
Smooth Conne
tion of Trimmed NURBS Surfa
es

�

Pifu Zhang, Fuhua (Frank) Cheng

Graphi
s & Geometri
 Modeling Lab, Department of Computer S
ien
e

University of Kentu
ky, Lexington, Kentu
ky 40506-0046

Abstra
t. An automati
 smooth surfa
e 
onne
tion method that has the 
apability of tension


ontrol is presented. Given two trimmed NURBS surfa
es, the new method 
onstru
ts a smooth


onne
tion surfa
e to 
onne
t the trimming regions of the trimmed surfa
es at the trimming


urves. The 
onne
tion satis�es the pseudo-G

1

or pseudo-C

1

smoothness requirement, a 
on-

dition not as strong as G

1

or C

1

, but smooth enough for most industrial appli
ations. The


onstru
tion pro
ess 
onsists of four major steps: 
onne
tion 
urves 
onstru
tion and alignment,

initial blends 
onstru
tion, setting up 
ontinuity 
onstraints, and internal and external boundary

smoothing. The advantages of the new method in
lude: (1) providing the users with more 
exi-

bility in adjusting the shape of the 
onne
tion surfa
e, (2) the representation of the 
onne
tion

surfa
e is 
ompatible with most of the 
urrent data-ex
hange standards, (3) in
luding the 
las-

si
al blending as a spe
ial 
ase but with more 
exibility on the setting of the rail 
urves, and

(4) smoother shape of the resulting 
onne
tion surfa
e through an energy optimization pro
ess.

Test 
ases that 
over important appli
ations are in
luded.

Keywords: 
onstrained deformation, surfa
e 
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1 Introdu
tion

Surfa
e 
onne
tion refers to the pro
ess of smoothly 
onne
ting two or more surfa
es, 
alled

base surfa
es, with or without an auxiliary surfa
e. The 
onne
tion pro
ess is 
alled indire
t


onne
tion if an auxiliary surfa
e, 
alled a 
onne
tion surfa
e, is needed. Otherwise, it is 
alled

dire
t 
onne
tion. In indire
t 
onne
tion, a 
onne
tion surfa
e is used to smoothly 
onne
t two

or more disjoint base surfa
es along rail 
urves spe
i�ed by the user. In dire
t 
onne
tion, the

base surfa
es are joined dire
tly along a 
ommon boundary, 
alled a 
onne
tion 
urve. The

smoothness of the 
onne
tion pro
ess is usually established by requiring tangential 
ontinuity

�
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between the base surfa
es (for dire
t 
onne
tion) or between the 
onne
tion surfa
e and the base

surfa
es (for indire
t 
onne
tion).

Dire
t 
onne
tion is a frequently used pro
ess in industry. For instan
e, 
omponents of a


omplex shape (su
h as a 
ar) may be designed by di�erent groups separately or taken from

deformed versions of some previously designed parts and then assembled into a 
omplete obje
t

for eÆ
ien
y purpose. Undesired positional or tangential dis
ontinuity along the 
omponent

boundary is usually �xed manually. This problem 
an be regarded as a 
onstrained surfa
e

deformation problem by noti
ing that the 
onne
tion pro
ess is equivalent to deforming the base

surfa
es so that the boundary 
urves of the base surfa
es would 
oin
ide with the 
onne
tion


urve and appropriate 
ontinuity 
ondition is satis�ed along the 
onne
tion 
urve. Te
hniques

in this area 
an be found in [3℄[4℄[21℄[22℄[?℄.

The indire
t 
onne
tion problem has been extensively studied for two spe
ial 
ases. In the

�rst 
ase, the 
onne
tion pro
ess is performed on the boundary 
urves of the base surfa
es, i.e.,

the rail 
urves are de�ned by the boundary 
urves of the base surfa
es. A typi
al example is the

indire
t 
onne
tion of two 
ylinders with di�erent diameters along their boundary 
urves. The


onne
tion surfa
e is usually generated as a blending surfa
e [1℄[12℄[13℄[?℄[20℄. In some o

asions,

however, the 
onne
tion surfa
e is 
onstru
ted by solving some interpolation 
ondition [2℄[6℄[14℄.

The S-pat
h [16℄[17℄ and Gregory Pat
h [5℄, whi
h 
an smoothly 
onne
t multiple surfa
e pat
hes,

are 
onstru
ted using a similar approa
h as well.

In the se
ond 
ase, the base surfa
es are two interse
ting surfa
es and a 
onne
tion surfa
e

is generated to repla
e the interse
ting 
urve and its vi
inity as a smoothing (rounding) pro
ess.

The 
onne
tion surfa
e is usually a part of a 
anal surfa
e generated by a rolling ball whi
h

has G

1


onta
t to the base surfa
es. An extensive survey of results in this 
ase 
an be found in

[19℄. Conne
tion surfa
es that have higher degree of 
ontinuity along the rail 
urves 
an also be


onstru
ted [9℄[10℄[11℄.

Indire
t 
onne
tion of parametri
 surfa
es with general rail 
urves has not been well studied

yet. Filip's work [8℄ seems to be the only known result in this area. Given two arbitrary rail


urves, a 
onne
tion surfa
e that allows tension 
ontrol is 
onstru
ted using the Hermite interpo-

lation te
hnique. Sin
e a tangent fun
tion usually 
an not be expli
itly de�ned for an arbitrary

rail 
urve, the 
onne
tion surfa
e 
onstru
ted this way is not C

1


ontinuous, as the author has


laimed, but only pie
ewise C

1


ontinuous. The most serious drawba
k of this approa
h, how-

ever, is that the 
onne
tion surfa
e does not have a NURBS representation and the degree of the

surfa
e is high. For bi
ubi
 B-spline base surfa
es, the degree of the resulting 
onne
tion surfa
e

is eighteen, not suitable for stable numeri
al 
omputation.

