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Abstrat. An automati smooth surfae onnetion method that has the apability of tension

ontrol is presented. Given two trimmed NURBS surfaes, the new method onstruts a smooth

onnetion surfae to onnet the trimming regions of the trimmed surfaes at the trimming

urves. The onnetion satis�es the pseudo-G

1

or pseudo-C

1

smoothness requirement, a on-

dition not as strong as G

1

or C

1

, but smooth enough for most industrial appliations. The

onstrution proess onsists of four major steps: onnetion urves onstrution and alignment,

initial blends onstrution, setting up ontinuity onstraints, and internal and external boundary

smoothing. The advantages of the new method inlude: (1) providing the users with more exi-

bility in adjusting the shape of the onnetion surfae, (2) the representation of the onnetion

surfae is ompatible with most of the urrent data-exhange standards, (3) inluding the las-

sial blending as a speial ase but with more exibility on the setting of the rail urves, and

(4) smoother shape of the resulting onnetion surfae through an energy optimization proess.

Test ases that over important appliations are inluded.

Keywords: onstrained deformation, surfae onnetion, blending, trimmed NURBS surfaes,

rail urves, strain energy

1 Introdution

Surfae onnetion refers to the proess of smoothly onneting two or more surfaes, alled

base surfaes, with or without an auxiliary surfae. The onnetion proess is alled indiret

onnetion if an auxiliary surfae, alled a onnetion surfae, is needed. Otherwise, it is alled

diret onnetion. In indiret onnetion, a onnetion surfae is used to smoothly onnet two

or more disjoint base surfaes along rail urves spei�ed by the user. In diret onnetion, the

base surfaes are joined diretly along a ommon boundary, alled a onnetion urve. The

smoothness of the onnetion proess is usually established by requiring tangential ontinuity

�
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between the base surfaes (for diret onnetion) or between the onnetion surfae and the base

surfaes (for indiret onnetion).

Diret onnetion is a frequently used proess in industry. For instane, omponents of a

omplex shape (suh as a ar) may be designed by di�erent groups separately or taken from

deformed versions of some previously designed parts and then assembled into a omplete objet

for eÆieny purpose. Undesired positional or tangential disontinuity along the omponent

boundary is usually �xed manually. This problem an be regarded as a onstrained surfae

deformation problem by notiing that the onnetion proess is equivalent to deforming the base

surfaes so that the boundary urves of the base surfaes would oinide with the onnetion

urve and appropriate ontinuity ondition is satis�ed along the onnetion urve. Tehniques

in this area an be found in [3℄[4℄[21℄[22℄[?℄.

The indiret onnetion problem has been extensively studied for two speial ases. In the

�rst ase, the onnetion proess is performed on the boundary urves of the base surfaes, i.e.,

the rail urves are de�ned by the boundary urves of the base surfaes. A typial example is the

indiret onnetion of two ylinders with di�erent diameters along their boundary urves. The

onnetion surfae is usually generated as a blending surfae [1℄[12℄[13℄[?℄[20℄. In some oasions,

however, the onnetion surfae is onstruted by solving some interpolation ondition [2℄[6℄[14℄.

The S-path [16℄[17℄ and Gregory Path [5℄, whih an smoothly onnet multiple surfae pathes,

are onstruted using a similar approah as well.

In the seond ase, the base surfaes are two interseting surfaes and a onnetion surfae

is generated to replae the interseting urve and its viinity as a smoothing (rounding) proess.

The onnetion surfae is usually a part of a anal surfae generated by a rolling ball whih

has G

1

ontat to the base surfaes. An extensive survey of results in this ase an be found in

[19℄. Connetion surfaes that have higher degree of ontinuity along the rail urves an also be

onstruted [9℄[10℄[11℄.

Indiret onnetion of parametri surfaes with general rail urves has not been well studied

yet. Filip's work [8℄ seems to be the only known result in this area. Given two arbitrary rail

urves, a onnetion surfae that allows tension ontrol is onstruted using the Hermite interpo-

lation tehnique. Sine a tangent funtion usually an not be expliitly de�ned for an arbitrary

rail urve, the onnetion surfae onstruted this way is not C

1

ontinuous, as the author has

laimed, but only pieewise C

1

ontinuous. The most serious drawbak of this approah, how-

ever, is that the onnetion surfae does not have a NURBS representation and the degree of the

surfae is high. For biubi B-spline base surfaes, the degree of the resulting onnetion surfae

is eighteen, not suitable for stable numerial omputation.

We will overome the problems enountered by Filip's approah by presenting a new approah

for indiret onnetion of trimmed NURBS surfaes. The onnetion satis�es the pseudo-G

1

or

pseudo-C

1

smoothness requirement (to be de�ned in Setion 2), a ondition not as strong as G

1

or C

1

, but smooth enough for most industrial appliations. Most importantly, the onnetion

surfae onstruted by this method has a biubi NURBS representation and, hene, is ompati-

ble with most of the urrent data-exhange standards. The onnetion surfae is a omposition of

many small blends, instead of a single blend. Hene, it takes more spae for internal representa-
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tion. But the biubi NURBS representation makes it more eÆient and stable for omputation

and rendering, a seemingly reasonable trade-o�. The new approah also allows tension ontrol

of the onnetion surfae by the user.

