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Abstra
t

The initial attempt was to �nd eÆ
ient te
hnique to identify shadow polygons in

the shadow-volume based shadow generation algorithm. It was observed that shadows

are 
orresponding to loops of ridge edges (REs). By identifying all the non-overlapping

RE loops of a 3D obje
t, one �nds all the shadow polygons and, 
onsequently, all the

shadows it generates on other obje
ts as well as shadows it generates on itself. This,

however, requires extensive edge-edge interse
tion tests.

It was subsequently realized that by storing the angular representations of the RE

loops in a look up table, one 
an avoid the need of de
omposing RE loops into non-

overlapping loops and, 
onsequently, the need of performing extensive edge-edge inter-

se
tion tests. A
tually, by building the look up table in a way similar to the bu
ket-sorted

edge table of the standard s
an-line method, one 
an use the table in the s
an 
onversion

pro
ess to mark the pixels that are in shadow dire
tly, without the need of performing

any ray-polygon interse
tion tests as required in the shadow-volume based shadow gen-

eration algorithm. Hen
e, one gets a new shadow generation te
h
ique without the need

of performing expensive tests.

Keywords. shadow, shadow polygon, ridge edge, ridge edge loop, pseudo interse
tion

point

1 Introdu
tion

Shadow generation is a 
lassi
 problem in 
omputer graphi
s. The problem is to identify

the regions that are in shadow and then modify the illumination a

ordingly. A region is in

shadow if it is visible from the view point, but not from the light sour
e (we assume that there

is only one light sour
e in the s
ene. When there are multiple light sour
es, we simply 
lassify

the region relative to ea
h of them using the same te
hnique). Shadow generation is important

in that shadows not only in
rease realism of a pi
ture, but also provide better understanding
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of the spatial relationships between obje
ts: if obje
t A 
asts a shadow on obje
t B, then

obviously A is between B and the light sour
e [4℄[7℄[9℄.

The problem of shadow generation has been studied for more than thirty years. Various

methods for shadow generation have been suggested. An ex
ellent survey of these methods 
an

be found in [16℄. These methods 
an be 
lassi�ed as shadow volume method, area subdivision

method, depth bu�er method and ray tra
ing method. In a shadow volume method, shadow

polygons are generated as prepro
essing and then ea
h ray is tested for shadow 
ount [7℄. Later

this method was re�ned by BSP trees [4℄. Most re
ently, Chrysanthou and Slater [5℄ proposed

a BSP tree based approa
h, whi
h is a generalization of SVBSP tree approa
h proposed by

Chin and Feiner [4℄. In an area subdivision method [2℄[10℄, two passes of polygon 
lipping

are used to 
al
ulate the region in shadow In a depth bu�er method [15℄, a depth map from

light sour
e is used to generate shadows. In a ray tra
ing method [1℄[8℄, a ray is shot from

the view point, a surfa
e with minimum hit distan
e is de
lared as visible. From ea
h visible

point a ray is shot to the light sour
e, if it interse
ts with any other obje
t then the point is

in shadow.

All these methods have some advantages and disadvantages, but they have one thing in


ommon, they do not s
ale well for large s
enes. One reason is that they fail to exploit one or

both of the following fa
ts: (1) the a
tual shadow is a logi
al OR of shadows produ
ed by all

obje
ts and (2) the angular span of a shadow remains the same at all depths for a given light

sour
e and a given obje
t. The �rst fa
t di
tates that we stop our sear
h for shadow when we

found one. The se
ond suggests that angular 
oordinate system is a more natural 
hio
e for

this problem. In this paper, we present a 
ompletely new method for the 
lassi
 problem of

shadow generation for 3D polyhedra. This method, 
ombined with the above fa
ts, be
omes

mu
h faster.

