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nergy and B-spline
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understanding of the performance of the strain energy

In this paper, we study B-spline curve inlerproximation with approximation methods is important since some of
different energy forms and parametrization techniques, and the design processes use the energy as a means (o
present an interproximation scheme for B-splir.le surfaces. Tt optimize the shape (geometric smoothness) of a curve
shows that the energy form has a much bigger impact on the or surfacet®!2-1624=27 One example is the process of
generated curve than the parametrization technique. With the constructing a smooth surface to interpolate a network
same cnergy form, different parametrization techniqpcs of Cul‘VBSM, where an energy function is minimized to
generate relatively small difference on the corresponding find the optimal twist vectors for the interpolating
curves. With the same parametrization technique, however, surface. Another example is the curve interproximarion
different energy forms make significant difference on the shape p}’ocess““s where a curve with the smoothest shape is
and smoothness of the resulting curves. Furthermore, inter- sought to interpolate given date. The data could be
proximating B-spline curves generated by minimizh}g agproxi— points or regions. The curve interpolates the points and
mated energy forms are far from being good appromm:almns fo passes through the regions. The curve inferproximation
the optimal curves. They tend to generate flatter regions and process is carried out by minimizing the energy of the
sharper turns than curves generated by minimizing the exact curve to achieve geometric smoothness. A surface
energy form, The interproximation scheme for surfaces is interproximation technique is not available in the
aimed at generating a smooth surface to interpolate a grid of literature yet.
data which could either be a point or a region. This is achieved Actually, the geometric smoothness of an interpolat-
by minimizing a strain energy based on squared principal ing curve or surface depends on knot parametrization
curvatures for bicubic B-spline surfaces. The surface inter- as well. Appropriately parametrized knots reduce the
proximation process is also studied with different energy forms energy of the resulting curve/surface and avoid the
and parametrization techniques. The test results of the surface occurrence of ‘oscillations’ and ‘IOOPS’S. 1t was pointed
interproximation process also show the same conclusion as the out by Lee that an interpolating curve whose notes are
cuive interproximation process. © 1997 Elsevier Science Lid. defined by the centripetal model is usually ‘fairer
. . . L . (closer to the data polygon) than curves obtained with
Keywords: B-splines, interpolation, approximation, inferproxi- the uniform or the chord length model'®. However, the
. . : . . . ’
mation, non-linear programming, cenfripetal model, relative impact of various parametrization techniques on the
chord length parametrization, constrained optimization curve interproximation process is not known yet,

In this paper, we study the impact of different energy
forms and parametrization techniques on the (B-spline)
curve interproximation process, and present an inter-
proximation scheme for B-spline surfaces; we are

L. INTRODUCTION cspecially interested in the performance of the strain
. . i energy approximation methods, OQur findings show that,

E.T.Y. Lee pointed out in 1990 that some popular stran with the same energy form, different parametrization
energy approximation methods for parametric curves do techniques generate relatively small difference on the
not work as well as might be expected *. Unfortunately, corresponding curves. With the same parametrization
probabiy. because thc cxalpples given by Lee did not technique, however, different energy forms make
show serious effect in real-life applications, or probably significant difference on the shape and smoothness of
because better alternatives are not available, those strain the resulting curves. Furthermore, interproximating B-
energy approximation methods continue to be used in spline curves generated by minimizing approximated
various apphcatlo_ns.. Actually, in some ocggilans, the energy forms are far from being good approximations to
ECSUEFS are  consider ed. to be acccptabie . One the optimal curves. They tead to generate sharper turns
certainly might wonder if what was pointed out by Lee and flatter areas in between than curves generated by
might not be so serious. o minimizing the exact energy form. The interproximation
For the geometric shape design industry, a better scheme for surfaces is aimed at generating a smooth
surface to interpolate a grid of data which could either be

Department of Computer Science, University of Kentucky, Lexington, a point or a region. This is achieved by minimizing a
KY 405060046, USA strain energy based on squared principal curvatures for
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bicubic B-spline surfaces. The surface interproximation
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of D,. The curve we are seeking for can be cxpressed as’:

Clt) = (x(0), (1), (1)) = ZP,W, t € {0,1]

(11)
with
ty+ ity — 2t
wi(f) = e 2_ : LB_y5(1) + Boys(0)
h—h
11?2([):—t — IB 23(f)+301()

'll’,-(l) == Bi...2‘3(t), f=3,...,0—2 (12)

Tp-1 — tr
w,—1{f) = _t—‘;—_""r?Bn-—l,?.(f) + B, 33(1)
n— ]
t o + tr— -2t
wn(’) = —f—;% n—l,3(t) + 31172,3(“)
— "

where B;4(f) are cubic B-spline basis functions and
P, = (x;, yi, z;} are 3D control points. The P; are to be
chosen so that the energy of C(f) over the parameter
space is minimum with the constraint that C(z;) € D; for
i=1,2,...,n The w;{s) are computed based on the
‘natural’ end conditions (i.e. the second derivatives of
C(1) at the end points of the parameter space are set to
zero). The computation process can be found in
Reference 5.