The remaining part of the paper is arranged as follows. A formal desription of the problem is

given in Setion 2. The basi idea of the proposed method is presented in Setion 3. Tehniques

needed in onstruting the onnetion surfae are desribed in Setions 4-8. Test results of

the proposed method, inluding a omparison of the new approah with Filip's approah, are

inluded in Setion 9. Conluding remarks are given in Setion 10.

2 Problem Formulation

The problem onsidered in this paper an be desribed as follows: Given two trimmed surfaes

S

0

and S

1

with trimming urves T

0

and T

1

, respetively, onstrut a new surfae S that onnets

the trimming regions of S

0

and S

1

at T

0

and T

1

, respetively. S

0

and S

1

are alled the base

surfaes and S is alled a onnetion surfae. The trimming urves where the onnetion is

performed are alled the onnetion urves. The onnetion between the base surfaes and the

onnetion surfae should satisfy some smoothness ondition along the onnetion urves. Due

to the fat that popular smoothness onditions suh as G

1

and C

1

ontinuity are not possible to

ahieve when T

0

and T

1

are arbitrarily de�ned, we will use a lower smoothness requirement for

the onnetion proess.

De�nition. The onnetion between a onnetion surfae and a base surfae is said to be

pseudo-G

1

(pseudo-C

1

) ontinuous if the onnetion is C

0

on the entire onnetion urve but

G

1

(C

1

) on �nitely many points of the onnetion urve only. The points where the onnetion

satis�es G

1

(C

1

) ondition must be densely populated over the onnetion urve so that the

onnetion urve is ontained in the union of the �-neighborhoods of suh points for some small

positive number �.

An example is shown in Figure 1 where a onnetion surfae (in dark blue) onnets two base

surfaes (in green and sky blue) at two irular onnetion urves. The onnetion is pseudo-G

1

smooth.

The onnetion urves have been alled rail urves in the blending proess. However, sine our

onnetion proess is more general than the lassial blending proess (whih fouses on smoothly

joining parametri surfaes along their boundary urves or o�set urves of the boundary urves,

see Figures 6 and 7), and these urves are not generated in the same way as the blending proess,

we hoose not to use the same term here to avoid onfusion.

The base surfaes S

0

and S

1

are NURBS surfaes of degrees p

0

and p

1

in u diretion and

degrees q

0

and q

1

in v diretion, respetively,

S

k

(u; v) =

P

m

k

i=0

P

n

k

j=0

w

k

i;j

Q

k

i;j

N

k

i;p

k

(u)N

k

j;q

k

(v)

P

m

k

i=0

P

n

k

j=0

w

k

i;j

N

k

i;p

k

(u)N

k

j;q

k

(v)

; (1)
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Figure 1: An example of smooth surfae onnetion.

k = 0; 1 (u; v) 2 [0; 1℄� [0; 1℄

where Q

k

i;j

are 3D ontrol points, N

k

i;p

k

(u) and N

k

j;q

k

(v) are B-spline basis funtions of degrees p

k

and q

k

, respetively, and w

k

i;j

are weight funtions. N

i;p

k

(u) and N

j;q

k

(v) are de�ned with respet

to the knot vetors �

k

= f�

k

0

; �

k

1

; ::: ; �

k

m

k

+p

k

+1

g, and �

k

= f�

k

0

; �

k

1

; ::: ; �

k

n

k

+q

k

+1

g, respetively,

with �

k

0

= ::: = �

k

p

k

= �

k

0

= ::: = �

k

q

k

= 0 and �

k

m

k

+1

= ::: = �

k

m

k

+p

k

+1

= �

k

n

k

+1

= ::: = �

k

n

k

+q

k

+1

= 1.

A trimming urve of a free-form surfae may be de�ned by a losed parametri urve in the

domain of the surfae. However, in industrial appliations, a trimming urve is usually de�ned

by a set of points in the domain of the surfae, due to the fat that trimming urves are usually

generated through the surfae-surfae intersetion operation. We follow the industrial standard

in this work, i.e., the trimming urves T

k

, k = 0; 1, are de�ned by losed linear polygons in

the domains of S

k

with l

k

verties V

k

0

, V

k

1

, V

k

2

, ... , V

k

l

k

= V

k

0

, k = 0; 1, respetively. The

trimming urves do not interset themselves. The trimming region of a trimmed NURBS surfae

is determined by the urve handedness rule, i.e., a point is in the trimming region if it is on the

left side when one traverses the trimming urve.