We will over
ome the problems en
ountered by Filip's approa
h by presenting a new approa
h

for indire
t 
onne
tion of trimmed NURBS surfa
es. The 
onne
tion satis�es the pseudo-G

1

or

pseudo-C

1

smoothness requirement (to be de�ned in Se
tion 2), a 
ondition not as strong as G

1

or C

1

, but smooth enough for most industrial appli
ations. Most importantly, the 
onne
tion

surfa
e 
onstru
ted by this method has a bi
ubi
 NURBS representation and, hen
e, is 
ompati-

ble with most of the 
urrent data-ex
hange standards. The 
onne
tion surfa
e is a 
omposition of

many small blends, instead of a single blend. Hen
e, it takes more spa
e for internal representa-
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tion. But the bi
ubi
 NURBS representation makes it more eÆ
ient and stable for 
omputation

and rendering, a seemingly reasonable trade-o�. The new approa
h also allows tension 
ontrol

of the 
onne
tion surfa
e by the user.

The remaining part of the paper is arranged as follows. A formal des
ription of the problem is

given in Se
tion 2. The basi
 idea of the proposed method is presented in Se
tion 3. Te
hniques

needed in 
onstru
ting the 
onne
tion surfa
e are des
ribed in Se
tions 4-8. Test results of

the proposed method, in
luding a 
omparison of the new approa
h with Filip's approa
h, are

in
luded in Se
tion 9. Con
luding remarks are given in Se
tion 10.

2 Problem Formulation

The problem 
onsidered in this paper 
an be des
ribed as follows: Given two trimmed surfa
es

S

0

and S

1

with trimming 
urves T

0

and T

1

, respe
tively, 
onstru
t a new surfa
e S that 
onne
ts

the trimming regions of S

0

and S

1

at T

0

and T

1

, respe
tively. S

0

and S

1

are 
alled the base

surfa
es and S is 
alled a 
onne
tion surfa
e. The trimming 
urves where the 
onne
tion is

performed are 
alled the 
onne
tion 
urves. The 
onne
tion between the base surfa
es and the


onne
tion surfa
e should satisfy some smoothness 
ondition along the 
onne
tion 
urves. Due

to the fa
t that popular smoothness 
onditions su
h as G

1

and C

1


ontinuity are not possible to

a
hieve when T

0

and T

1

are arbitrarily de�ned, we will use a lower smoothness requirement for

the 
onne
tion pro
ess.

De�nition. The 
onne
tion between a 
onne
tion surfa
e and a base surfa
e is said to be

pseudo-G

1

(pseudo-C

1

) 
ontinuous if the 
onne
tion is C

0

on the entire 
onne
tion 
urve but

G

1

(C

1

) on �nitely many points of the 
onne
tion 
urve only. The points where the 
onne
tion

satis�es G

1

(C

1

) 
ondition must be densely populated over the 
onne
tion 
urve so that the


onne
tion 
urve is 
ontained in the union of the �-neighborhoods of su
h points for some small

positive number �.

An example is shown in Figure 1 where a 
onne
tion surfa
e (in dark blue) 
onne
ts two base

surfa
es (in green and sky blue) at two 
ir
ular 
onne
tion 
urves. The 
onne
tion is pseudo-G

1

smooth.

The 
onne
tion 
urves have been 
alled rail 
urves in the blending pro
ess. However, sin
e our


onne
tion pro
ess is more general than the 
lassi
al blending pro
ess (whi
h fo
uses on smoothly

joining parametri
 surfa
es along their boundary 
urves or o�set 
urves of the boundary 
urves,

see Figures 6 and 7), and these 
urves are not generated in the same way as the blending pro
ess,

we 
hoose not to use the same term here to avoid 
onfusion.

The base surfa
es S

0

and S

1

are NURBS surfa
es of degrees p

0

and p

1

in u dire
tion and

degrees q

0

and q

1

in v dire
tion, respe
tively,

S

k

(u; v) =

P

m

k

i=0

P

n

k

j=0

w

k

i;j

Q

k

i;j

N

k

i;p

k

(u)N

k

j;q

k

(v)

P

m

k

i=0

P

n

k

j=0

w

k

i;j

N

k

i;p

k

(u)N

k

j;q

k

(v)

; (1)
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Figure 1: An example of smooth surfa
e 
onne
tion.

k = 0; 1 (u; v) 2 [0; 1℄� [0; 1℄

where Q

k

i;j

are 3D 
ontrol points, N

k

i;p

k

(u) and N

k

j;q

k

(v) are B-spline basis fun
tions of degrees p

k

and q

k

, respe
tively, and w

k

i;j

are weight fun
tions. N

i;p

k

(u) and N

j;q

k

(v) are de�ned with respe
t

to the knot ve
tors �

k

= f�

k

0

; �

k

1

; ::: ; �

k

m

k

+p

k

+1

g, and �

k

= f�

k

0

; �

k

1

; ::: ; �

k

n

k

+q

k

+1

g, respe
tively,

with �

k

0

= ::: = �

k

p

k

= �

k

0

= ::: = �

k

q

k

= 0 and �

k

m

k

+1

= ::: = �

k

m

k

+p

k

+1

= �

k

n

k

+1

= ::: = �

k

n

k

+q

k

+1

= 1.

