approach is simple and easy to
implement. Because of its local property, it can handle
meshes with a large number of vertices. However, since
no vertex is ever moved once it is computed, any dis-
tortion in the early stage of the subdivision will persist.

This makes interpolating subdivision schemes very sen-
sitive to irregularity in the given mesh. In addition, it
is difficult for this approach to interpolate normals or
derivatives.

On the other hand, even though subdivision surfaces
generated by approximating subdivision schemes do not
interpolate their control meshes, it is possible to use this
approach to generate a subdivision surface to interpo-
late the vertices of a given mesh. One method, called
global optimization, does the work by building a global
linear system with some fairness constraints to avoid
undesired undulations[7,8]. The solution to the global
linear system is a control mesh whose limit surface in-
terpolates the vertices of the given mesh. Because of its
global property, this method generates smooth interpo-
lating subdivision surfaces that resemble the shape of
the given meshes well. But, for the same reason, it is
difficult for this method to handle meshes with a large
number of vertices.

To avoid the computational cost of solving a large
system of linear equations, several other methods have
been proposed. A two-phase subdivision method that
works for meshes of any size was presented by Zheng
and Cai for Catmull-Clark scheme[9]. A method
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proposed by Lai and Cheng[10] for Catmull-Clark sub-
division scheme avoids the need of solving a system of
linear equations by utilizing the concept of similarity
in the construction process. Litke, Levin and Schröder
avoid the need of solving a system of linear equation
by quasi-interpolating the given mesh[11]. However, a
method that has the advantages of both a local method
and a global method is not available yet.

In this paper a new method for constructing a
smooth Loop subdivision surface that interpolates the
vertices of a given triangular mesh is presented. The
new method is an extension of the progressive interpo-
lation technique for B-splines[12−16]. The idea is to iter-
atively upgrade the locations of the given mesh vertices
until a control mesh whose limit surface interpolates
the given mesh is obtained. It can be proved that the
iterative interpolation process is convergent for Loop
subdivision surfaces. Hence, the method is well-defined
for Loop subdivision surfaces. The limit of the iterative
interpolation process has the form of a global method.
But the control points of the limit surface can be com-
puted using a local approach. Therefore, the new tech-
nique enjoys the advantages of both a local method
and a global method, i.e., it can handle meshes of any
size and any topology while generating smooth interpo-
lating subdivision surfaces that faithfully resemble the
shape of the given meshes. The meshes considered here
can be open or closed.

The remaining part of the paper is arranged as fol-
lows. In Section 2, we present the concept of progressive
interpolation for Loop subdivision surfaces on closed
meshes. In Section 3, we prove the convergence of this
iterative interpolation process. Extension of this tech-
nique to open meshes is considered in Section 4. Im-
plementation issues and test results are presented in
Section 5. Concluding remarks are given in Section 6.

2 Progressive Interpolation Using Loop
Subdivision Surfaces for Closed Meshes

The concept of Loop subdivision surface based pro-
gressive interpolation for closed meshes can be de-
scribed as follows.

Given a closed 3D triangular mesh M = M0. To
interpolate the vertices of M0 with a Loop subdivi-
sion surface, one needs to find a closed control mesh
M whose Loop surface passes through all the vertices
of M0. Instead of finding the relationship between the
vertices of M and the vertices of M0 directly, we use
an iterative process to do the job.

First, we consider the Loop surface S0 of M0.
For each vertex V 0 of M0, we compute the distance

between this vertex and its limit point V 0
∞ on S0,

D0 = V 0 − V 0
∞,

and add this distance to V 0 to get a new vertex called
V 1 as follows:

V 1 = V 0 + D0.

The set of all the new vertices is called M1. We then
consider the Loop surface S1 of M1 and repeat the
same process.

In general, if V k is the new location of V 0 after k
iterations of the above process and Mk is the set of all
the new V k’s, then we consider the Loop surface Sk

of Mk. We first compute the distance between V 0 and
the limit point V k

∞ of V k on Sk

Dk = V 0 − V k
∞. (1)

We then add this distance to V k to get V k+1 as follows:

V k+1 = V k + Dk. (2)

The set of new vertices is called Mk+1.
This process generates a sequence of control meshes

Mk and a sequence of corresponding Loop surfaces Sk.
Sk converges to an interpolating surface of M0 if the
distance between Sk and M0 converges to zero. There-
fore the key task here is to prove that Dk converges to
zero when k tends to infinity. This will be done in the
next section.