We start with the observation that shadows produ
ed by an obje
t are bounded by loops

of ridge edges (REs). A ridge edge is an edge whose one adje
ent fa
e is visible and another is

hidden from the light sour
e. We further prove that ridge edges always form 
losed loops. The

union of all the Ridge Edge loops is the boundary of the shadow volume. As we show later,

these RE loops are very easy to �nd. We represent RE loops in an angular 
oordinate system.

This means, we 
an use the same representation to 
al
ulate shadow on all obje
ts without any

transformation. We 
onstru
t a lookup table to store these representations. While looking

up the shadow we stop the �rst time we �nd shadow. As seen by the simulation results,

this method s
ales very well for large s
enes and is very fast. This algorithm takes less than

a se
ond for a s
ene 
ontaining 2000 
ubes (in the worst 
ase). In fa
t the bottle ne
k is

due to the s
an 
onversion pro
ess. There is a limitation however, so far it works only for

a s
ene 
on�ned in one hemisphere of the light sour
e. To enhan
e this method to handle

light-in-s
ene would be our future work.

The 
ontributions of this paper in
lude: (1) establishing a 
orresponden
e between shadows

and RE loops, (2) developing eÆ
ient algorithms to identify and traverse the RE loops, (3)

developing an angular representation of the RE loops so that a lookup table of RE loops 
an

be 
onstru
ted and used in the s
an 
onversion pro
ess (using, for instan
e, z-bu�er method)

eÆ
iently. The proposed new shadow generation algorithm 
an also be used to generate soft
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shadows and remove hidden edges and surfa
es.

The remaining part of the paper is arranged as follows. Se
tion 2 des
ribes in detail

of the RE loops traversing te
hniques, in
luding external loops, internal loops, interse
t-

ing/overlapping loops, and loops 
orresponding to holes. In Se
tion 3 we demonstrate how to

use the results identi�ed in Se
tion 3 in the shadow generation pro
ess. Results of our test


ases are presented in Se
iton 4. Con
luding remarks are given in Se
tion 5.

2 Identifying Ridge Edge Loops

We will show in this se
tion that shadows are 
orresponding to ridge edge loops. By (properly)

identifying all the ridge edge loops of a 3D obje
t, one 
an �nd the shadows it generates on

other obje
ts as well as shadows it generates on itself. The 3D obje
ts 
onsidered in this work

are 3-manifolds. Therefore, ea
h edge is shared by exa
tly two fa
es and an obje
t 
an not

have dangling edges and dangling fa
es.

2.1 De�nitions and Basi
 Properties

To �nd the outline of an obje
t, it is suÆ
ient to 
onsider only visible fa
es or only invisible

fa
es. (A fa
e is de�ned to be visible if the dot produ
t of its outward normal and a ray from

the light sour
e to any point on the fa
e is less than zero.) In fa
t the edges of the outline are

always the edges between visible and invisible fa
es. Su
h edges are 
alled ridge edges (REs).

In this paper REs have been shown by red lines. REs always form a 
losed loop (will be proved

shortly). Figure 1 shows an obje
t with a very simple RE loop. For more 
ompli
ated obje
ts

Figure 1: An obje
t with a simple RE loop.

there 
an be more than one loop. These loops 
an be joint (through a vertex) or disjoint,

overlapping or 
ompletely inside another loop. Figures 2-4 shows some of these situations.

All the RE loops of a given obje
t are potential sour
e of shadow on all obje
ts. If an RE loop

is 
oiled more than on
e, we separate the loop into simpler ones via VREPIPs (to be de�ned

later). In the following we prove that REs always form a 
losed loop.

Consider a vertex `p' in Figure 6, where a number of fa
es are 
onverging. Fa
es are

labeled as `V' or `H' depending on whether they are visible or hidden. Now let us 
ount

the REs 
onverging at `p'. The edges between two visible (invisible) fa
es are not REs, so
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Figure 2: Two disjoint loops.

