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process is also studied with different energy forms and
parametrization techniques. The test results of the
surface interproximation process also show the same
conclusion as the curve interproximation process.

The principal contributions of this paper are:

e It shows that the energy form has a much bigger
impact on the generated curve/surface than the
parametrization technique in the curve/surface
interproximation process,

e It shows that one should avoid using approximated
curve/surface energy forms in a curve/surface inter-
proximation process since the generated curve/
surface would be far from being a good approxima-
tion to the optimal curve/surface.

e It presents a surface interproximation scheme which
guarantees C*-continuity between adjacent patches.

Details of the paper are shown in the subsequent
sections.

2. ANOTHER LOOK AT CURVE
INTERPROXIMATION

Given a set of # 3D data
D= A; x B; x (;
where
A= [ap b By = e, d}]; C; = [e. ] (1)

with a4, <b;, ¢; < d; and ¢; <f;, the objective is to construct
a curve passing through all D; with relatively smooth
shape. This may be achieved by solving a strain energy
mrinimization problem using cubic B-spline curves®, Note
that D, could be a point, a line segment, a rectangle, ora
parallefepiped.

The strain energy of a curve segment (7} is defined as
the integral of the squared curvature over the parameter
space I®

mq_Jﬁmm_LG%éégﬂqm (2)

where ds is the curve length measure, and C, and C,; are
the first and second derivatives of C with respect to ¢,
respectively, Since it was commonly agreed that
computing the exact strain energy is too difficult to be
used as a design tool, several approximation methods
had been developed. When the first derivative is small
and perpendicular to the second derivative, the curve
energy is typically approximated by the following
form™5,8.15,26.

£(C) = | 1cfar ©

It iC,] is close to a constant, the curve energy has also
been approximated by'*!?

1 2
BC) = ot | 1CuPar @
where m(|C,]) denotes some kind of average of |C,| over
the parameter space.

Another option is to use Kallay and Ravani’s surface
energy approximation for a curve™. In that case, the
energy of a curve is approximated by the integral of a
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general quadratic form in the second derivatives of the
curve over the parameter space:

HQ:L&QA%t (5)

where @ is a 3 x 3 symmetric coefficient matrix and
A =Xy, Py, 25) with x(1), () and z(¢) being the x, y and
z components of C{7), respectively. When Q is an identity
matrix, one gets (3) as a special case.

On the other hand, if |C}| is close to a constant, since
the computation of the curve energy defined in (2) is
essentiall)zf a process of computing the integral of
iC, x Cy|*, one has

mecﬁm:Lmmez (6)

where A = (1,2, Yuze, XuZp, X240y X, V1gy Xyy,) and
B 0 0
1 |
R=}10 B O with B = | | (7
0 0 B

Hence, by allowing R to be an arbitrarily defined 6 x 6
symmetric coefficient matrix, one gets another general
form for curve energy if the first derivative is close to a
constant.

Minimizing strain energy has been used as a common
means to optimize the shape of a curve or surface in
shape design applications. It is important to know which
of all the energy approximation methods provides the
best approximation. In the following, we will investigate
the performance of the above energy forms, including
(2), in the curve Interproximation process. Namely, in
finding the optimal control points P; = (x;, ¥, z;) for a
cubic B-spline curve C(7) that interproximates D;, we will
usc different energy functions in the eptimization process
to determine which one gives the best result. Further-
more, since the outcome of the interproximation process
depends on knot parametrization teo, the investigation
will consider the impact of different parametrization
technigues as well.

Let {z},i=-2,—1,...,n+3, be a knot vector
constructed using one of the following three methods:
the uniform model, the centripetal model®, or the
relative chord length model®. Specifically, ¢ , = ¢ | =

h=H = G: i, = = fu+2 = tn+3 - 1, and
i
L=t | =——r [ =2,...,0—
i i—1 (I?—- I): I 1 y 1 (8)
for the uniform model,
. 2
=t = J]IQJ QJ—II 73 i=2,....,n—1
2o 1l Qy = Ol
(9)
for centripetal model, or
Qi — Qiil .
fh—t = ) i=2,...,n—1
T Ele - 0
(10)

for the relative chord length model, where 0, is the center
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Figure 1 Case 1{a): cubic B-spline curve interproximation

Q in (14) is set to an identily matrix; for (5) the matrix 0
in (14) is defined as follows:

0 0.90 0.10
0.10 0.90

Both matrices are 2 x 2 because C(¢) is a 2D curve,
The objective function for (6) is constructed using (16)
with R defined in (7). The objective function for (2) is an
approximation of (2) constructed using the trapezoid
method with 10 points for each span.

The minimization of the objective functions for (3) and
(5) are carried out using the EO4NFF subroutine NAG.
This is a global optimization process for quadratic
programming problems (the objective functions for (3)
and (5} are quadratic functions). The solution returned
by this subroutine is a global minimum. The initial
configuration of the control points for (3) and (5) are the
same, First, a set of interpolation points Q; = (a;, 5, ¢) is
constructed as follows: for i=1,..,,n, if D, is a point,
then @, is set to D;, otherwise, ; is set to the center of D,.