Note that for each iteration in the above process, the
main cost is the computation of the limit point V k

∞ of
V k on Sk. For a Loop surface, the limit point of a
control vertex V with valence n can be calculated as
follows:

V ∞ = βnV + (1− βn)Q (3)

where

βn =
3

11− 8×
(3

8
+

(3
8

+
1
4

cos
2π

n

)2) (3)

and

Q =
1
n

n∑

i=1

Qi.

Qi are adjacent vertices of V . This computation in-
volves nearby vertices only. Hence the progressive in-
terpolation process is a local method and, consequently,
can handle meshes of any size.

Another point that should be pointed out is, even
though this is an iterative process, one does not have
to repeat each step strictly. By finding out when the
distance between M0 and Sk would be smaller than
the given tolerance, one can go directly from M0 to
Mk, skipping the testing steps in between.
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3 Convergence of the Iterative
Interpolation Process for Closed Meshes

The proof needs a fact about the eigenvalues of the
product of positive definite matrices. This fact is pre-
sented in the following lemma.

Lemma 1. Eigenvalues of the product of positive
definite matrices are positive.

Proof. The proof of Lemma 1 follows immediately
from the fact that if P and Q are square matrices of
the same dimension, then PQ and QP have the same
eigenvalues (see, e.g., [17], p.14).

To prove the convergence of the iterative interpola-
tion process for Loop subdivision surfaces, note that at
the (k + 1)-st step, the difference Dk+1 can be written
as:

Dk+1 =V 0 − V k+1
∞

=V 0 − (βnV k+1 + (1− βn)Qk+1)

where Qk+1 is the average of the n adjacent vertices of
V k+1

Qk+1 =
1
n

n∑

i=1

Qk+1
i .

By applying (2) to V k+1 and each Qk+1
i ,

Qk+1
i = Qk

i + Dk
Qk

i
,

we get

Dk+1 =V 0 − (βnV k + (1− βn)Qk)

−
(
βnDk +

1− βn

n

n∑

i=1

Dk
Qi

)

=Dk −
(
βnDk +

1− βn

n

n∑

i=1

Dk
Qi

)

where Qk is the average of the n adjacent vertices of
V k. In matrix form, we have

[Dk+1
1 ,Dk+1

2 , . . . ,Dk+1
m ]T =(I −B)




Dk
1

Dk
2

...
Dk

m




=(I −B)k+1




D0
1

D0
2

...
D0

m




where m is the number of vertices in the given matrix, I
is an identity matrix and B is a matrix of the following

form:



βn1 . . .
1− βn1

n1
. . .

...
. . .

1− βni

ni
. . . βni . . .

... · · · βnm




.

The matrix B has the following properties:
1) bij > 0, and

∑n
j=1 bij = 1 (hence, ‖B‖∞ = 1);

2) there are ni + 1 positive elements in the i-th row,
and the positive elements in each row are equal except
the element on the diagonal line;

3) if bij = 0 , then bji = 0.
Properties 1) and 2) follow immediately from the

formula of Dk+1 in (3). Property 3) is true because
if a vertex V i is an adjacent vertex to V j then V j

is obviously an adjacent vertex to V i. Due to these
properties, we can write the matrix B as

B = DS

where D is a diagonal matrix

D =




1− βn1

n1
0 . . . 0

0
1− βn2

n2
. . . 0

...
. . .

0
1− βnm

nm




and S is a symmetric matrix of the following form:

S =




n1βn1

1− βn1

. . . 1 . . .

...
. . .

1 . . .
niβni

1− βni

. . .

...
nmβnm

1− βnm




.

D is obviously positive definite. We will show that
the matrix S is also positive definite, a key point in the
convergence proof. ¤

Theorem 1. The matrix S is positive definite.
Proof. To prove S is positive definite, we have to

show the quadric form

f(x1, x2, . . . , xm) = XTSX

is positive for any non-zero X = (x1, x2, . . . , xm)T.
Note that if vertices V i and V j are the endpoints

of an edge eij in the mesh, then sij = sji = 1 in the



42 J. Comput. Sci. & Technol., Jan. 2009, Vol.24, No.1

matrix S. Hence, it is easy to see that

f(x1, x2, . . . , xn) =
∑
eij

2xixj +
m∑

i=1

niβni

1− βni

x2
i

where eij in the first term ranges through all edges of
the given mesh. On the other hand, if we use fijr to
represent a face with vertices V i, V j and V r in the
mesh, then since an edge in a closed triangular mesh is
shared by exactly two faces, the following relationship
holds:

∑

fijr

(xi + xj + xr)2 =
∑
eij

4xixj +
m∑

i=1

nix
2
i

where fijr on the left hand side ranges through all faces
of the given mesh. The last term in the above equation
follows from the fact that a vertex with valence n is
shared by n faces of the mesh.