A trimming 
urve of a free-form surfa
e may be de�ned by a 
losed parametri
 
urve in the

domain of the surfa
e. However, in industrial appli
ations, a trimming 
urve is usually de�ned

by a set of points in the domain of the surfa
e, due to the fa
t that trimming 
urves are usually

generated through the surfa
e-surfa
e interse
tion operation. We follow the industrial standard

in this work, i.e., the trimming 
urves T

k

, k = 0; 1, are de�ned by 
losed linear polygons in

the domains of S

k

with l

k

verti
es V

k

0

, V

k

1

, V

k

2

, ... , V

k

l

k

= V

k

0

, k = 0; 1, respe
tively. The

trimming 
urves do not interse
t themselves. The trimming region of a trimmed NURBS surfa
e

is determined by the 
urve handedness rule, i.e., a point is in the trimming region if it is on the

left side when one traverses the trimming 
urve.

The 
onne
tion surfa
e S should 
onne
t the trimming regions of the given trimmed NURBS

surfa
es at the trimming 
urves. The 
onne
tion should be at least pseudo-G

1

or pseudo-C

1


ontinuous. The 
onne
tion surfa
e should have a NURBS representation to be 
ompatible with

the 
urrent data-ex
hange standards. The shape of the 
onne
tion surfa
e should be smooth

enough to meet design 
riteria. Besides, the user should be able to 
ontrol the shape of the


onne
tion surfa
e through some simple me
hanism to satisfy both aestheti
 and areodynami


requirements.

3 Basi
 idea

The main idea of the new approa
h is to 
onstru
t the 
onne
tion surfa
e as a set of (small) blends

instead of a single blend. The small blends are 
onstru
ted by splitting the trimming 
urves of
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the base surfa
es into small, aligned segments and then blending 
orresponding segments with an

appropriate pro�le 
urve to form initial blends. The 
onne
tion surfa
e is formed by pie
ing the

small blends together through an optimization pro
ess to a
hieve internal and external smooth-

ness requirements. Sin
e ea
h small blend is a bi
ubi
 B�ezier pat
h, the resulting 
onne
tion

surfa
e is a 
omposite B�ezier surfa
e and, 
onsequently, a bi
ubi
 NURBS surfa
e. The user 
an


ontrol the shape of the blends and the 
onne
tion surfa
e by manipulating a tension parameter


ontained in the pro�le 
urve.

The main steps of our approa
h are show below:

1. Conne
tion 
urves 
onstru
tion and alignment;

2. Initial blending 
onstru
tion;

3. Setting up 
ontinuity 
ontrol 
onstraints;

4. Shape optimization.

The �rst step is the most 
riti
al step be
ause the result of this step determines the shape of the

blends 
onstru
ted in the se
ond step and, hen
e, essentially the shape of the 
onne
tion surfa
e.

Details of the above steps are given in the subsequent se
tions.

4 Conne
tion Curves Constru
tion and Alignment

A trimming 
urve, represented as a (
losed) linear polygon in the parameter spa
e of the trimmed

surfa
e, 
an not be used as a 
onne
tion 
urve dire
tly. A 
onne
tion 
urve has to be 
onstru
ted

separately. An intuitive approa
h is to 
onstru
t a 
ubi
 B-spline or pie
ewise B�ezier 
urve that

interpolates the verti
es of the trimming 
urve in the parameter spa
e and use its image under

the surfa
e de�nition as the 
onne
tion 
urve [8℄. This 
one
tion 
urve, however, 
an not be used

in the subsequent blend 
onstru
tion pro
ess be
ause, after the mapping of the surfa
e de�nition,

it is no longer a B-spline or a pie
ewise B�ezier 
urve. Besides, a 
onne
tion 
urve 
onstru
ted

this way has a degree of 18, not suitable for stable numeri
al 
omputation.

The 
onne
tion 
urves will be 
onstru
ted in the modeling spa
e dire
tly. These 
urves must

satisfy the following requirements:

1. they have the same number of 
urve segments and their segments are properly aligned;

2. the number of 
urve segments is big enough so that ea
h 
onne
tion 
urve 
an be 
overed

by the �-neighborhoods of the endpints of its 
urve segments;

3. ea
h 
onne
tion 
urve lies exa
tly on the 
orresponding base surfa
e.
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The �rst requirement is to ensure 
omponents of the 
onne
tion surfa
e are properly 
onstru
ted

(Se
tion 5) and satisfy the aestheti
 and areodynami
 requirements on their shape. The se
ond

requirement is to ensure pseudo-G

1


ontinuity between the 
onne
tion surfa
e and the base

surfa
es. The third requirement is to ensure that there is no gap between the 
onne
tion surfa
e

and the base surfa
es. The 
onstru
tion pro
ess is shown below.

First, for ea
h base surfa
e S

k

, k = 0; 1, we 
onstru
t a 
ubi
 B-spline 
urve C

k

that inter-

polates the verti
es of the trimming 
urve T

k

in the modeling spa
e S

k

(V

k

i

), i = 0; 1; :::; l

k

, as

follows:

C

k

(t) =

l

k

+2

X

j=0

N

k

j;3

(t)P

k

j

t 2 [t

3

; t

l

k

+3

℄ = [0; 1℄ (2)

where P

k

j

are 3D 
ontrol points and N

k

j;3

(t) are 
ubi
 B-spline basis fun
tions de�ned with respe
t

to the knot ve
tor t

k

= ft

k

0

; t

k

1

; ::: ; t

k

l

k

+6

g. The knots are de�ned using the interpolation points

S

k

(V

k

i

), following the 
entripetal model [15℄. The 
ontrol points P

k

j

are 
omputed by solving the

following system of equations:

C

k

(t

i

) =

l

k

+2

X

j=0

N

k

j;3

(t

i

)P

k

j

= S

k

(V

k

i�3

); (3)

i = 3; 4; :::; l

k

+ 3:

C

k

(t) is a 
losed 
urve, its 
ontrol points are 
y
li
, i.e., P

k

j

= P

k

j mod l

k

.

