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SURFACE DESIGN BASED ON HERMITE SPLINE
INTERPOLATION WITH TENSION CONTROL
AND OPTIMAL TWIST VECTORS

Xuefu Wang and Fuhua (Frank) Cheng
Department of Computer Science, University of Kentucky, Lexington KY 40506-0046

ABSTRACT: A new approach to the problem of constructing a smooth surface to interpolate a
grid of data points is presented. A network of cubic Hermite spline curves which interpolate the
data points is constructed first. Tension control is allowed in the interpolation mode for these
curves. A bicubic Hermite spline surface which interpoiates thejnétwork of curves is then con-
structed. The surface is constructed by minimizing its strain energy to generate optimal twist
vectors at the data points. A new representation scheme is used for the Hermmite spline curves
and surfaces. The new representation scheme faciiitgtes the efiergy minimization process. Thi;
work aiso shows that it is not necessary to require C* patch boundaries to produce an overall C
surface. .

Keywords - Hermite spline curves/surfaces, tension, geometric/parametric continuity, twist vec-
tors, strain {elastic) energy, interpolation

- 1LINTRCDUCTION

Constructing a smooth surface to interpolate a grid of 3D. data points is one of the popular
methods in shape modeling and design.” Another popular method is constructing a smooth sur-
face to interpolate a network of curves. Both problems have been extensively studied (Bartels,
1987; Farin, 1988). '

The first approach usualty uses B-spline type surface schemes for the interpolation process.
One problem with this approach is the selection of parameter space. Several models are avail-
able (Piegl, 1991), such as the average centripetal model, the average chord length model, and
the uniform model. However, since the u knots and v knots simply can not be selected to reflect
the distribution of the data points as in the curve case (Lee, 1989), one sometime would get large
tangent vectors for data points relatively close to each other, This situation is especially severe
when the data points are unevenly distributed and, consequently, causes the rollback (or, folding)
and Owmp phenomena, For instance, a bicubic B-spline surface which interpolates a given data
set (Kigure 4) is shown in Figure 5. The u knots and v knots of this surface are defined by the
average centripetal model. This surface carries both the rollback and bump phenomena. The
tollback phenomenon, in the form of a hidden overlapping area, occurs in the patches bouaded
by curves 4, B, C, and D; one such paich is shown in Figure 6. This is because while the u
tangent vectors at the lower portions of curves 4 and B acting as shearing forces to cause oscil-
lation of the surface between these curves, the increasingly closer horizontal distance between
these curves forces the oscillation area to fail within a narrower and narrower regioa and, even-
tually, touch each other and form a banded overlapping area.
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The second approach is usuaily preferable than the first approach, in that |
designer a better control of the final shape of the surface by specifying its Cross-sectioy
beforehand. A problem with this approach is the setting of the twist vectors at the d:
(Farin, 1988). The key is to avoid the wrinkle phenomenon (Kaltay, 1990) or flar 5po
1988) associated with zero twist vectors. Several approaches for estimating the vafj,
twist vectors are available (Akima, 1978; Barnhill, 1978; Barnhill, 1988; Carmic,
Dube, 1975) (see (Farin, 1988) for a review of some of these methods). An increasingy
method is to use twist vectors that minimize some surface energy form (Cheng, 1994: F
1986; Hagen, 1987; Kallay, 1990; Moreton, 92; Szeliski, 1990). L

A capability usually required in the shape design process is shape control of fh:e:"res
surface. The shape control process should be easy to use for (non-mathematician) end_'dfeglg
Among all the possible shape parameters existing in various surface representations ¢
knots, weights, tension, bias, and curvature, only the tension effect seems to be intuitive.
1995). A shape generation process based on surface interpolation technique with the cap
of intuitive tension control at the data points appears to be the most ergonomic design; any;
ment. Several curve/surface schemes; such as Beta-spline and Gamma-spline, allow” e
controi in the design mode (Barsky, 81; Bartels, 1987; Blanc, IQQS; Boehm, 1985). But onj;
spline seems to allow this in the interpolation mode (Blanc, 1995). The problem with
curves and surfaces is that the geometric meaning of shape para?ﬂeters is not so intuitive. "

In this paper, we present a surface design process which has the characteristics of bol
face interpolation techniques mentioned above. That is, a user is allowed to design the shay
a surface by specifying 2 rectangular grid of data points for a surface interpolation: prog
However, the surface is generated by generating a network of bicubic Hermite Splinef&:_
which interpolate the data points first (see, e.g., Figure 7). The shapes of these curves. cas
edited by adjusting tension parameters at the data points. A bicubic Hermite spline su
which interpolates  this network of curves is then constructed. The shape of the surfice
smoothed by using twist vectors that minimize the strain energy of the surface.

The principal contributions of this paper are: ,
e lItpresents a new representation scheme for the Hermite spline curves and surfaces. -
» It presents a tension control technique for a cubic Hermite spline curve. The Hemm;

spline curve is g *~continuous.