The onnetion surfae S should onnet the trimming regions of the given trimmed NURBS

surfaes at the trimming urves. The onnetion should be at least pseudo-G

1

or pseudo-C

1

ontinuous. The onnetion surfae should have a NURBS representation to be ompatible with

the urrent data-exhange standards. The shape of the onnetion surfae should be smooth

enough to meet design riteria. Besides, the user should be able to ontrol the shape of the

onnetion surfae through some simple mehanism to satisfy both aestheti and areodynami

requirements.

3 Basi idea

The main idea of the new approah is to onstrut the onnetion surfae as a set of (small) blends

instead of a single blend. The small blends are onstruted by splitting the trimming urves of
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the base surfaes into small, aligned segments and then blending orresponding segments with an

appropriate pro�le urve to form initial blends. The onnetion surfae is formed by pieing the

small blends together through an optimization proess to ahieve internal and external smooth-

ness requirements. Sine eah small blend is a biubi B�ezier path, the resulting onnetion

surfae is a omposite B�ezier surfae and, onsequently, a biubi NURBS surfae. The user an

ontrol the shape of the blends and the onnetion surfae by manipulating a tension parameter

ontained in the pro�le urve.

The main steps of our approah are show below:

1. Connetion urves onstrution and alignment;

2. Initial blending onstrution;

3. Setting up ontinuity ontrol onstraints;

4. Shape optimization.

The �rst step is the most ritial step beause the result of this step determines the shape of the

blends onstruted in the seond step and, hene, essentially the shape of the onnetion surfae.

Details of the above steps are given in the subsequent setions.

4 Connetion Curves Constrution and Alignment

A trimming urve, represented as a (losed) linear polygon in the parameter spae of the trimmed

surfae, an not be used as a onnetion urve diretly. A onnetion urve has to be onstruted

separately. An intuitive approah is to onstrut a ubi B-spline or pieewise B�ezier urve that

interpolates the verties of the trimming urve in the parameter spae and use its image under

the surfae de�nition as the onnetion urve [8℄. This onetion urve, however, an not be used

in the subsequent blend onstrution proess beause, after the mapping of the surfae de�nition,

it is no longer a B-spline or a pieewise B�ezier urve. Besides, a onnetion urve onstruted

this way has a degree of 18, not suitable for stable numerial omputation.

The onnetion urves will be onstruted in the modeling spae diretly. These urves must

satisfy the following requirements:

1. they have the same number of urve segments and their segments are properly aligned;

2. the number of urve segments is big enough so that eah onnetion urve an be overed

by the �-neighborhoods of the endpints of its urve segments;

3. eah onnetion urve lies exatly on the orresponding base surfae.
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The �rst requirement is to ensure omponents of the onnetion surfae are properly onstruted

(Setion 5) and satisfy the aestheti and areodynami requirements on their shape. The seond

requirement is to ensure pseudo-G

1

ontinuity between the onnetion surfae and the base

surfaes. The third requirement is to ensure that there is no gap between the onnetion surfae

and the base surfaes. The onstrution proess is shown below.

First, for eah base surfae S

k

, k = 0; 1, we onstrut a ubi B-spline urve C

k

that inter-

polates the verties of the trimming urve T

k

in the modeling spae S

k

(V

k

i

), i = 0; 1; :::; l

k

, as

follows:

C

k

(t) =

l

k

+2

X

j=0

N

k

j;3

(t)P

k

j

t 2 [t

3

; t

l

k

+3

℄ = [0; 1℄ (2)

where P

k

j

are 3D ontrol points and N

k

j;3

(t) are ubi B-spline basis funtions de�ned with respet

to the knot vetor t

k

= ft

k

0

; t

k

1

; ::: ; t

k

l

k

+6

g. The knots are de�ned using the interpolation points

S

k

(V

k

i

), following the entripetal model [15℄. The ontrol points P

k

j

are omputed by solving the

following system of equations:

C

k

(t

i

) =

l

k

+2

X

j=0

N

k

j;3

(t

i

)P

k

j

= S

k

(V

k

i�3

); (3)

i = 3; 4; :::; l

k

+ 3:

C

k

(t) is a losed urve, its ontrol points are yli, i.e., P

k

j

= P

k

j mod l

k

.

To meet the �rst and the seond requirements, let P

k

td

and N

k

td

be the entroid and normal

vetor of the trimming urve T

k

de�ned as follows:

P

k

td

=

1

l

k

l

k

X

i=1

S

k

(V

k

i

); k = 0; 1 (4)

and

N

k

td

=

1

l

k

l

k

X

i=1

N

k

i

; k = 0; 1 (5)

where N

k

i

are the normal vetors of the trimmed surfae S

k

at S

k

(V

k

i

). Using these four items,

one an onstrut a ubi B�ezier urve C(t) (t 2 [0; 1℄) with P

0

td

and P

1

td

as its endpoints and

N

0

td

and N

1

td

as its endpoint tangent vetors. This urve is the entroid line of the onnetion

surfae to be onstruted. Using the �rst derivative and the seond derivative of the urve C(t)

at the endpoints, one an onstrut a plane through eah endpoint. Eah plane has two or more

intersetion points with the orresponding onnetion urve. Take the two outmost intersetion

points on eah onnetion urve and reursively subdivide the left and the right portions of the

onnetion urves onurrently to generate a set of points D

k

i

, i = 0; 1; 2; :::; N , on the onnetion

urves with D

k

0

= D

k

N

, k = 0; 1. The subdivision proess stops when the following two onditions

are satis�ed: (1) the Eulidean distane between eah pair of onseutive points is less than �=2,

and (2) for eah resulting sub-segment of the onnetion urves, the distane between the hord

and the ar is less than �=2. If a pair of onseutive points fail to satisfy any of these onditions,
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the orresponding segments on both onnetion urves are further reursively subdivided until

these onditions are satis�ed by subsegments on both onnetion urves.

When the subdivision proess stops, we onstrut a losed ubi B-spline urve to interpolate

D

0

i

, i = 0; 1; 2; :::; N , and a losed ubi B-spline urve to interpolate D

1

i

, i = 0; 1; 2; :::; N . These

urves are (slightly) di�erent from C

0

and C

1

. For simpliity, however, we shall use C

0

and C

1

to represent these urves again. The new C

0

and C

1

will be used as the onnetion urves for

the base surfaes S

0

(u; v) and S

1

(u; v), respetively. Note that, with D

k

i

, i = 0; 1; 2; :::; N , as

interpolation points, C

0

and C

1

satisfy requirements 1 and 2 now. In general, the urve C

k

(t)

does not lie on the base surfae S

k

.

To meet the third requirement, we deform the base surfae S

k

(u; v) so that the deformed

version would ontain the onnetion urve C

k

. This proess will be performed as a onstrained

optimization proess to ensure (1) the di�erene between the deformed base surfae and the

original base surfae is as small as possible, and (2) the shape and urvature distribution of

the deformed base surfae are as lose to the original base surfae as possible. Obviously, the

objetive funtion of the optimization proess should be onstruted based on the di�erene of

the deformed version and the given version of the base surfae.

For eah base surfae S

k

, k = 0; 1, let

�

S

k

be the deformed version of the base surfae. The

displaement funtion is therefore

V

k

(u; v) = S

k

(u; v)�

�

S

k

(u; v): (6)

To ensure that after the deformation proess the onnetion urve C

k

would lie on the deformed

base surfae

�

S

k

ompletely, one an onsider a positive de�nite error funtional as follows:

Æ = 1=2

Z

1

0

(C

k

(t)�

�

S

k

(

^

C

k

(t))

2

dt

where

^

C

k

(t) is a parametri urve in the domain of the base surfae S

k

. The value of this error

funtional is zero and a minimum when the urve C

k

(t) is equal to the urve

�

S

k

(

^

C

k

(t)), i.e.,

when the onnetion urve is the image of the deformed surfae of some parametri urve in the

domain of the surfae. A natural hoie for

^

C

k

(t) is the ubi B-spline urve that interpolates

the verties of the trimming urve T

k

in the domain of S

k

. Following a tehnique of Celniker

and Welh [4℄, the above error funtional an be transformed to a linear onstraint as follows by

requiring its value to be a minimum { that is, its gradient with respet to the ontrol points to

be 0.

BQ = b (7)

Q is the set of ontrol points of the deformed surfae

�

S

k

.

The deformed surfae is omputed by performing onstrained optimization on the thin plate

energy model of the displaement funtion. The optimization proess will be disussed in Setion

8. The deformed surfae now satis�es all three requirements. Note that the di�erene between

C

k

(t) and

�

C

k

(t) is small. Hene, the di�erene between the deformed version and the original

version of the base surfae is small too. For simpliity, after this point we shall use S

k

(t), not

�

S

k

, to refer to its deformed version.
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5 Initial Blends Constrution

C

0

i

(t)

V

1

i

V

0

i

C

1

i

(t)

(a)

C

1

i

(1=2) = E

i;3

C

0

i

(1=2) = E

i:0

E

i;1

E

i;2

D

i

(v)

�

D

i

(v)




i

(v)

(b)

Figure 2: Constrution of a pro�le urve.

Using the points D

k

i

(i = 1; 2; :::N � 1), k = 0; 1, generated in the previous step, one an

subdivide eah of the onnetion urves C

k

(t), k = 0; 1, into N ubi B�ezier urve segments:

B

k

0

(t), B

k

1

(t), ..., B

k

N�1

(t) where t 2 [0; 1℄. The goal of this step is to onstrut a blend

^

S

i

(u; v)

for eah pair of orresponding B�ezier urve segments, B

0

i

(t) and B

1

i

(t) (i = 0; :::; N � 1), of the

onnetion urves. Combined, these blends will form the initial shape of the onnetion surfae.