Figure 3: Single loop whi
h is 
oiled twi
e.

for 
ounting purposes we 
an merge all the adja
ent visible (invisible) fa
es. Then Figure 6

redu
es to Figure 7. Now we see that any visible (invisible) fa
e has two invisible(visible)

neighbors, ex
ept for the 
ase when we started with all fa
es visible (invisible). In any 
ase,

a fa
e after merging, will have zero or two neighbors of other kind. So if there are n visible

(invisible) fa
es after merging, there will be 2n REs (zero if n = 1). Thus at any vertex, only

even number of REs 
an 
onverge. This implies that there 
an not be any broken RE loop.

(If a RE loop is broken at any vertex, there must be an odd number of REs). This 
ompletes

the proof.

REs 
an be 
lassi�ed into two 
ategories, based on the two fa
es they share. If the visible

fa
e is 
loser to the light sour
e then the Ridge Edge is 
alled a visible ridge edge (VRE).

Otherwise, the ridge edge is 
alled a hidden ridge edge (HRE). In this paper VREs and HREs

have been shown by solid and dashed red lines, respe
tively. An HRE implies that there is an

invisible fa
e between the visible fa
e and the light sour
e. So there must be a shadow on the

visible fa
e, or in other words, shadow on the obje
t itself. This 
lassi�
ation is more useful

when we deal with holes.

If two VRE's proje
tions on a plane perpendi
ular to the dire
tion of the light interse
t,

then the points on the VREs 
orresponding to the interse
tion point are 
alled visible ridge

edge pseudo interse
tion points (VREPIPs). At VREPIPs, two VREs do not really interse
t

but they seem to be interse
ting as seen from the light sour
e. Presen
e of VREPIPs implies

that one visible fa
e partially hides another visible fa
e from the light sour
e. Hen
e VREPIPs

also imply shadow on the obje
t itself. See Figures 8-9. If we join the VREPIPs in 3D by an

imaginary line, VREPIPs will be used to break the 
oiled loops into simple loops.
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Figure 4: A loop 
oiled thri
e. This 
an also be seen as three simple loops.

Figure 5: RE loop for a more 
omplex obje
t.

2.2 RE Loop Traversing: separating internal and external loops

The role of an RE loop in some 
ases is quite 
lear. For instan
e, the smaller loop in Figure

2 bounds a pie
e of shadow on the obje
t itself and the bigger loop bounds the obje
t, as

seen from the light sour
e. The smaller loop is 
alled an internal (RE) loop and the bigger

loop is 
alled an external (RE) loop. An external loop determines shadows generated on other

obje
ts. However, in most of the 
ases, the role of an RE loop 
an not be so 
learly de�ned

as it might 
ontain RE segments from both groups. It is ne
essary to separate these segments

so that new RE loops with 
lear roles 
an be 
onstru
ted. This pro
ess 
an be a

omplished

by 
arefully traversing the RE loops.

We �rst obtain all the REs and VREPIPs. VREPIPs o

ur in pairs (see Se
tion 2.4 for

a remark). One is near the light sour
e and another is far. An imaginery edge will be used

to 
onne
t the 
orresponding VREPIPs. We start traversing the loops from any VRE, using

a �xed 
lo
kwise or 
ounter
lo
kwise dire
tion (with respe
t to the outward normals of the


orresponding visible fa
es). When we hit a VREPIP, we split the edges at both VREPIPs.

After splitting the edges we move from the 
urrent VREPIP to the other VREPIP along the

imaginary edge, and then 
ontinue the traversing on the new edge that 
ontains the other

VREPIP in the same 
lo
kwise or 
ounter
lo
kwise dire
tion of its adja
ent visible fa
e. See

Figure 10. The traversing pro
ess of the 
urrent loop stops when the start point is rea
hed.