I (5) is considered with (3) being a special case, the
minimization process is a quadratic programming
problem. By defining X = (x5, x,...,%,), ¥ ={»,

Y2, - :yn) (ZEJZE: [ERE Zn)> and W, = ((“’1)10
(Wa iy - (w,,),,) the energy of C{¢) can be expressed
as follows
T
E(C)=(X,Y,2) J adr- | v (13)
I Z"[‘
where £ is a 3n x 3n symmetric matrix defined as follows:
W” 0 0 (WN)T 0 0
Q=0 W, 0 ]-¢-| 0 (W) o6
0 0 W, 0 0o W)t

(14)

The quadratic programming problem has (13) as its
objective function with the constraint:

G 0 0
(X,Y,Z}){0 G 0
0 0 G
€ (Ay, Az, ..., Ay B, By, By Cy Coy o C) (15)

where A;, B; and C; are defined in (1) and G = (g; ;) is the

generating matrix of the curve C(f) with g; ; = w;(#;). The
dimension of G is n X #.
If (6) is considered, note that

H T 00 00
0 0 H I 0 0
60 0 0 0 H I

A= (A, A A5)- 6, B=
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with
H = ((w)(w)us o (01} (Wades -5
{(w, (W e -5 (w”),{l-v,,)f,)T
I= () (00 (W) - - -
(adee (W) - -5 (Wn)u(“’n)r)T
and
A= (215 F1Zur - s PoZls s YnZn)
Ao = {120, o X1 2y e ey XnZLe e ooy X))

A3 - (xlyl'n R 0 ZTEREEE ) PR 1xnyn)
Hence, the energy of C(¢) can be expressed as
AT
B (C) = (A, Ay, As) L((—) R-0Tde- | AT | (16)
. AT
3

The minimization of (16} is a quartic programming
problem with the same constraint (13).

If (2) is considered, we have a non-linear programming
problem with linear constraints. Since there is no
enclosed form for the integrand, one has to use the
trapezoid method to do the evaluation. The process is
tedious, but not difficult.

3. IMPLEMENTATION

The above energy forms, (2}, (3), (5) and (6), have been
implemented in C in the B-spline curve interproximaton
process on the following platform: HPUX level 9.05 on a
Hewlett Packard HP 735 machine using a SUN Sparc 20
machine as the display device. The sofiware package
used for the optimization process is the NAG Fortran
Library®'. The three parametrization techniques: the
uniform model, the centripetal model, and the refative
chord length model, have all been used in the construc-
tion of the parameter knots (#;) in the interproximation
process for each energy form.

A number of test cases have been carried out. Four of
them are shown in Figures I—12. In each case, the four
energy forms are implemented for each of the parame-
trization techniques. The resulting curves whose para-
meter knots are generated using the uniform model, the
centripetal model, and the relative chord length model
are shown in (a), (b), and (c), respectively. In each
stibcase, the curves generated by minimizing the energy
forms (2), (3), (5) and (6) are shown in width three solid,
on off dash, double dash, and width one solid,
respectively. The curves are displayed in the following
order: on off dash, double dash, width one solid, and
width three solid. Therefore, overlapping areas will be
shown in the style of the curve which is last rendered.

For each case, three knot vectors are computed using
(8), (9), and (10), respectively, first. Based on these values
and the corresponding cubic B-spline basis functions
defined in (12), the objective functions for (2), (3), (5) and
(6) are constructed and minimized subject to constraints
(14) to find the control points (P;) for the corresponding
interproximating curves C(f). The objective functioas for
(3) and (5) are constructed using (13): for (3} the matrix
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Figure 5 Casc 2(b): cubic B-spline curve interproximation

has a much bigger impact on the generated curve than
the parametrization fechnigque, With the same encrgy
form, different parametrization techniques generate
relatively small difference on the corresponding inter-
proximating curves. With the same parametrization
technigue, however, different energy forms make
significant differcnce on the shape and smoothness of
the resuiting curves. This is especially true between
curves generated with the exact energy form and the
approximated forms. Furthermore, curves generated by
minimizing approximated energy forms are far from
being good approximations to the optimal curves; they
tend to have flatter regions and sharper turns while the
curves generated by the exact encrgy form tend to be
more circular and have smoother turns.