An intuitive approah one an think of immediately is the Hermite Interpolation tehnique,

that is, onstruting the blend

^

S

i

(u; v) as follows:

^

S

i

(u; v) = H

0

(v)B

0

i

(u) +H

1

(v)B

1

i

(u)

+H

2

(v)D

0

i

(u) +H

3

(v)D

1

i

(u) (8)

where H

i

(v) are ubi Hermite basis funtions

H

0

(v) = v

2

(2v � 3) + 1; H

1

(v) = 1�H

1

(v);

H

2

(v) = v(v � 1)

2

; H

3

(v) = v

2

(v � 1)

and D

0

i

(u) and D

1

i

(u) are tangent funtions to be de�ned. This is essentially what was done by

Filip [8℄. The representation of the resulting onnetion surfae in this ase is not ompatible

with that of the base surfaes. Note that unless D

0

i

(u) and D

1

i

(u) are expliitly de�ned, the

smoothness between the onnetion surfae and the base surfaes is not G

1

, as Filip has laimed

in [8℄. In the following, we present an approah that provides a ompatible representation for

the resulting onnetion surfae. The new approah embeds the shape information of the base

surfaes into that of the onnetion surfae in a more natural way. The resulting onnetion

surfae satis�es the pseudo-G

1

or pseudo-C

1

smoothness requirement at the onnetion urves.
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For eah pair of orresponding B�ezier urve segments B

0

i

(t) and B

1

i

(t) (i = 0; :::; N � 1), we

�rst �nd a vetor V

k

i

that is tangent to the surfae S

k

(u; v) and normal to the B�ezier urve

segment B

k

i

(t) at the point B

k

i

(1=2), k = 0; 1. There are two suh vetors. We take the one that

is going away from the trimming region of S

k

(u; v) (see Figure 2(a)). We then de�ne two points,

E

i;1

and E

i;2

, as follows (see Figure 2(b)):

E

i;1

= B

0

i

(1=2) + w

1

V

0

i

;

E

i;2

= B

1

i

(1=2) + w

2

V

1

i

where w

0

and w

1

, alled tension parameters, are real numbers between 0 and 1. The four points

E

i;0

= C

0

i

(1=2), E

i;1

, E

i;2

, and E

i;3

= C

1

i

(1=2) de�ne a ubi B�ezier urve as follows:

D

i

(v) = B

0;3

(v)E

i;0

+B

1;3

(v)E

i;1

+

B

2;3

(v)E

i;2

+B

3;3

(v)E

i;3

where B

i;3

(v) are Bernstein basis funtions of degree three. By using E

i;0

, E

i;3

, and two points in

between, one an get a ubi B�ezier urve representation for the line segment E

i;0

E

i;3

, as follows:

�

D

i

(v) = B

0;3

(v)E

i;0

+B

1;3

(v)

�

E

i;1

+

B

2;3

(v)

�

E

i;2

+B

3;3

(v)E

i;3

where

�

E

i;1

= (2C

0

i

(1=2) + C

1

i

(1=2))=3 and

�

E

i;2

= (C

0

i

(1=2) + 2C

1

i

(1=2))=3.

�

D

i

(v) is the base

segment of D

i

(v) (see Figure 2 (b)). We then ompute the vetor 


i

(v) that is the di�erene of

D

i

(v) and

�

D

i

(v).




i

(v) = D

i

(v)�

�

D

i

(v)

Using a tehnique similar to the so alled blending between two ross-setions using one pro�le

[7℄, one an de�ne a blending surfae

^

S

i

(u; v) for B

0

i

and B

1

i

, i = 0; 1; :::; N � 1, as follows:

^

S

i

(u; v) = (1� �(v))C

0

i

(u) + �(v)C

1

i

(u) + 


i

(v) (9)

where �(v) is a blending funtion de�ned as follows:

�(v) = B

0;3

(v)�

0

+B

1;3

(v)�

1

+B

2;3

(v)�

2

+B

3;3

(v)�

3

with �

0

= 0, �

3

= 1, and �

1

and �

2

are determined based on the shape of the base surfaes. If

the angle between the vetor V

0

i

and the base plane of the trimming urve C

0

(t) (the plane that

passes through the entroid of C

0

(t) and is perpendiular to the normal of C

0

(t)) is �

0

, and the

angle between the vetor V

1

i

and the base plane of the trimming urve C

1

(t) is �

1

, then �

1

and

�

2

an be de�ned as follows (see Figure 3):

�

1

= jV

0

i

j w

1

Sin(�

0

) (10)

�

2

= �

3

� jV

1

i

j w

2

Sin(�

1

) (11)
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�

1

V

0

i

V

1

i

�

3

= 1

�

2

�

0

= 0

�

1

�

0

1

Figure 3: Constrution of �

1

and �

2

.