To meet the �rst and the se
ond requirements, let P

k


td

and N

k


td

be the 
entroid and normal

ve
tor of the trimming 
urve T

k

de�ned as follows:

P

k


td

=

1

l

k

l

k

X

i=1

S

k

(V

k

i

); k = 0; 1 (4)

and

N

k


td

=

1

l

k

l

k

X

i=1

N

k

i

; k = 0; 1 (5)

where N

k

i

are the normal ve
tors of the trimmed surfa
e S

k

at S

k

(V

k

i

). Using these four items,

one 
an 
onstru
t a 
ubi
 B�ezier 
urve C(t) (t 2 [0; 1℄) with P

0


td

and P

1


td

as its endpoints and

N

0


td

and N

1


td

as its endpoint tangent ve
tors. This 
urve is the 
entroid line of the 
onne
tion

surfa
e to be 
onstru
ted. Using the �rst derivative and the se
ond derivative of the 
urve C(t)

at the endpoints, one 
an 
onstru
t a plane through ea
h endpoint. Ea
h plane has two or more

interse
tion points with the 
orresponding 
onne
tion 
urve. Take the two outmost interse
tion

points on ea
h 
onne
tion 
urve and re
ursively subdivide the left and the right portions of the


onne
tion 
urves 
on
urrently to generate a set of points D

k

i

, i = 0; 1; 2; :::; N , on the 
onne
tion


urves with D

k

0

= D

k

N

, k = 0; 1. The subdivision pro
ess stops when the following two 
onditions

are satis�ed: (1) the Eu
lidean distan
e between ea
h pair of 
onse
utive points is less than �=2,

and (2) for ea
h resulting sub-segment of the 
onne
tion 
urves, the distan
e between the 
hord

and the ar
 is less than �=2. If a pair of 
onse
utive points fail to satisfy any of these 
onditions,

6



the 
orresponding segments on both 
onne
tion 
urves are further re
ursively subdivided until

these 
onditions are satis�ed by subsegments on both 
onne
tion 
urves.

When the subdivision pro
ess stops, we 
onstru
t a 
losed 
ubi
 B-spline 
urve to interpolate

D

0

i

, i = 0; 1; 2; :::; N , and a 
losed 
ubi
 B-spline 
urve to interpolate D

1

i

, i = 0; 1; 2; :::; N . These


urves are (slightly) di�erent from C

0

and C

1

. For simpli
ity, however, we shall use C

0

and C

1

to represent these 
urves again. The new C

0

and C

1

will be used as the 
onne
tion 
urves for

the base surfa
es S

0

(u; v) and S

1

(u; v), respe
tively. Note that, with D

k

i

, i = 0; 1; 2; :::; N , as

interpolation points, C

0

and C

1

satisfy requirements 1 and 2 now. In general, the 
urve C

k

(t)

does not lie on the base surfa
e S

k

.

To meet the third requirement, we deform the base surfa
e S

k

(u; v) so that the deformed

version would 
ontain the 
onne
tion 
urve C

k

. This pro
ess will be performed as a 
onstrained

optimization pro
ess to ensure (1) the di�eren
e between the deformed base surfa
e and the

original base surfa
e is as small as possible, and (2) the shape and 
urvature distribution of

the deformed base surfa
e are as 
lose to the original base surfa
e as possible. Obviously, the

obje
tive fun
tion of the optimization pro
ess should be 
onstru
ted based on the di�eren
e of

the deformed version and the given version of the base surfa
e.

For ea
h base surfa
e S

k

, k = 0; 1, let

�

S

k

be the deformed version of the base surfa
e. The

displa
ement fun
tion is therefore

V

k

(u; v) = S

k

(u; v)�

�

S

k

(u; v): (6)

To ensure that after the deformation pro
ess the 
onne
tion 
urve C

k

would lie on the deformed

base surfa
e

�

S

k


ompletely, one 
an 
onsider a positive de�nite error fun
tional as follows:

Æ = 1=2

Z

1

0

(C

k

(t)�

�

S

k

(

^

C

k

(t))

2

dt

where

^

C

k

(t) is a parametri
 
urve in the domain of the base surfa
e S

k

. The value of this error

fun
tional is zero and a minimum when the 
urve C

k

(t) is equal to the 
urve

�

S

k

(

^

C

k

(t)), i.e.,

when the 
onne
tion 
urve is the image of the deformed surfa
e of some parametri
 
urve in the

domain of the surfa
e. A natural 
hoi
e for

^

C

k

(t) is the 
ubi
 B-spline 
urve that interpolates

the verti
es of the trimming 
urve T

k

in the domain of S

k

. Following a te
hnique of Celniker

and Wel
h [4℄, the above error fun
tional 
an be transformed to a linear 
onstraint as follows by

requiring its value to be a minimum { that is, its gradient with respe
t to the 
ontrol points to

be 0.

BQ = b (7)

Q is the set of 
ontrol points of the deformed surfa
e

�

S

k

.

The deformed surfa
e is 
omputed by performing 
onstrained optimization on the thin plate

energy model of the displa
ement fun
tion. The optimization pro
ess will be dis
ussed in Se
tion

8. The deformed surfa
e now satis�es all three requirements. Note that the di�eren
e between

C

k

(t) and

�

C

k

(t) is small. Hen
e, the di�eren
e between the deformed version and the original

version of the base surfa
e is small too. For simpli
ity, after this point we shall use S

k

(t), not

�

S

k

, to refer to its deformed version.

7



5 Initial Blends Constru
tion

C

0

i

(t)

V

1

i

V

0

i

C

1

i

(t)

(a)

C

1

i

(1=2) = E

i;3

C

0

i

(1=2) = E

i:0

E

i;1

E

i;2

D

i

(v)

�

D

i

(v)




i

(v)

(b)

Figure 2: Constru
tion of a pro�le 
urve.