The reason that the curves generated by minimizing
the approximated energy forms tend to have flatter
regions and sharper turns can be explained as follows.
First, note that for a flat region, the cross product of the
first derivative and the second derivative, C, x C,,, tends
to zero. In addition, if the parametrization has been
determined, the second derivative C,, tends to be small
since the first derivative would be smaller than a more
circular region. Therefore, the values of the encrgy forms
(3), (5), and (6) are small for flat regions. Second, for a
sharp turn, afthough the curvature would be large, the
magnitude of the first derivative has to be small to avoid
overshooting. This leads to small magnitude of the
second derivative. But then the magnitude of €, x C,
would be small too. Therefore, the values of the energy
forms (3), (5), and (6) are also small for sharp turns. On
the other hand, the values of the energy forms (3}, (5),
and (6) are larger for curves with more circular regions
and smoother turns. Consequently, to make the value of
the energy forms (3), (5), or (6} small, the curve is forced

Figure 6 Case 2(c): cubic B-spline curve infcrproximation
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Figure 7 Case 3{a): cubic B-spline curve inderproximation

to have flatter regions and sharper turns. This phenom-
enon has also been proved in the test cases. For instance,
in Figure Case I{a), the curve generated by the exact
energy form (2) (called a 2-2 curve) has smoother turns
and more circular regions than the curve generated by
the approximated energy form (5) {called a 2-5 curve).
But the (5) energy of the 2-2 curve is bigger than the (5)
energy of the 2-5 curve (recall that EO4NFF is a global
optimization procedure and the 2—2 curve is an element
of the solution domain). Actually, we have used the
control points of the 2-2 eurve as initial configuration
for (3) and (5), and we get the 2-3 curve and the 2-5
curve again, respectively.

The test cases show that none of the approximation
methods really provide good approximation of the strain
energy. Unless flatter regions and sharper turns are what
are expected, one should avoid using approximated
curve energy forms in a curve interproximation process
since they are far from being a good approximation to
the exact energy. After all, computing the exact energy
can be done in a reasonable amount of time (see Table 2
for the computation times).

4. B-SPLINE SURFACE
INTERPROXIMATION

Given a set of 3D data D, ;,i=1,...,m; j=1,... ,n
where

Dyj=di;y x By x G = [fff.;a by x iy, dij] x leg, fi]
(17

with a;;<bj, ¢;;<d;;, and ¢, ;<f; ;, the objective is to
construct a bicubic B-spline surface that passes through
all D;; with the smoothest shape. This will be
accomplished by finding the interproximating B-spline
surface with the smallest strain energy.

The interproximation will be performed at the corners
of the surface patches. Hence, the inferproximating
surface needs (m — 1) x (# — 1) patches and, conse-
quently, (m+2) x (n+2) control points and {m + 6)

Figure 8 Case 3(b}): cubic B-spline curve interproximation
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Table 1 (Exact) strain energies of the inferproximating curves

Case Energy form (2) Energy form (3) Energy form {5) Energy form (6)
i(a) 0.128665 0.208134 0.19%96%4 0.251445
1(b) 0.119079 (.263338 0.192632 0.238918
1{c) 0.1§1950 0.204435 0197048 0.227865
2(a) 0.567010 0.806265 0.776907 0.783750
2b) 0.550515 0.757523 0.742433 0.749167
2{c) 0.529589 0.724953 0.707721 0.728271
3{a) 0.366207 (.620149 0.614252 0.743856
3(b} 0.355651 0.625134 0.577276 0.842426
3(c) 0.347007 0.604094 0.541312 0.713505
4(a) 0.411886 0.792969 0.689443 0.835857
4(b) 0.4E1755 0.751548 0.659106 0.894739
4(c) 0411470 0.853501 (1625630 0.802757

To lind the P;; that minimize (20), one may proceed as
follows. Let P*, PY, and P be the x-, -, and :z-
components of the control points listed by columns,
respectively:

x . . . - . -
Pr= ('\l,l yroee :-\],11532,17 B X IR T NERE --xm,n)
yo__ ]
Ph= (yl,l yro- J.}’]Jn,]’ll: D S TREEE S TN PR wym.n)
P = (Zl,l" RS NP5 N EE 2 Epr Ly e :Zm,n}

Then the bicubic B-spline surface S(w,v) can be
expressed as

S,y = (x(u,0), v(u, 0}, 2(u,0)) = (P, PY, P7)

W 0 0
6 W .0 (z1)
0 0 w
where
W= (wya{uhivy 3(v),
wya(upwys(v),. ., wi (i), 3 (v), ...

sy 1"!}1,3(”)”’1‘3 (y)= ey Wm,S(”)qu ('U))T (22)

Let L=(A4;,B,,C;) and U = (Ay, By, Cy) be the
vectors of the lower bounds and upper bounds of the x-,
y- and z-components of S(u,v) at the interpolation
points by columns, i.e.