The blending surfae

^

S

i

(u; v) de�ned in eq. (9) is a biubi B�ezier surfae. If the ontrol points

of the B�ezier urve segment B

k

i

(u) are P

i;k

0

, P

i;k

1

, P

i;k

2

and P

i;k

3

, k = 0; 1 and i = 0; 1; :::; N � 1;

then the ontrol points of

^

S

i

(u; v),

^

Q

i

j;l

(j = 0; ::; 3; l = 0; :::; 3), an be expressed as follows:

[

^

Q

i

j;l

℄ =

2

6

6

6

6

4

P

i;0

0

P

i;1

0

1

P

i;0

1

P

i;1

1

1

P

i;0

2

P

i;1

2

1

P

i;0

3

P

i;1

3

1

3

7

7

7

7

5

2

6

4

1� �

0

1� �

1

1� �

2

1� �

3

�

0

�

1

�

2

�

3

0 E

i;1

�

�

E

i;1

E

i;2

�

�

E

i;2

0

3

7

5

A onnetion surfae onstruted this way would only satisfy C

0

ontinuity on it boundaries

with the base surfaes and on the boundaries of the omponent surfaes. Smoother ontinuity

ondition will be ahieved through an optimization proess. This will be disussed in Setion 8.

To get a good onnetion surfae shape, the user needs to selet proper values for the tension

parameters, w

1

and w

2

. In general, larger tension parameters will result in smoother onnetion

surfae shape. However, larger tension parameters sometimes ould generate abnormal shapes

suh as usps or loops on isoparametri urves of the onnetion surfae. So these parameters

sometimes have to be iteratively adjusted to �nd the best values. A suggesed initial value for

these parameter is 0:5. A rule of thumb in adjusting these parameters is to derease the values

of the tension parameters if abnormal portions are found in the onnetion surfae. Otherwise,

inrease the values of the tension parameters to get smoother onnetion surfae. The maximum

value for the tension parameters is one. At that point the onnetion surfae is pseudo-C

1

ontinious.
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6 Setting Up Continuity Constraints

The purpose of this step is to set up ontinuity onstraints for the optimization proess. Two

types of ontinuity onstraints will be onsidered: interior ontinuity onstraint and exterior

ontinuity onstraint. The �rst one refers to ontinuity onstraint between omponent surfaes

of the onnetion surfae, the seond one refers to ontinuity onstraint between the onnetion

surfae and the base surfaes.

6.1 Interior ontinuity onstraint

Adjaent omponent surfaes of the onnetion surfae are required to satisfy C

1

ontinuity on

their boundaries. If two adjaent omponent surfaes

^

S

i

(u; v) and

^

S

i+1

(u; v), 0 <= i <= N � 1,

have the same number of ontrol points in v diretion, then their ontrol points must satisfy the

following onditions:

^

Q

i

n

i

;l

=

^

Q

i+1

0;l

; l = 0; 1; :::; m

i

(12)

and

^

Q

i

n

i

;l

�

^

Q

i

n

i

�1;l

=

^

Q

i+1

1;l

�

^

Q

i+1

0;l

:; l = 0; 1; :::; m

i

(13)

In the above onditions, i+ 1 is modulo N .

Sometimes, due to surfae shape requirement, adjaent omponent surfaes might have dif-

ferent number of ontrol points in v diretion, i.e., m

i

6= m

i+1

. In that ase, adjaent omponent

surfaes must satisfy pseudo C

1

ontinuity on their boundaries, i.e.,

^

S

i

(1; v

i

l

) =

^

S

i+1

(0; v

i

l

); l = 0; 1; :::;M (14)

d

du

^

S

i

(1; v

i

l

) =

d

du

^

S

i+1

(0; v

i

l

); l = 0; 1; :::;M (15)

for some v

i

l

, where M � max(m

i

; m

i+1

) and jv

i

l

� v

i

l+1

j < �. In the above onditions, i + 1 is

modulo N too.

6.2 Exterior ontinuity onstraint

Constraint for ontinuity ondition between the onnetion surfae and the base surfae is needed

for v diretion only. This will be set up in three steps.

First, for eah omponent surfae

^

S

k

(u; v), k = 0; 1; :::; N � 1, map the ontrol points of

its boundary urves

^

S

k

(u; 0) and

^

S

k

(u; 1) onto the boundary urves using the shortest distane

tehnique. For instane, for the boundary urve

^

S

k

(u; 0), this is equivalent to the proess of

identifying the point (u

i;0

; 0) in the parameter spae of

^

S

k

(u; 0) so that the distane between

^

Q

k

i;0

and

^

S

k

(u

i;0

; 0) is the minimum, i = 0; 1; :::; m

k

.

^

S

k

(u

i;0

; 0) is alled the image of

^

Q

k

i;0

on the urve

^

S

k

(u; 0). Note that

^

S

k

(u

i;0

; 0) is also a point on the onnetion urve T

0

of the base surfae

S

0

(u; v).