Using the points D

k

i

(i = 1; 2; :::N � 1), k = 0; 1, generated in the previous step, one 
an

subdivide ea
h of the 
onne
tion 
urves C

k

(t), k = 0; 1, into N 
ubi
 B�ezier 
urve segments:

B

k

0

(t), B

k

1

(t), ..., B

k

N�1

(t) where t 2 [0; 1℄. The goal of this step is to 
onstru
t a blend

^

S

i

(u; v)

for ea
h pair of 
orresponding B�ezier 
urve segments, B

0

i

(t) and B

1

i

(t) (i = 0; :::; N � 1), of the


onne
tion 
urves. Combined, these blends will form the initial shape of the 
onne
tion surfa
e.

An intuitive approa
h one 
an think of immediately is the Hermite Interpolation te
hnique,

that is, 
onstru
ting the blend

^

S

i

(u; v) as follows:

^

S

i

(u; v) = H

0

(v)B

0

i

(u) +H

1

(v)B

1

i

(u)

+H

2

(v)D

0

i

(u) +H

3

(v)D

1

i

(u) (8)

where H

i

(v) are 
ubi
 Hermite basis fun
tions

H

0

(v) = v

2

(2v � 3) + 1; H

1

(v) = 1�H

1

(v);

H

2

(v) = v(v � 1)

2

; H

3

(v) = v

2

(v � 1)

and D

0

i

(u) and D

1

i

(u) are tangent fun
tions to be de�ned. This is essentially what was done by

Filip [8℄. The representation of the resulting 
onne
tion surfa
e in this 
ase is not 
ompatible

with that of the base surfa
es. Note that unless D

0

i

(u) and D

1

i

(u) are expli
itly de�ned, the

smoothness between the 
onne
tion surfa
e and the base surfa
es is not G

1

, as Filip has 
laimed

in [8℄. In the following, we present an approa
h that provides a 
ompatible representation for

the resulting 
onne
tion surfa
e. The new approa
h embeds the shape information of the base

surfa
es into that of the 
onne
tion surfa
e in a more natural way. The resulting 
onne
tion

surfa
e satis�es the pseudo-G

1

or pseudo-C

1

smoothness requirement at the 
onne
tion 
urves.

8



For ea
h pair of 
orresponding B�ezier 
urve segments B

0

i

(t) and B

1

i

(t) (i = 0; :::; N � 1), we

�rst �nd a ve
tor V

k

i

that is tangent to the surfa
e S

k

(u; v) and normal to the B�ezier 
urve

segment B

k

i

(t) at the point B

k

i

(1=2), k = 0; 1. There are two su
h ve
tors. We take the one that

is going away from the trimming region of S

k

(u; v) (see Figure 2(a)). We then de�ne two points,

E

i;1

and E

i;2

, as follows (see Figure 2(b)):

E

i;1

= B

0

i

(1=2) + w

1

V

0

i

;

E

i;2

= B

1

i

(1=2) + w

2

V

1

i

where w

0

and w

1

, 
alled tension parameters, are real numbers between 0 and 1. The four points

E

i;0

= C

0

i

(1=2), E

i;1

, E

i;2

, and E

i;3

= C

1

i

(1=2) de�ne a 
ubi
 B�ezier 
urve as follows:

D

i

(v) = B

0;3

(v)E

i;0

+B

1;3

(v)E

i;1

+

B

2;3

(v)E

i;2

+B

3;3

(v)E

i;3

where B

i;3

(v) are Bernstein basis fun
tions of degree three. By using E

i;0

, E

i;3

, and two points in

between, one 
an get a 
ubi
 B�ezier 
urve representation for the line segment E

i;0

E

i;3

, as follows:

�

D

i

(v) = B

0;3

(v)E

i;0

+B

1;3

(v)

�

E

i;1

+

B

2;3

(v)

�

E

i;2

+B

3;3

(v)E

i;3

where

�

E

i;1

= (2C

0

i

(1=2) + C

1

i

(1=2))=3 and

�

E

i;2

= (C

0

i

(1=2) + 2C

1

i

(1=2))=3.

�

D

i

(v) is the base

segment of D

i

(v) (see Figure 2 (b)). We then 
ompute the ve
tor 


i

(v) that is the di�eren
e of

D

i

(v) and

�

D

i

(v).




i

(v) = D

i

(v)�

�

D

i

(v)

Using a te
hnique similar to the so 
alled blending between two 
ross-se
tions using one pro�le

[7℄, one 
an de�ne a blending surfa
e

^

S

i

(u; v) for B

0

i

and B

1

i

, i = 0; 1; :::; N � 1, as follows:

^

S

i

(u; v) = (1� �(v))C

0

i

(u) + �(v)C

1

i

(u) + 


i

(v) (9)

where �(v) is a blending fun
tion de�ned as follows:

�(v) = B

0;3

(v)�

0

+B

1;3

(v)�

1

+B

2;3

(v)�

2

+B

3;3

(v)�

3

with �

0

= 0, �

3

= 1, and �

1

and �

2

are determined based on the shape of the base surfa
es. If

the angle between the ve
tor V

0

i

and the base plane of the trimming 
urve C

0

(t) (the plane that

passes through the 
entroid of C

0

(t) and is perpendi
ular to the normal of C

0

(t)) is �

0

, and the

angle between the ve
tor V

1

i

and the base plane of the trimming 
urve C

1

(t) is �

1

, then �

1

and

�

2


an be de�ned as follows (see Figure 3):

�

1

= jV

0

i

j w

1

Sin(�

0

) (10)

�

2

= �

3

� jV

1

i

j w

2

Sin(�

1

) (11)
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�

1

V

0

i

V

1

i

�

3

= 1

�

2

�

0

= 0

�

1

�

0

1

Figure 3: Constru
tion of �

1

and �

2

.