AL = (al,iaal,QJ"':al.m"' "1“1?1,11)
Ay = 011,012, b, -

where a;;, b5, ..., are given in (7). Let © be a matrix of

y 15825 -

<1 lbm,l 3 bm,21 LR bm‘n)

dimension mm x nm defined as foliows;
Q= (I’V(l!] H Ul}’ J’V(H], UQ): ) W(HI ) UH}) R
J’V(I"m: 'U]), I’V(“nn ?)2)1 ey M/(”rm yn))

where ¥ is defined in {22). Then since the energy defined

in (20) is actually a function of {P¥, P”, P?), the task to

be solved here can be put in the following form:
Minimize E(PY, P’, P*) subject to L<(P*, P7, P7)
L

(P,\' PP ) E_Rjum

Q0 0
02 0|<u (23)
0 0 Q

This is the minimization of a non-linear function
subject to a set of linear constraints on the variables. It
can be solved using the sequential quadratic program-
ming (SQP) method”®*, The E04UCF subroutine of the
NAG Fortran Library™ is used here for the minimization
process.

Hagen and Schulze'® use a simplified form of the exact
energy in the generation of smooth surfaces from a grid
of 3D data points.

. q? E*N? 2M?
E(S):_” 73T 72t 173
In|(EGY? T (EGPR T (EG)

This is the result of assuming that S, and S, are
orthogonal {(F = S, -5, = 0). The minimization process
is based on a variational approach. This approach can be
solved as a special case of (23),

In the past, since computing (20) directly was

dudu (24)

Table 2 Computation time (in seconds) of the interproximating curves

Case Energy form (2} Energy form (3) Energy form {5) Energy form (6)
i(a) 6.4 10000 0.020000 (.100000 1.150000
1{b) 5.570000 0.050000 0.100000 11600600
1(c) 6.320000 0070000 0.110000 1.180000
2(a) 30.310000 0.070000 0.070000 9.700000
2(b) 26.730000 0.070000 0.080000 9.710000
2{c} 35190000 0.080000 0.090000 9730000
3(a) 41.770000 0.050000 0.070000 9.700000
3(b 39.130000 0.050000 (.070000 9.740000
3(e) 38.280000 0.060000 (080000 9. 710000
4(a) 6.300060 0.070000 0.020000 1.140000
Ak 6.220000 0.060000 0.040000 1.160000
4(c) 6.270000 0.060000 0.030000 1.140000
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Figure 13 Case (a): combination of energy form (19) and average uniform model

quadratic programming technique (with constrained
variable) to find the minimum energy surface. The
subroutine EO4NFF of the NAG Fortran Library is
used for the minimization of (29).

5. IMPLEMENTATION

The implementation of the bicubic B-spline surface
interproximation process is done on the same platform
as the curve interproximation process. Both energy
forms, (19) and (29), have been used in the energy
minimization process. The matrix Q in (29) is set to an
identity matrix which yields |S,.|2 + [Su|® +[S,|* as
integrand for (29). The three parametrization techniques:
the uniform model, the average centripetal model, and
the average relative chord length model, have all been
used in the construction of parameter knots (f;) for each
energy form. A number of test cases have been carried
out. One test case is shown in Figures 13—18 with Case

(a) and Case (b) showing the combinations of the
average uniform model with energy forms (19) and (29),
respectively; Case (¢) and Case (d) showing the
combinations of the average centripetal model with
energy forms (19) and (29), respectively; and Case (e)
and Case (f) showing the combinations of the average
relative chord length model with energy forms (19) and
(29), respectively. The resulting surface for each
combination is shown in both wire framed and shaded
forms. The (exact) strain energies and computation times
of the resulting surfaces are shown in Table 3.

It can be seen from Figures 13—18 that the phenomena
which held for interproximating curves hold for inter-
proximating surfaces as well; the energy form has a much
bigger impact on the shape and smoothness of the
resulting surfaces than the parametrization technique,
and the surfaces generated by the approximated energy
form (29) tend to have sharper bumps. Therefore, for
surface interproximation, one should also avoid using
approximated energy forms unless sharper bumps and

Figure 14 Case (b): combination of energy form (29) and average uniform model
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Figure 17 Case (e): combination of energy form (19) and average relative chord length model

Figure 18 Case (I): combination of energy form (29) and average relative chord length model
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