We start the traversing of the next RE loop at the VREPIP where a new edge is sele
ted,

but move in the other dire
tion of the imaginary edge. For example, in Figure 9, P would be

the start point of the new loop, and we would move toward P

0

and then travel in the same


lo
kwise or 
ounter
lo
kwise dire
tion on the edge that 
ontains P

0

. When the traversing of
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Figure 6: Many fa
es 
onverging at P.
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Figure 7: After merging.

all the RE loops are �nished, ea
h RE will be traversed on
e, but ea
h imaginary edge will be

traversed twi
e, on
e in ea
h die
tion. This traversing poli
y guarantees that one will always

get the external loop �rst, and then the internal loops.

Figure 12 shows the separated loops for the obje
t shown in Figure 4. The two internal

loops (in green) will 
ast shadow on the obje
t itself while the outer loop (in red) will 
ast

shadow on other obje
ts.

2.3 Obje
ts with holes

If the obje
t has a hole, there will be another loop of REs at the hole. We separate this loop

also into simpler loops by means of VREPIPs. A loop 
ontaining HREs will 
ast shadow on

the walls of the hole. The loop 
ontaining only VREs will be responsible for shadow on the

rest of the world. The light sour
e 
an look through this loop. See Figure 13. It is possible

that there is no loop whi
h 
ontains VREs only. This situation is shown in Figure 14.

2.4 Remarks

We make two remarks in this subse
tion. First, it is possible that the proje
tions of more

than two VREPIPs interse
t at the same point. In the pro
ess of traversing RE loops, if one

rea
hes su
h a VREPIP, one should move along the imaginary edge from that VREPIP to the

VREPIP whose edge is 
losest to the in
oming edge 
lo
kwisely, and 
ontinue the traversing

on the new edge. For example, in Figure 15, when the point A is rea
hed, one should 
ontinue
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P

Figure 8: Two VREs having a PIP.

P

P’

Figure 9: Two VREPIPs joined by an imaginary line. Separated simple loop segments are

also shown.

the traversing pro
ess on the edge AB. Here, again, on
e the traversing of the 
urrent RE

loop is �nished, one should start the traversing of the next RE loop at the VREPIP where

the new edge is sele
ted, but move in the opposite dire
tion of the imaginary edge.

Se
ond, it is 
lear that to de
ompose RE loops into non-overlapping loops, the major

expense is the pro
ess of �nding the VREPIPs. One needs to perform extensive edge-edge

interse
tion tests to �nd the VREPIPs. This step of breaking RE loops into non-overlapping

loops is required for the shadow volume based shadow generation algorithm for, otherwise,

shadows that are supposed to be generated on an obje
t itself might be generated on other

obje
ts, or, one might miss regions that are supposed to be in shadow. This is an expensive

pro
ess, not to mention the extensive ray-polygon interse
tion tests required in the subsequent

s
an-
onversion pro
ess.

In the next se
tion, we will show that by representing RE loops in an angular fashion,

and storing the angular representations of the RE loops in a look up table, one 
an avoid

the need of breaking RE loops into non-overlapping loops. A
tually, the new representation

avoids the need of performing ray-polygon interse
tion either be
ause shadow polygons are no

longer needed in the subsequent s
an 
onversion pro
ess.
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Figure 10: Traversing the external loop.

P

Upper
Plane

Lower
Plane

Figure 11: Traversing the internal loop.

3 Storing and Using the RE Loops

3.1 Basi
 idea

We know that the shadow of an obje
t has angular symmetry. That is, the angle subtended

on the light sour
e by the shadow remains the same no matter where the shadow is produ
ed.

This angle is the same as the angle subtended by the shadow produ
ing obje
t on the light

sour
e. See Figure 16 where L is the lo
ation of a point light sour
e and A is the shadow

produ
ing obje
t.

We also know that the boundary of a shadow is determined by RE loops. So if we represent

the RE loops in terms of angles, the same representation 
an be used to mark shadows on

all obje
ts. For example, 
onsider a two dimensional 
ase of Figure 16. Obje
t 'A' will 
ast

shadow from �

A+

to �

A�

. If a polar 
oordiante system with respe
t to the light sour
e is used

then to know if a point (r, �) is in shadow, we 
he
k if � is inside (�

i+

, �

i�

) for any obje
t i.