Hence, f(x1, x2, . . . , xn) can be expressed as

f(x1, x2, . . . , xn) =
∑

fijr

1
2
(xi + xj + xr)2

+
m∑

i=1

( niβni

1− βni

− ni

2

)
x2

i .

From (3), it is easy to see that nβn

1−βn
> 3

5n for n > 3.
Hence, f(x1, x2, . . . , xm) is positive for any none zero
X and, consequently, S is positive definite. ¤

Based on the above lemma and theorem, it is easy
to conclude that the iterative interpolation process for
Loop subdivision is convergent.

Theorem 2. The iterative interpolation process for
Loop subdivision surface is convergent.

Proof. The iterative process is convergent if and
only if absolute value of the eigenvalues of the matrix
P = I − B are all less than 1, or all eigenvalues λi,
1 6 i 6 m, of B are 0 < λi 6 1.

Since ‖B‖∞ = 1, we have λi 6 1. On the other
hand, since B is the product of two positive definite

matrices D and S, following Lemma 1, all its eigen-
values must be positive. Hence, the iterative process is
convergent. ¤

4 Extension to Open Meshes

Loop subdivision surface based progressive interpo-
lation technique can be used for open meshes as well.
Actually the same advantages hold for open meshes too.
Before we present Loop subdivision surface based pro-
gressive interpolation technique for open meshes, we
need to review subdivision rules for the boundaries of
an open mesh first.

Two kinds of boundary rules have been presented
for Loop subdivision in the literature[18−21]. In this
paper, we follow the rules presented in [18, 19]. These
rules, together with the Loop subdivision schemes, gen-
erate a smooth surface that is C1 continuous at the
boundaries[18,19].

For these rules to work, the vertices on the bound-
ary are divided into two categories: regular vertices and
extraordinary vertices. A boundary vertex is called a
regular vertex if its valence is 4, as the one shown in
Fig.1(a). Otherwise, a boundary vertex is called an ex-
traordinary vertex.

For each existing boundary vertex, a new vertex is
computed as a linear combination of the existing ver-
tex and its two neighbors with weights 3/4, 1/8 and
1/8, respectively. This vertex formula applies to both
regular vertices and extraordinary vertices.

For each boundary edge, a new edge vertex is gen-
erated in two ways. If the endpoints of the edge are
both regular or both extraordinary, then the new ver-
tex is just the average of the endpoints. If one of them
is regular and the other one is extraordinary, then the
new vertex is a linear combination of the regular vertex
and the extraordinary vertex with weights 5/8 and 3/8,
respectively, as in Fig.1(c).

Fig.1. (a) Regular vertex. (b)∼(d) Boundary subdivision rules. (e)∼(j) Limit point forumlas. The solid circular points are regular

vertices and rectangle points are extraordinary vertices.
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Limit points are computed using two formulas, one
for regular vertices and one for extraordinary vertices,
as in Figs. 1(e) and 1(f). These formulas require both
neighbors to be regular vertices. On boundaries of the
initial mesh, one vertex could have either regular or ex-
traordinary vertices. There are totally 6 different con-
figurations. For each configuration, we can get a new
limit point formula by combining the boundary subdi-
vision rules with the standard limit points. These 6
limit point formulas are shown in Figs. 1(e)∼1(j).

Note that boundary subdivision involves only the
boundary vertices. Therefore interpolation can be per-
formed for boundary vertices first. Once we have all
the boundary vertices, interpolation of interior vertices
is then performed without making any changes to the
boundary vertices. The final mesh will interpolate both
the boundary vertices and the interior vertices exactly.
Interpolation of the boundary vertices is done using our
progressive interpolation technique. The convergence
of the interpolation is guaranteed. A mesh could have
several disconnected closed boundaries, such as 6 in the
pipe model in Fig.3(a). For each closed boundary, a lin-
ear system of equations can be built based on the limit
point formulas for boundary vertices.

V ∞
B = EVB.

Since every row is from one of the 6 limit point for-
mulas, then E must be a strictly diagonally dominant
matrix which means

∑n
j=1,j 6=i eij < eii. The eigenval-

ues λi of E satisfy |λi| 6 1 for
∑n

j=1 eij = 1. Thus
the eigenvalues of E are in (0, 1]. The advantage of our
technique is very desirable. No matter how many dis-
connected boundaries there are, interpolation is done
for all boundaries at the same time just through the
local geometric operations. It avoids explicitly solving
several linear equations separately.