The blending surfa
e

^

S

i

(u; v) de�ned in eq. (9) is a bi
ubi
 B�ezier surfa
e. If the 
ontrol points

of the B�ezier 
urve segment B

k

i

(u) are P

i;k

0

, P

i;k

1

, P

i;k

2

and P

i;k

3

, k = 0; 1 and i = 0; 1; :::; N � 1;

then the 
ontrol points of

^

S

i

(u; v),

^

Q

i

j;l

(j = 0; ::; 3; l = 0; :::; 3), 
an be expressed as follows:

[

^

Q

i

j;l

℄ =

2

6

6

6

6

4

P

i;0

0

P

i;1

0

1

P

i;0

1

P

i;1

1

1

P

i;0

2

P

i;1

2

1

P

i;0

3

P

i;1

3

1

3

7

7

7

7

5

2

6

4

1� �

0

1� �

1

1� �

2

1� �

3

�

0

�

1

�

2

�

3

0 E

i;1

�

�

E

i;1

E

i;2

�

�

E

i;2

0

3

7

5

A 
onne
tion surfa
e 
onstru
ted this way would only satisfy C

0


ontinuity on it boundaries

with the base surfa
es and on the boundaries of the 
omponent surfa
es. Smoother 
ontinuity


ondition will be a
hieved through an optimization pro
ess. This will be dis
ussed in Se
tion 8.

To get a good 
onne
tion surfa
e shape, the user needs to sele
t proper values for the tension

parameters, w

1

and w

2

. In general, larger tension parameters will result in smoother 
onne
tion

surfa
e shape. However, larger tension parameters sometimes 
ould generate abnormal shapes

su
h as 
usps or loops on isoparametri
 
urves of the 
onne
tion surfa
e. So these parameters

sometimes have to be iteratively adjusted to �nd the best values. A suggesed initial value for

these parameter is 0:5. A rule of thumb in adjusting these parameters is to de
rease the values

of the tension parameters if abnormal portions are found in the 
onne
tion surfa
e. Otherwise,

in
rease the values of the tension parameters to get smoother 
onne
tion surfa
e. The maximum

value for the tension parameters is one. At that point the 
onne
tion surfa
e is pseudo-C

1


ontinious.
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6 Setting Up Continuity Constraints

The purpose of this step is to set up 
ontinuity 
onstraints for the optimization pro
ess. Two

types of 
ontinuity 
onstraints will be 
onsidered: interior 
ontinuity 
onstraint and exterior


ontinuity 
onstraint. The �rst one refers to 
ontinuity 
onstraint between 
omponent surfa
es

of the 
onne
tion surfa
e, the se
ond one refers to 
ontinuity 
onstraint between the 
onne
tion

surfa
e and the base surfa
es.

6.1 Interior 
ontinuity 
onstraint

Adja
ent 
omponent surfa
es of the 
onne
tion surfa
e are required to satisfy C

1


ontinuity on

their boundaries. If two adja
ent 
omponent surfa
es

^

S

i

(u; v) and

^

S

i+1

(u; v), 0 <= i <= N � 1,

have the same number of 
ontrol points in v dire
tion, then their 
ontrol points must satisfy the

following 
onditions:

^

Q

i

n

i

;l

=

^

Q

i+1

0;l

; l = 0; 1; :::; m

i

(12)

and

^

Q

i

n

i

;l

�

^

Q

i

n

i

�1;l

=

^

Q

i+1

1;l

�

^

Q

i+1

0;l

:; l = 0; 1; :::; m

i

(13)

In the above 
onditions, i+ 1 is modulo N .

Sometimes, due to surfa
e shape requirement, adja
ent 
omponent surfa
es might have dif-

ferent number of 
ontrol points in v dire
tion, i.e., m

i

6= m

i+1

. In that 
ase, adja
ent 
omponent

surfa
es must satisfy pseudo C

1


ontinuity on their boundaries, i.e.,

^

S

i

(1; v

i

l

) =

^

S

i+1

(0; v

i

l

); l = 0; 1; :::;M (14)

d

du

^

S

i

(1; v

i

l

) =

d

du

^

S

i+1

(0; v

i

l

); l = 0; 1; :::;M (15)

for some v

i

l

, where M � max(m

i

; m

i+1

) and jv

i

l

� v

i

l+1

j < �. In the above 
onditions, i + 1 is

modulo N too.

6.2 Exterior 
ontinuity 
onstraint

Constraint for 
ontinuity 
ondition between the 
onne
tion surfa
e and the base surfa
e is needed

for v dire
tion only. This will be set up in three steps.

First, for ea
h 
omponent surfa
e

^

S

k

(u; v), k = 0; 1; :::; N � 1, map the 
ontrol points of

its boundary 
urves

^

S

k

(u; 0) and

^

S

k

(u; 1) onto the boundary 
urves using the shortest distan
e

te
hnique. For instan
e, for the boundary 
urve

^

S

k

(u; 0), this is equivalent to the pro
ess of

identifying the point (u

i;0

; 0) in the parameter spa
e of

^

S

k

(u; 0) so that the distan
e between

^

Q

k

i;0

and

^

S

k

(u

i;0

; 0) is the minimum, i = 0; 1; :::; m

k

.

^

S

k

(u

i;0

; 0) is 
alled the image of

^

Q

k

i;0

on the 
urve

^

S

k

(u; 0). Note that

^

S

k

(u

i;0

; 0) is also a point on the 
onne
tion 
urve T

0

of the base surfa
e

S

0

(u; v).