If this su

eeds, we then 
ompare distan
es to be sure. In the three dimensional 
ase, we need

to 
onsider one more angle �. To make the 
omparison pro
ess more eÆ
ient, a look up table

whi
h 
ontains (r, �, �) representations of all RE loops from all obje
ts will be 
onstru
ted.

The stru
ture of the look-up table is shown in Figure 17. (r, �, �) are de�ned as follows:

r =

p

X

2

+ Y

2

+ Z

2

,

� = tan

�1

(

Y

�Z

)

� = tan

�1

(

X

�Z

).
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Figure 12: Separated internal (green) and external (red) loops of the obje
t shown in Figure

4. Obviously, imaginary 
onne
ting lines are not visible.

Figure 13: Hole's RE loop with VREPIPs. There is an external loop, light sour
e 
an look

through this obje
t.

X, Y and Z are measured in a 
oordinate system �xed with the light sour
e whi
h is parallel

to the proje
tion plane. Note that this is not the general spheri
al 
oordinate system. It


an only represent points in one hemisphere uniquely. However, this de�nition of (r, �, �)

has some properties we wanted. Any line parallel to the x-axix of the proje
tion plane is a


onstant-� line and any line parallel to the y-axis is a 
onstant-� line. See Figures 18 and

19. To �nd the (r, �, �) representation of an RE loop, we �rst �nd the interse
tion points of

the loop with 
onstant �-planes. We then �nd the � and r values of the interse
tion points.

A 
onstant �-plane is a plane that passes through the light sour
e, origin of the 
oordinate

system, and is parallel to the x-axis.

This approa
h enables us to 
ombine the look up pro
ess with the s
an 
onversion pro
ess.

When we s
an 
onvert a polygon, we �rst �nd the 
orresponding � for the 
urrent s
an line

(y) then we �nd the spans (�

i+

, �

i�

) from the look up table entry at �. Of 
ourse the above

de�nition of � will be a 
oating point ranging from -�/2 to +�/2. We s
ale it to a large range

say 0-500 and then dis
retize it so that it 
an be used as an index. Choi
e of this range is a

matter of a trade-o� between quality and speed. Figures 20 and 21 illustrate two RE loops

and their representations in the look up table. The RE loops are due to the obje
t shown in

Figures 2. Several things are to be noted here. The above loops range from �=2 to �=10.

�=0 in the table will 
orrespond to a point in an RE loop whi
h is a global (
onsidering all

loops of all obje
ts) minimum in � and �=N 
orresponds to a point in an RE loop whi
h is a

global maximum in �. Sin
e all RE loops are potential sour
e of shadow on all obje
ts, we put

representations of all loops in our table in any order. Every two 
onse
utive pairs of � and r
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Figure 14: Hole's RE loop without VREPIP. Light sour
e 
an not look through this obje
t.

A

B

Figure 15: Three VREPIPs interse
t at the same point.

in a table entry marks the beginning and end of shadow due to one loop for the 
orresponding

�. For example, in the entry � = 4 of Figure 21, the �rst two pairs of � and r mark the

beginning and end of shadow due to the external RE loop and the third and the fourth pairs

of � and r are the beginning and end of the shadow due to the internal RE loop.

3.2 Corre
tness of Pairing

The 
orre
tness of the above s
heme relies on the 
orre
tness of pairing. As pairs mark the

beginning and end of shadows, both elements of a pair must 
ome from the same RE loop.

For example, it will be in
orre
t to have list elements P

3

, P

4

, P

5

, P

6

in the se
ond entry of

Figure 21. To prevent this from happening we must append RE loops in the look up table

one at a time (in any order).

Sometimes a single loop 
an 
ontribute to more than one pair at the same �. Again we

must ensure 
orre
t pairing. Consider the obje
t of Figure 3. Its RE loop looks like the one

shown in Figure 22.