Figure 2 Case (b} cubic B-spline curve interproximation
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Figure 3 Case l{c}: cubic B-spline curve interproximation
Then the following equation is solved for the inifial

control points P; = (xy, y;, 2;) (see (13) for the definition
of G):

(X,¥,2)

o o o

0 0
G 0
0 G

- (fl|,()’2,...,ﬂ,,,b;,bz,...,b,,,(’,’],Cz,...,C,,)

The objective functions for (2) and {6) are minimized
using the EO4U/CF subroutine of NAG. This is a local
optimization procedure for non-linear programming
problems (recall that the objective functions for (2) and
(6) arc neither linear nor quadratic). To facilitate the
minimum finding process, the solution returned by the
subroutine EO4NFF for (3) is used as the initial
configuration of the control points for both (2} and (6).
It is not guaranteed that in this case the solution returned
by E04UCFis a global minimum. However, the resulting
curve seems to be reasonably close to a global minimum.
This can also be justified by comparing the (exact) strain
energy of the resulting curve with the energies of the
curves obtained using (3) and (5). The {exact) strain
energics and the computation times of the interprox-
imating curves are shown in Tubles I and 2, respectively,

It can be seen from the test cases that the energy form

Figure 4 Case 2(a): cubic B-spline curve interproximation
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Figure 9 Case 3{c): cubic B-spline curve interproximaliosn

parameter knots in & and {1 + 6) parameter knots in v,
Three different methods may be used to construct the wv
parameter knots for the surface.

(1) Uniform model: the u and v paramcier knots are
evenly distributed (see (8)). The v parameter knots are; 0,
0,0,0,1/(m—1),2/(m=1),...,(m=2){{m—1), 1, 1,
1, . The v parameter knots are: 0, 0, 0, 0, 1/(n— 1),
2/n—1,...,(n=2}/(n—1), 1 L 1,1

(2) Average centripetal model: for each row of the
interproximating data, one wu knot vector can be
computed by the centripetal model, such as the one
calculated in (9). After all the « knot vectors have been
calculated, an average method is used to obtain the final
u knot vector for the surface™. A similar approach can be
used o obtain the v knot vector.

(3) Average relative chovd length model: for each row
of the interproximating data, onc u knot vector can be
computed by the relative chord length model, such as the
one calculated in (10). After all the i knot vectors have
been calculated, an average method is used to obtain the
final u knot vector for the surface. A similar approach
can be used to obtain the » knot vector.

Let U=u_y, i iy gty and V=w_5,v q,... 03
be the w and v knot vectors computed using one of the
above approaches. The bicubic B-spline surface we are
looking tor may be exprossed as:

m i

S(u,v) = Z ZPU’ wis(wss(v), v {0,1] {i8)

im1 -1

where w;y(u) and w;;(v) are defined in (12) with
corresponding v and v knots and P;; = (x;;, ¥, 2;;) are
3D control points. The P;; are to be chosen so that the
strain energy of S(u,v) over the parameter space is

Figure 10 Case 4(a): cubic B-sphinc curve inferproximation
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Figure 11 Casc 4(b): cubic B-spline curve interproximation

minimum with the constraint that S(u;,w) € D;; for
i=12,...,mandj=1,2...,n

The strain energy of a surface patch S(u, v) is defined
as the integral of the squared principal curvatures over
the parameter space'®'":

E(S) = ” (k] + K3)do (19)
D
where de is the surface area measure. Using the following
equalion:
K4 ks = (2H)Y — 2k

where H is the mean curvature and & is the Gaussian
curvature’, one can get the energy form in terms of the
first and second surface derivatives as follows;

E(S) = ”D [(LG —2MF + NE)zmzLN _ Mz]

EG— F? EG — F*
(EG — FY' 2 dudy (20)
where
E=35,5, F=25,-5, G=28,8,
L=n-5, M=n-5, N=n-5,

and n is the unit normal vector.

Figure 12 Case 4(c): cubic B-spline curve interproximation
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Table 3 Strain cncrgies and compulation times {in second) of the interproximation surfaces

Energy Uniform Centripetal Chord length
Form : :
Energy Time Energy Time Lnergy Time
(19 43.401923 289.599000 43,546302 289.950000 52.730120 288.890000
29 56.154762 1. 170000 55.125100 0.160006 66.741664 (.230000
considered too difficult to be used as a design tool, follows:

several approximation methods have been used. These
include the thin plate modet¥*

E(S) = [ [ (S 4+ 218l + 15, Jdud, (25)
J D

which is a small deflection approximation of the surface
2
curvature, the membrane model*

B(S) = J L{gs,,]z 15, 2ldudy (26)

which is a small deflection approximation of the surface
arca, and a generalized form of the thin plate model™

E(S) = [ L(é- 08 ydudy (27)

where @ is a 9 x 9 symmetric coeflicient matrix and
6 = ("\_lﬂ” ""UU? x"i’)’ .)JH'H’ J{H.’.”J’UU’ ZHH’ Z”U! ZIHJ)) \Vhere ‘x‘7 .]; and
z are the x-, y- and z-components of S(u, v). Different Os
define different energy approximation forms.