11



Se
ond, determine the dire
tion of the outward normals of the 
onne
tion 
urves at the

points determined in the �rst step. For instan
e, for the point

^

S

k

(u

i;0

; 0) determined in the

�rst step, sin
e it is also a point of the base surfa
e S

0

(u; v), we identify the point (u

0

i;0

; v

0

i;0

)

in the parameter spa
e of S

0

(u; v) su
h that S

0

(u

0

i;0

; v

0

i;0

) =

^

S

k

(u

i;0

; 0). The point (u

0

i;0

; v

0

i;0

) is

lo
ated on the parametri
 
onne
tion 
urve in S

0

(u; v)'s parameter spa
e. Consequently, one 
an

determine the tangent of the 
onne
tion 
urve T

0

at S

0

(u

0

i;0

; v

0

i;0

) whi
h is the partial derivative

of the 
omponent surfa
e

^

S

k

(u; v) at

^

S

k

(u

i;0

; 0) with respe
t to u. From the tangent ve
tor of

the 
onne
tion 
urve T

0

at S

0

(u

0

i;0

; v

0

i;0

) one 
an determine the outward normal of the 
urve at

the same point. The dire
tion of the outward normal is the same as the dire
tion of the partial

derivative of the 
omponent surfa
e

^

S

k

(u; v) at

^

S

k

(u

i;0

; 0) with respe
t to v. The angle between

the outward normal at that point and the u axis in the parameter spa
e is noted �

k

i

.

The outward normals of the 
onne
tion 
urve T

1

at the points determined in the �rst step


an be determined similarly and the angles between the outward normals and the v axis in the

parameter spa
e are denoted �

k

i

, k = 0; 1; :::; N � 1, i = 0; 1; :::; m

k

.

The 
ontinuity 
onstraints are then set up as follows:

^

S

k

(u

k

i;0

; 0) = S

0

(u

0

i;0

; v

0

i;0

) (16)

^

S

k

(u

k

i;m

k

; 1) = S

1

(u

1

i;m

1

; v

1

i;m

1

) (17)

�

^

S

k

�v

(u

k

i;0

; 0) = w

1

[

�S

0

�u

(u

0

i;0

; v

0

i;0

)
os�

k

i

+

�S

0

�v

(u

0

i;0

; v

0

i;0

)sin�

k

i

℄ (18)

�

^

S

k

�v

(u

k

i;m

k

; 1) = w

2

[

�S

1

�u

(u

1

i;m

1

; v

1

i;m

1

)
os�

k

i

+

�S

1

�v

(u

1

i;m

1

; v

1

i;m

1

)sin�

k

i

℄ (19)

where k = 0; 1; :::; N � 1, i = 0; 1; :::; m

k

, and w

1

and w

2

are tension parameters de�ned in

Se
tion 5. Note that the 
onne
tion 
urves usually have di�erent lengths. This makes it diÆ
ult

to generate an appropriate 
onne
tion surfa
e with C

1


ontinuity. The purpose of the tension

parameters in the above equations is to ensure a G

1


ontinuity between the 
onne
tion surfa
e

and the the base surfa
es and in the meanwhile guarantee a proper shape of the 
onne
tion

surfa
e. The values of the tension parameters should be determined by the designer during the

design pro
edure.

7 Shape Control

In Se
tion 5, two numbers w

1

and w

2

, 
alled tension parameters, are introdu
ed into the se
ond

and third 
ontrol points of the pro�le 
urve for ea
h 
omponent surfa
e. These two parameters

12



have great in
uen
e on the shape of the resulting 
onne
tion surfa
e. A guideline in sele
ting

the values of these parameters will be given below. Note that when w

1

= w

2

= 1, the 
onne
tion

surfa
e has pseudo-C

1


ontinuity with the base surfa
es S

0

and S

1

.

Let H

s

be the shortest distan
e between the two 
onne
tion 
urves. For ea
h base surfa
e,

�nd the largest �rst derivative along the 
onne
tion 
urve and denote it by D

l

(l = 0; 1),

D

l

= maxfS

l

u

(u(t); v(t)); S

l

v

(u(t); v(t))g

where (u(t); v(t)) is the parameter of the 
onne
tion 
urve and t 2 [0; 1℄. A general guideline

for avoiding abnormal 
onne
tion surfa
e shape is to 
hoose w

0

and w

1

satisfying the following


onditions:

w

1

D

0

+ w

2

D

1

� 3H

s

w

1

> 0

w

2

> 0

If w

1

= w

2

, then we must have

w

1

= w

2

�

3H

s

D

0

+D

1

:

8 Shape Optimization

Optimization te
hniques have been widely used in surfa
e modi�
ation and design [3℄[4℄ [18℄[22℄[?℄.

An important part of the optimization pro
ess is the sele
tion of the obje
tive fun
tion. A

quadrati
 obje
tive fun
tion will indu
e a system of linear equations and, 
onsequently, is suit-

able for 
omputation pro
ess. One should try to use a quadrati
 obje
tive fun
tion whenever it

is possible. In the following, we will outline the optimization pro
ess used in this paper for the

smoothing of the 
onne
tion surfa
e. The optimization pro
ess of the base surfa
es (Se
tion 4)


an be performed similarly.

Let

^

S(u; v) and S(u; v) denote the initial 
onne
tion surfa
e and the modi�ed version of the


onne
tion surfa
e, respe
tively. S is 
alled the target surfa
e. The di�eren
e between the target

surfa
e and the initial surfa
e, 
alled the displa
ement fun
tion, is denoted V(u; v).