In this 
ase edge (a,b) must be paired with edge (e,f) and edge (g,h) must be paired with

edge (j, k) for the shown 
onstant-� line. If we in
orre
tly pair (a,b) with (g,h) and (e,f) with

(j,k) then the region from (g,h) to (e,f) will be interpreted as a hole, whi
h is not the 
ase.

The 
ause of this problem is 
oiling of loop. A 
oil in general will look like the 
ase shown

in Figure 23. The problem is solved by the following s
heme. Identify all lo
al peaks in the

loop (points A and B in Figure 23). Pro
ess edges adja
ent to the same lo
al peak together,

one peak at a time, going as mu
h down as possible ea
h time. Two groups are merged into
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A                      B

A−

L
A+

Figure 16: Angular span of shadow remains the same for all distan
es.

1

2

3

4

N

r              r              r             r1,     1          2,     2          3,      3         4,     4

Figure 17: Stru
ture of a look up table.

one group when they both rea
h the same lo
al minimum. So in Figure 23 if we �rst pi
ked

'A' then we will pro
ess edges from 'A' to 'C' and 'A' to 'D'. Then we pi
k point 'B' and

pro
ess edges from 'B' to 'C' and from 'B' to 'D'. Both pro
esses stop when the height of

'C' is rea
hed. After that point, the edge from 'A' to 'D' is pro
essed with the edge from 'B'

to 'D'. The result is shown in Figure 24.

We see as indi
ated by arrows that points are paired 
orre
tly. We will always avoid 
oiling

by not allowing us to traverse an RE loop in the upward dire
tion.

If two lo
al peaks of the same height are adja
ent to ea
h other, the one on the left is

ignored, we only 
onsider the one on the right. The edge between them is also ignored. In

this 
ase, the other adja
ent edge of the ignored lo
al peak is 
onsidered as an adja
ent edge

of the kept lo
al peak. For example, in Figure 27, only verti
es i and 
 are 
onsidered as lo
al

peaks, and edge (a, b) is 
onsidered as an adja
ent edge of 
 and edge (g, h) is 
onsidered as

an adja
ent edge of i.

Improper pairing 
an also happen due to a hole or a hole-like situation, as shown in Figures

25 - 27.

As we 
an see, if we follow the above s
heme in these 
ases we will end up doing improper

pairing as indi
ated above. To handle this situation we use the fa
t that a shadow is bounded

by REs with opposite dire
tions. Spe
i�
ally, if the indi
es to fa
es are in 
lo
kwise order

with respe
t to the outward normals, then all the RE loops will be 
lo
kwise as seen from the

light sour
e. So, left boundary must be going up and right boundary must be going down.

However, inner boundaries of a hole or a hole-like situation is bounded by dire
tions down and

up from left to right. While following our aforesaid s
heme we get points 'A' and 'B' as our

11



Y

Z

X
x

y

z

Projection Plane

Light
Source

Figure 18: Coordinate system �xed to the light sour
e.

Y

Z

X

Constant

Constant
(r, ,       )

r

Figure 19: Constant-� and � lines are parallel to the X and Y axes, respe
tively.

starting points for Figure 25 and Figure 27. When we pro
ess bran
h pairs starting at 'B',

on
e we rea
h the region bounded by edges (C, E) and (D, F ), we know from their dire
tions

that they 
orrespond to a hole or a hole-like situation. We insert these bran
h pairs instead

of appending them. Any ambiguity is broken by these dire
tion 
onstraints.

We summarize our s
heme for 
orre
t pairing here.

1. In any order but pro
ess one loop at a time. This takes 
are of wrong pairing due to

two di�erent loops.

2. Identify lo
al peaks in the loop. Divide the loop into bran
h pairs starting at these

peaks. Pro
ess them one at a time. This takes 
are of wrong pairing due to 
oils.