Interpolation of interior vertices also uses the pro-
gressive interpolation technique. Its convergence is also
provable. Let V = VB ∪VI be the vertex set of the ini-
tial mesh M , where VB and VI are the set of boundary
vertices and interior vertices, respectively. If we add
one extra vertex q to M and connects every boundary
vertices with q, we get an closed mesh M ′ with vertex
set VC = V ∪ q.

Applying the vertex limit point formula (3) to inte-
rior vertices, we get a linear equation:

V ∞
I = WV = WIVI + WBVB.

WI is a submatrix of W consisting of |VI | columns
of W corresponding to the interior vertices. WB is a
similar submatrix corresponding to the boundary ver-
tices. WI is similar to B for closed meshes. It can be

decomposed into one diagonal matrix DI and a sym-
metric matrix SI .

For this new closed mesh M ′, it is okay to apply
the progressive interpolation technique developed in the
previous sections. Therefore, the following equations
hold.

V ∞
C = FVC

That is,



V ∞
I

V ∞
B

q∞


 =




WI 0
WB 0
wq αq







VI

VB

q


 .

It is clear that W is just a submatrix of F . F is de-
composed into DC and SC . SC depends only on the
topology of the mesh. M is part of M ′. Therefore, SI

is just a minor of a positive definite matrix SC . Now it
is clear that WI satisfies the convergent condition for
progressive interpolation. The examples in Fig.3 show
interpolation results of open meshes.

5 Results

The progressive interpolation process is implemented
for Loop subdivision surfaces on a Windows plat-
form using OpenGL as the supporting graphics system.
Quite a few cases have been tested. Some of the closed
cases (a hog, a rabbit, a tiger, a statue, a boy, a turtle
and a bird) are presented in Fig.2. All the data sets are
normalized, so that the bounding box of each data set
is a unit cube. For each closed case, the given mesh and
the constructed interpolating Loop surface are shown.
The sizes of the data meshes, numbers of iterations per-
formed, maximum and average errors of these cases are
collected in Table 1.

Table 1. Loop Surface Based Progressive

Interpolation: Test Results

Model No. of No. of Max Error Ave Error

Vertices Iterations

Hog 606 10 0.000 870 799 0.000 175 255

Rabbit 453 13 0.000 932 857 0.000 111 197

Tiger 956 9 0.000 720 453 0.000 141 480

Statue 711 11 0.000 890 806 0.000 109 163

Boy 17 342 6 0.000 913 795 0.000 095 615

Turtle 445 10 0.000 955 765 0.000 172 600

Bird 1 129 9 0.000 766 811 0.000 088 345

Open mesh examples are shown in Fig.3. The per-
formance is about the same as the closed mesh exam-
ples. For instance, for the face model (299 vertices)
shown in Fig.3(c), it takes 10 iterations to reach an er-
ror of 0.000 998 516 for boundary vertex interpolation
and also 10 iterations to reach an error of 0.000 896 328
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Fig.2. Examples of progressive interpolation using Loop subdivision surfaces (G-mesh ≡ given mesh; I-surface ≡ interpolating Loop

surface). (a) (c) (e) (g) (i) (k) (m) G-mesh. (b) (d) (f) (h) (j) (l) (n) I-surface.
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Fig.3. Open mesh examples (I-surface ≡ interpolating Loop sur-

face). Red solid dots are boundary vertices of the given mesh.

(a) (c) Given mesh. (b) (d) I-surface. (e) Different view.

for interior vertex interpolation by the new pogressive
interpolation technique.

From these results, it is easy to see that the pro-
gressive interpolation process is very efficient and can
handle large meshes with ease. This is so because of
the expotential convergence rate of the iterative pro-
cess. Another point that can be made here is, although
no fairness control factor is added in the progressive
iterative interpolation, the results show that it can pro-
duce visually pleasing surface easily.

6 Concluding Remarks

A progressive interpolation technique for Loop sub-
division surfaces is presented and its convergence is
proved. The limit of the iterative interpolation pro-
cess has the form of a global method. Therefore, the
new method enjoys the strength of a global method. On
the other hand, since control points of the interpolat-
ing surface can be computed using a local approach, the
new method also enjoys the strength of a local method.
Consequently, we have a subdivision surface based in-
terpolation technique that has the advantages of both a
local method and a global method. The new technique
works for both open and closed meshes. Our next job
is to investigate progressive interpolation for Catmull-
Clark and Doo-Sabin subdivision surfaces.

Acknowledgement Triangular meshes used in
this paper are downloaded from the Princeton Shape
Benchmark[22].
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