1t is of interest to evaluate these energy approximation
methods, compared with the exact encrgy form. Since the
membrane model {27) is not a good smoothing tool (it
tends to generate interpolating surfaces with visible
peaks and dips”” and the thin plate mode] (25) is a special
case of (27), it is only necessary to compare (23) with
(27). (27) can be computed as follows.

Using the representations of x{u, v), (i, v) and z(u,v)
in (21}, DELTA can be expressed as

5= (P‘\‘,P"',P:)-
W, Weo W, 0 0 0 0 0 0
0o 0 0 W, W, W, ¢ 0 0
O 0 0 0 0 0 W, W, W,

(28)

where W, W,, and 1, are the second partial
derivatives of W with respect to u and v, and 0 is a
zero vector of the same dimension as W. Hence, the
energy form (27) can be expressed as

(P
E(S) =P\ PPy M- | (P)T (29)
(P
where A is a 3 x 3 block matrix
Myy My, M,
M= | M, My, M,
My; My, Ms,

with each block being an mn x i matrix defined as
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M) = QA+ 0apda) + Quads + Q124
+ Opadas + Qsadin + Qradia+ Gozday -+ Oaadsg

My = Qqidy + Osaday + Qeadag + Quopdin + Uspdan
+ Qopdap + Quzia+ Us3das + Qazdas

My = Onidy, +Qsaday + Qo Az -+ Qrpdip + OspAas
+ Qoadsz + Ora3dia + Qsadas + Qoadas

My = Qadi) + Quadoy + Gradss + Crsdiz + Oosany
+ Ossdza + Qugdss + Cagdos + Capdss

Maa = Quady ) + @saday + Opads) + Qusdip + Qssday
+ QosAsn + Qaodia + Qsgdrs + Coedas

Mz = Qradi 1, +0sudan + Qouda + Qo5 + Ussdaz
+ Oy sdan + Qrediy + Qspdas + QosAss

My = Q174+ Quada; + Qagdyy + Qugdin + Qagday
4 ey + Qrodiz + CogAaa + Caadsn

May = Quady s + Qsyday + Qepdyy + Qugdin + Qspdan
+ QosAdsr+ Quodra + Osgdys + Qopdas

Myy = Qqqdy + Qgadan + Qonds + Qrgdi 2 + Ospday
+ QggArz + Grodiz + Oyodas + Qogdas

where Q;; is the (/,/)th entry of @ and

T

Al,l - b W+ H/m.'d”dvx
T

Wy ”/mdedT%

Ayy = ”

Ay = W, - W duduy
. IR

T
AI.Z - » H/mr : Hf,,,,dudv,
Ayy = W, Wldudu,
D

Aza = W+ I'V,E,dud'u,
D

T
» I/er - H/nud”d'“:

Agz = J W, » WEdudu,
JJn

Ay = J W, WIdudv
D

(29 is a quadratic form of its control points. Each
component of a control point is treated as a variable in
this quadratic form. Consequently, one can again use the
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Figure 15 Case (c): combination of energy form (19) and average centripetal model

flatter regions are expected. The computation times
shown in Table 3 indicate that minimizing the exact
energy form is not that terrible for surface interproxima-
tion either. '

6. SUMMARY

A study of the cubic curve interproximation process with
different energy forms and parametrization techniques is
performed. The results of the study show that the energy
form plays a much more significant role than the
parametrization technique on the shape and smoothness
of the resulting curves, and the curves generated by the
approximated energy forms tend to have flatter regions
and sharper turns than, and are far from being good
approximation to, those generated by the exact energy
form. Hence, one should avoid using approximated
energy forms in a shape optimization process where
minimization ol the curve energy is required.

An interproximation technique for bicubic B-spline
surfaces is also presented. A bicubic B-spline surface that
interproximates the given data (points or regions) and
has a relatively smooth shape is generated by minimizing
the strain energy of the surface. The exact surface
energy form and a general approximated surface encrgy
form have both been used in the energy minimization
process with three different parametrization techniques.
The test results of the surface interproximation process
show the same conclusion as the curve interproximation
process.

The ‘fairness’ functional considered in this paper is the
strain energy of a curve or surface. Several new flairness
functionals have been used recently''*®. Moreton and
Sequin’s approach®, which adds a measure on curvature
variation, produces the most impressive surfaces. The
only problem with their approach is its expensiveness.
However, with the advance of hardware and software,
this certainly could be a possible direction for surface
interproximation to look at in the future.

Figure 16 Case (d): combination of energy form (3.29) and average centripetal model
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