3. Be wary of dire
tion 
onstraints while performing the above steps. This takes 
are of

wrong pairing due to a hole or a hole-like situation.

3.3 Depth Information

So far our look up table 
ontains 
orre
t information about shadow boundaries only. It has

depth information of RE loops only. Sin
e RE loops are not planer it is possible that a line

joining two points of an RE loop may not pass entirely through the obje
t. In other words,

RE loops 
an not 
apture depth information about bumps or 
avities in the obje
t. To have

an exa
t depth map we also in
lude hidden edges in our look up table. A hidden edge is one

whose adja
ent fa
es are both hidden. Sin
e a hidden edge does not mark the beginning or

end of a pie
e of shadow, we insert them in dupli
ate to preserve the meaning of the look up
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P1 P2
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P7 P8 P9 P10

P11 P12 P13 P14

P15 P16 P17 P18
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Figure 20: RE loops of the obje
t in Figure 2. P

i

are points on the loops.

2             P             P
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4             P             P             P             P

5             P             P             P             P

6             P             P             P             P

1                  2

3                  6                  4                  5

7                  10                8                  9

11                14                12                13

15                18                16                17

19                207             P             P   

8             P             P21                22

Figure 21: Representation of the RE loops in Figure 2.

table. For example, when we insert hidden edges of the obje
t in Figure 2 into the look up

table of Figure 21, the table 
ontains the whole pi
ture as in Figure 28.

Now we 
an �nd the depth of a shadow produ
ing obje
t at any � inside a pair using simple

trigonometry as we know (r, �) of the end points. We 
an even do a linear interpolation if the

spanning angles are small. This is true be
ause now every line between any two points given

by pairs must entirely pass through the obje
t.

Inserting hidden edges is not diÆ
ult. We maintain a graph like data stru
ture for RE

loops where ea
h vertex of the RE loops also 
ontains information about hidden edges in
ident

to it. Hidden edges subsequently 
onne
t to other hidden edges. While appending/inserting

an RE loop we also insert hidden edges at appropriate lo
ations. Hidden edges have no

dire
tion so any ambiguity in pla
ing them is resolved by their �-values only. We 
an follow

any 
ommonly used graph traversing te
hnique to make sure that we insert all hidden edges

on
e and only on
e (in dupli
ate).

3.4 Using the look up table

Now that we have a look up table, we 
an very easily determine if a point is in shadow while

doing s
an 
onversion. We simply �nd out (r, �, �) of the point in question and look up in

the table entry �. If we �nd a pair (�

1

, �

2

) su
h that �

1

� � � �

2

then we �nd depth r(�)

from (r

1

, r

2

) and 
ompare it with r-value of the point in question. If this test fails we go to

the next pair. We stop when we �nd a mat
h or we rea
h the end of the list. In fa
t the s
an


onversion pro
ess does not have to inquire for ea
h pixel. The look up pro
edure 
an return

13
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Figure 22: RE loop of the obje
t shown in Figure 3.

A
B

D

C

Figure 23: A 
oil in general.

a span of angles for an asked �-value.

4 Implementation

We �rst review the steps involved in this algorithm.

1. Identify Visible/Hidden fa
es.

2. Identify Ridge/Hidden edges.

3. Constru
t an ordered 
ir
ularly linked list of Ridge Edges (RE loop).

4. Atta
h Hidden edges to the verti
es of the above list.

5. Identify verti
es whi
h are lo
al peaks.

6. Append/Insert angular representation of all points (s
aled and quantized in �) of RE

loop/Hidden edge starting from these peaks. Observe pair 
orre
tness s
heme dis
ussed

earlier.

7. Use the above prepared look up table while doing s
an 
onversion.

14



C

D D

C

A

B

Figure 24: Appending two pairs of bran
hes starting from peaks.

A
B

E                             F

C                         D

Figure 25: RE loops of an obje
t with a hole.