11



Seond, determine the diretion of the outward normals of the onnetion urves at the

points determined in the �rst step. For instane, for the point

^

S

k

(u

i;0

; 0) determined in the

�rst step, sine it is also a point of the base surfae S

0

(u; v), we identify the point (u

0

i;0

; v

0

i;0

)

in the parameter spae of S

0

(u; v) suh that S

0

(u

0

i;0

; v

0

i;0

) =

^

S

k

(u

i;0

; 0). The point (u

0

i;0

; v

0

i;0

) is

loated on the parametri onnetion urve in S

0

(u; v)'s parameter spae. Consequently, one an

determine the tangent of the onnetion urve T

0

at S

0

(u

0

i;0

; v

0

i;0

) whih is the partial derivative

of the omponent surfae

^

S

k

(u; v) at

^

S

k

(u

i;0

; 0) with respet to u. From the tangent vetor of

the onnetion urve T

0

at S

0

(u

0

i;0

; v

0

i;0

) one an determine the outward normal of the urve at

the same point. The diretion of the outward normal is the same as the diretion of the partial

derivative of the omponent surfae

^

S

k

(u; v) at

^

S

k

(u

i;0

; 0) with respet to v. The angle between

the outward normal at that point and the u axis in the parameter spae is noted �

k

i

.

The outward normals of the onnetion urve T

1

at the points determined in the �rst step

an be determined similarly and the angles between the outward normals and the v axis in the

parameter spae are denoted �

k

i

, k = 0; 1; :::; N � 1, i = 0; 1; :::; m

k

.

The ontinuity onstraints are then set up as follows:

^

S

k

(u

k

i;0

; 0) = S

0

(u

0

i;0

; v

0

i;0

) (16)

^

S

k

(u

k

i;m

k

; 1) = S

1

(u

1

i;m

1

; v

1

i;m

1

) (17)

�

^

S

k

�v

(u

k

i;0

; 0) = w

1

[

�S

0

�u

(u

0

i;0

; v

0

i;0

)os�

k

i

+

�S

0

�v

(u

0

i;0

; v

0

i;0

)sin�

k

i

℄ (18)

�

^

S

k

�v

(u

k

i;m

k

; 1) = w

2

[

�S

1

�u

(u

1

i;m

1

; v

1

i;m

1

)os�

k

i

+

�S

1

�v

(u

1

i;m

1

; v

1

i;m

1

)sin�

k

i

℄ (19)

where k = 0; 1; :::; N � 1, i = 0; 1; :::; m

k

, and w

1

and w

2

are tension parameters de�ned in

Setion 5. Note that the onnetion urves usually have di�erent lengths. This makes it diÆult

to generate an appropriate onnetion surfae with C

1

ontinuity. The purpose of the tension

parameters in the above equations is to ensure a G

1

ontinuity between the onnetion surfae

and the the base surfaes and in the meanwhile guarantee a proper shape of the onnetion

surfae. The values of the tension parameters should be determined by the designer during the

design proedure.

7 Shape Control

In Setion 5, two numbers w

1

and w

2

, alled tension parameters, are introdued into the seond

and third ontrol points of the pro�le urve for eah omponent surfae. These two parameters

12



have great inuene on the shape of the resulting onnetion surfae. A guideline in seleting

the values of these parameters will be given below. Note that when w

1

= w

2

= 1, the onnetion

surfae has pseudo-C

1

ontinuity with the base surfaes S

0

and S

1

.

Let H

s

be the shortest distane between the two onnetion urves. For eah base surfae,

�nd the largest �rst derivative along the onnetion urve and denote it by D

l

(l = 0; 1),

D

l

= maxfS

l

u

(u(t); v(t)); S

l

v

(u(t); v(t))g

where (u(t); v(t)) is the parameter of the onnetion urve and t 2 [0; 1℄. A general guideline

for avoiding abnormal onnetion surfae shape is to hoose w

0

and w

1

satisfying the following

onditions:

w

1

D

0

+ w

2

D

1

� 3H

s

w

1

> 0

w

2

> 0

If w

1

= w

2

, then we must have

w

1

= w

2

�

3H

s

D

0

+D

1

:

8 Shape Optimization

Optimization tehniques have been widely used in surfae modi�ation and design [3℄[4℄ [18℄[22℄[?℄.

An important part of the optimization proess is the seletion of the objetive funtion. A

quadrati objetive funtion will indue a system of linear equations and, onsequently, is suit-

able for omputation proess. One should try to use a quadrati objetive funtion whenever it

is possible. In the following, we will outline the optimization proess used in this paper for the

smoothing of the onnetion surfae. The optimization proess of the base surfaes (Setion 4)

an be performed similarly.

Let

^

S(u; v) and S(u; v) denote the initial onnetion surfae and the modi�ed version of the

onnetion surfae, respetively. S is alled the target surfae. The di�erene between the target

surfae and the initial surfae, alled the displaement funtion, is denoted V(u; v).