V (u; v) = (S �

^

S)(u; v) (20)

Based on the theory of thin plate deformation, the energy of a displa
ement fun
tion is de�ned

as follows:

E(V) =

1

2

Z Z

D

F (u; v) dudv (21)

where D is the parameter spa
e of the surfa
e, and

F (u; v) = �F

1

(u; v) + �F

2

(u; v) + 
F

3

(u; v) (22)
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with F

1

(u; v), F

2

(u; v) and F

3

(u; v) being the bending, stret
hing and spring 
omponents of the

deformation pro
ess, respe
tively. These quantity are de�ned as follows:

F

1

(u; v) = (

�

2

V

�u

2

)

2

+ (

�

2

V

�v

2

)

2

+ (

�

2

V

�u�v

)

2

+ (

�

2

V

�u

2

)(

�

2

V

�v

2

)

F

2

(u; v) = (

�V

�u

)

2

+ (

�V

�v

)

2

+ (

�V

�u

)(

�V

�v

) (23)

F

3

(u; v) = V

2

They have impa
t on the amount of surfa
e displa
ement, variation of surfa
e area, and dis-

tribution of surfa
e 
urvature, respe
tively. �, � and 
 are the weights of these e�e
ts on the

deformation energy. A study on the determination of these weights 
an be found in [?℄.

By substituting the representations of the initial 
onne
tion surfa
e

^

S and the target surfa
e

S into eqs. (23) and then (21), the energy fun
tion 
an be expressed as a quadrati
 fun
tion as

follows:

E(Q�

^

Q) =

1

2

[Q�

^

Q℄

>

A[Q�

^

Q℄ (24)

where Q and

^

Q are the 
ontrol points of the target surfa
e and the initial 
onne
tion surfa
e,

respe
tively, and A is a 
onstant matrix de�ned by the basis fun
tions of the NURBS surfa
e.

The internal and external 
ontinuity 
onstraints obtained in the previous se
tion 
an be

expressed as a set of linear equations as follows:

BQ = b (25)

where Q is the 
ontrol points of

^

S to be determined, and B and b are 
onstant matri
es.

One then solve this system using the Lagrange Multiplier method. Sin
e the obje
tive fun
tion

in (24) is quadrati
 and the 
onstraint equations (24) are linear, the �nal system to be solved is

linear.

To avoid solving an over-determined system, the initial surfa
e sometimes needs to be sub-

divided. The depth of the subdivision pro
ess 
an be determined by requiring the number of


ontrol points of the surfa
e to be larger than the number of 
onstraints.

9 Implementation

The proposed te
hnique has been implemented in Java on a UNIX platform using OpenGL as

the supporting graphi
s system. Test results on four data sets are presented here.

The �rst result, shown in Figure 4, is to 
onne
t two base surfa
es along 
on
ave 
onne
tion


urves. The 
onne
tion surfa
e 
onne
ts the interior portion of the 
onne
tion 
urve of one base

surfa
e with the exterior portion of the 
onne
tion 
urve of another base surfa
e. The tension


ontrol parameters are w

1

= 0:5 and w

2

= 0:5. This is a typi
al example for feature based shape

design in industry.
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Figure 4: Conne
ting two general surfa
es.

The se
ond 
ase is to show the robustness of the new approa
h by 
onne
ting an ellipti



ylinder with a bended base surfa
e (Figure 5). The tension 
ontrol parameters are w

1

= 0:33

and w

2

= 0:33. This is an example of 
lassi
 blending (�lleting) pro
ess.

Figure 5: An ellipti
 
ylinder 
onne
ted with a surfa
e.

The third 
ase (Figures 6 and 7) is to show e�e
t of the tension parameters on the shape

of the 
onne
tion surfa
e. Two ellipti
 
ylinders with di�erent orientations are 
onne
ted using

di�erent tension parameters. In Figure 6, both tension parameters are set to 0:1 while the tension

parameters in Figure 7 are both set to 1:0. The results show that larger tension parameters

usually generate smoother 
onne
tion surfa
es.

Tha last 
ase is a 
omparison of the new approa
h (Figure 8) with Filip's Hermite blending

approa
h (Figure 9). Sin
e the Hermite blending approa
h is a
tually pie
ewise G

1

only, the

15



Figure 6: Conne
ting two 
ylinders with w

1

= w

2

= 0:1.

Figure 7: Conne
ting two 
ylinders with w

1

= w

2

= 1:0.

smoothness of the result shown in Figure 9 is not as good as the one shown in Figure 8, as 
an

be seen from the highlights on the resulting 
onne
tion surfa
es.

All the test 
ases are 
arried out on an SGI ma
hine using FFODS (Free-Form Obje
t Design

System) developed by the Graphi
s & Geometri
 Modeling Lab of the University of Kentu
ky.

10 Con
lusion

Surfa
e 
onne
tion is a widely used pro
ess in automotive and aerospa
e industries, as well as


omputer animation and 
ivil engineering. The te
hnique proposed in this paper provides a

solution for a general indire
t 
onne
tion environment. The new approa
h is promising in that

it has the following advantages:

1. providing the users with more 
exibility in adjusting the shape of the 
onne
tion surfa
e;

2. the NURBS representation of the 
onne
tion surfa
e is 
ompatible with most of the 
urrent

16



Figure 8: The new approa
h.

Figure 9: The Hermite blending approa
h.

data-ex
hange standards;

3. in
luding the 
lassi
al blending as a spe
ial 
ase and yet allowing more 
exibility on the

setting of the rail 
urves;

4. providing a smoother shape of the 
onne
tion surfa
e through an energy optimization

pro
ess.

The new approa
h takes more spa
e for internal representation be
ause the 
onne
tion surfa
e

is a 
omposition of many small B�ezier pat
hes. But this seems to be a reasonable pri
e to pay

for gaining eÆ
ien
y and stability in the 
omputation and rendering pro
esses.

As far as future work is 
on
erned, it seems that the presented method 
an be used for three-

way and four-way 
onne
tion as well. The study of su
h an extension will be a future resear
h

17



topi
.
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