This method is implemented on a Sili
on Graphi
s ma
hine using X-windows as the graph-

i
s system. The Z-bu�er method is used for the s
an 
onversion pro
ess. Figures on 
olor

plate show some of the test 
ases.

The following table presents a 
omparison of performan
es for the presented tested 
ases.

Figure #Polygons �-Range Table #Lookup Look up


onstru
tion 
alls time (ms)

time (ms)

1 26 0-599 25 16229 106

2 330 0-599 44 21765 135

3 38 0-599 40 16834 116

4 330 0-599 54 31552 184

All times are CPU time measured in milli se
onds. Number of ridge edges and 
omplexity

of shadow 
hanges with 
hange in light positions and viewing angles. In the table above what

you see is the average over a few viewing angles and light positions.

The table 
onstru
tion time starts when we read the data �le and time stops when the

lookup table is ready. The look up time listed in the last 
olumn is the total time elapsed in

all look up 
alls.

We did a simulation to test the eÆ
ieny and s
alability of our method. We assume that


omplexity of a s
ene is related to the number of elementary obje
ts in the s
ene. We pi
ked a


ube as our elementary obje
t so the data 
an be generated automati
ally. We experimented

with a large number of 
ubes. Figure 29 shows the result.
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Figure 26: A hole-like situation in an obje
t.

A
B

Figure 27: RE loop of obje
t shown in Figure 26.

For 
omparison purposes, we also plotted the performan
e of BSP tree algorithm reported

in Chrysanthou[1995℄. This algorithm was implemented on SUN Spar
Station 2. Assuming

its 
lo
k speed to be 50MHz, our system is approximately 3.5 times faster. So for fairness, we

devide the time reported in Chrysanthou[1995℄ by 3.5 before 
omparison. Of 
ourse a truly

fair 
omparison is impossible sin
e the performan
e depends on other system parameters also

like memory et
. performan
e will also vary with di�erent data set.

The best thing would be to get the performan
e in big-O notation. But there are so many

variables that a�e
t the speed that we end up doing too many approximations to get a result

in 
losed form. This makes the result useless. We like to be rather sloppy and 
laim that "our

method is very s
alable as 
ost does not even grow linearly with s
ene size" as one 
an see

from the plot. The speed of our method depends more on the total area of polygons rather

than the number of polygons. This 
an be understood by 
onsidering the fa
t that table


onstru
tion time is very small and individual look up time is even smaller (about 10�s).

Sin
e the lookup table is made only on
e, total time depends upon how many look up 
alls

we make. The number of lookup 
alls depend on the size of polygons and their slope. If the Z


oordinate 
hanges very rapidely with X for a given s
anline then � will 
hange many times

for the same s
anline and we have to make more lookup 
alls. In the introdu
tion, we 
laimed

that our algorithm takes less than a se
ond for a s
ene 
ontaining 2000 
ubes "in the worst


ase". This is based on the fa
t that our simulation generates 
ubes in ba
k to front order,

i.e. we s
an
onvert fa
es of all the 
ubes leading to a maximum number of look up 
alls. The

best 
ase would be when the obje
ts are already sorted in front to ba
k order.
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Figure 28: Complete representation of the obje
t in Figure 2.

5 Con
lusion

An initial attemp to �nd eÆ
ient te
hnique to identify shadow polygons turns into the pro
ess

of developing a new shadow method for 3D polyhedra. The new method is based on building

a look up table of the RE loops so that one 
an use the table in the s
an 
onversion pro
ess to

mark the pixels that are in shadow dire
tly. The new approa
h avoids the need of performing

ray-polygon interse
tion tests required in the 
lassi
al shadow volume based approa
h. Sin
e

the RE loops are not required to be de
omposed into non-overlapping loops, the new approa
h

does not required edge-edge interse
tion tests to identify VREPIPs either.

The 
urrent approa
h 
an not handle the 
ase when the light sour
e is inside the view

volume yet. This will be a future resear
h topi
.
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