V (u; v) = (S �

^

S)(u; v) (20)

Based on the theory of thin plate deformation, the energy of a displaement funtion is de�ned

as follows:

E(V) =

1

2

Z Z

D

F (u; v) dudv (21)

where D is the parameter spae of the surfae, and

F (u; v) = �F

1

(u; v) + �F

2

(u; v) + F

3

(u; v) (22)
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with F

1

(u; v), F

2

(u; v) and F

3

(u; v) being the bending, strething and spring omponents of the

deformation proess, respetively. These quantity are de�ned as follows:

F

1

(u; v) = (

�

2

V

�u

2

)

2

+ (

�

2

V

�v

2

)

2

+ (

�

2

V

�u�v

)

2

+ (

�

2

V

�u

2

)(

�

2

V

�v

2

)

F

2

(u; v) = (

�V

�u

)

2

+ (

�V

�v

)

2

+ (

�V

�u

)(

�V

�v

) (23)

F

3

(u; v) = V

2

They have impat on the amount of surfae displaement, variation of surfae area, and dis-

tribution of surfae urvature, respetively. �, � and  are the weights of these e�ets on the

deformation energy. A study on the determination of these weights an be found in [?℄.

By substituting the representations of the initial onnetion surfae

^

S and the target surfae

S into eqs. (23) and then (21), the energy funtion an be expressed as a quadrati funtion as

follows:

E(Q�

^

Q) =

1

2

[Q�

^

Q℄

>

A[Q�

^

Q℄ (24)

where Q and

^

Q are the ontrol points of the target surfae and the initial onnetion surfae,

respetively, and A is a onstant matrix de�ned by the basis funtions of the NURBS surfae.

The internal and external ontinuity onstraints obtained in the previous setion an be

expressed as a set of linear equations as follows:

BQ = b (25)

where Q is the ontrol points of

^

S to be determined, and B and b are onstant matries.

One then solve this system using the Lagrange Multiplier method. Sine the objetive funtion

in (24) is quadrati and the onstraint equations (24) are linear, the �nal system to be solved is

linear.

To avoid solving an over-determined system, the initial surfae sometimes needs to be sub-

divided. The depth of the subdivision proess an be determined by requiring the number of

ontrol points of the surfae to be larger than the number of onstraints.

9 Implementation

The proposed tehnique has been implemented in Java on a UNIX platform using OpenGL as

the supporting graphis system. Test results on four data sets are presented here.

The �rst result, shown in Figure 4, is to onnet two base surfaes along onave onnetion

urves. The onnetion surfae onnets the interior portion of the onnetion urve of one base

surfae with the exterior portion of the onnetion urve of another base surfae. The tension

ontrol parameters are w

1

= 0:5 and w

2

= 0:5. This is a typial example for feature based shape

design in industry.
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Figure 4: Conneting two general surfaes.

The seond ase is to show the robustness of the new approah by onneting an ellipti

ylinder with a bended base surfae (Figure 5). The tension ontrol parameters are w

1

= 0:33

and w

2

= 0:33. This is an example of lassi blending (�lleting) proess.

Figure 5: An ellipti ylinder onneted with a surfae.

The third ase (Figures 6 and 7) is to show e�et of the tension parameters on the shape

of the onnetion surfae. Two ellipti ylinders with di�erent orientations are onneted using

di�erent tension parameters. In Figure 6, both tension parameters are set to 0:1 while the tension

parameters in Figure 7 are both set to 1:0. The results show that larger tension parameters

usually generate smoother onnetion surfaes.

Tha last ase is a omparison of the new approah (Figure 8) with Filip's Hermite blending

approah (Figure 9). Sine the Hermite blending approah is atually pieewise G

1

only, the

15



Figure 6: Conneting two ylinders with w

1

= w

2

= 0:1.

Figure 7: Conneting two ylinders with w

1

= w

2

= 1:0.

smoothness of the result shown in Figure 9 is not as good as the one shown in Figure 8, as an

be seen from the highlights on the resulting onnetion surfaes.

All the test ases are arried out on an SGI mahine using FFODS (Free-Form Objet Design

System) developed by the Graphis & Geometri Modeling Lab of the University of Kentuky.

10 Conlusion

Surfae onnetion is a widely used proess in automotive and aerospae industries, as well as

omputer animation and ivil engineering. The tehnique proposed in this paper provides a

solution for a general indiret onnetion environment. The new approah is promising in that

it has the following advantages:

1. providing the users with more exibility in adjusting the shape of the onnetion surfae;

2. the NURBS representation of the onnetion surfae is ompatible with most of the urrent

16



Figure 8: The new approah.

Figure 9: The Hermite blending approah.

data-exhange standards;

3. inluding the lassial blending as a speial ase and yet allowing more exibility on the

setting of the rail urves;

4. providing a smoother shape of the onnetion surfae through an energy optimization

proess.

The new approah takes more spae for internal representation beause the onnetion surfae

is a omposition of many small B�ezier pathes. But this seems to be a reasonable prie to pay

for gaining eÆieny and stability in the omputation and rendering proesses.

As far as future work is onerned, it seems that the presented method an be used for three-

way and four-way onnetion as well. The study of suh an extension will be a future researh
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topi.
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