# It demonstrates how the energy minimization process for a bicubic Hermite spline suriz
to construct optimal twist vectors can be performed as the process of solving a systen
linear equations. The Hermite spline surface is C '-continuous. _‘

» [t shows that it is not necessary to require C*-continuous patch boundaries to prod
overall C'-continuous piecewise surface (Farin, 198%). : o
Since the tension parameters are associated with the data points, not the control points (Bar
1981; Bartels, 1987, Boehm, 1935), an intuitive setting of the tension parameters can. :_iESu'
adopted to avoid the rollback and bump phenomena even before the network curves are d

structed. ' Details of the paper are shown in the subsequent sections.
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3 CONSTRUCTION OF NETWORK CURYVES WITH TENSION CONTROL

: vaen a grid of data points P and associated tension parameters {‘xw' [3 } where

v j=0,.,mand j=0,..,n, we wﬂl construct a network of cubic, g piecewise polynom:al

- curves CU)(u) and D(v) such that CV) = P,; for i=0,1,..,m and DY(j)= P . for

j=0,1,..,n. The tensnon parameters are used to control the shape of C¥(u) and D(')(v) A
curve. is sald to be g 2_continuous {or ¥%.continuous (Farin, 1982)) if it has comtinuous first
derivative and curvature. A piecewise polynomial curve X(¢) is g“-continuous if and only if
there exists a constant v, for each knot 1, such that the second derivative of X at ¢, satisfies the

following "jump" condmon (Farin, 1985):
Xl +) ~Xp )= v, X, (4) ' 2.1)

where *+’ and ‘- denote the right aud left limits, and X, and X, are the first and second deriva-
tives of X with respect to £. The fO“OW!ﬂ}, curve schemes Fowler—Wllsou splines (Fritsch,
1986), v-spiines (Nielson,. 1974), Mapaing’s interpolants (Manning, 1974), Barsky’s 8-splines
(Barsky, 1981), Farin’s splines (Farin,” 82), Bartels and Beatty’s j- ‘iplmes (Bartels, 1984) and
Boehm'’s y-splines (Boehm, 1985) are all g splines according to this"characterization, (2.1) was
first derived by Nielson as one of the characterization conditions, fér v-splines (Nielson, 1974).
The fact that v-splines satisfy a "jump” condition has also been pointed out by Fritsch (Fritsch.
1986).
We will show the coastruction of C‘O)(u) only; the construction of other CV )(u) and D")(u)
is similar. C%u) will be constructed as a cubic Hermite spline curve defined as follows.

Given a set of 2D (3D) points {Qy, Q,,..., Q,, } and a set of 2D (3D) tangent vectors
(T Ty, oy Ty}, @ Hermite spline curve 8(2) is defined as follows

m

()= Z B ()Q; + T A AT,

i=0 i=0
= Z he-i)Q, + Ehl(f—l)T’ , 6<t<m (2.2)
i=0 i=0
where
1-3%=20%, 15t <0
h)=11-37+2°, 0<t<] (2.3)
0, otherwise
and
- t+200 40, 151 <0
Rty=Yt -2+,  0<e<l . (24)

0, otherwise
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#; (¢) and I 5(2) are called the Hermize basis funcrions of fyve one and ppe mwo, respectivef,
They are compositions of cubic Hermire Polynomials {Farin, 1988; p.67). The shapes of a;
and b,(t) are shown in Figure 1. 8() interpolates both Q; and T, e, if 9,(/) denotes ths
derivative of 9 with respectio ¢ at i then we have both 8(i) = Q; and 0,()=T,,i=0,1,.. '
Each segment of 9(¢) is a Hermite curve segment,

By ()
' M 2(1)

: ! ; ! /\ :
il i i+l i—l\/i _ i+1

_ Figure 1. Shapes of R ((¢) and 4; (1),

C(O)(u) will be represented as a cubic Hermite spline éurve, as follows.

..

Cw)(u)x > lzi'l(’f:) Pig+ 25;';(”) P;:b . * Osusm (
© =0 i=0 7,

with P,.'fo, the derivatives of Cw)(u) at u =1, to be determined, From our experience with cubi
- Bezier curves, it is easy to see that C(o)(u) will bea C 2~¢:0ntinuous curve if P satisfy the fo
lowing conditions {Faux, 1979

43 ti H .
Pr._w 4P+ Piao= 3(Pi+1,0_ - Pt._w) s =120 om—l. )
However, instead of the aboye conditions, P;fo are required to satisfy the following conditions

Biio*da, Pl + Pl o =3P, - Piigs i=1,2.,m-1 @

The role of &, o here is for the user to control the maggitude of the tangent vector Pf‘:o and, co
sequently, the height of the curve in the vicinity of B; o (Figure 2). A Hermite spline cur
which satisfies (2.6) is gz-continuous. The following simple derivation shows that it satisfi
2.1, : :

d o N
;‘;C(m(l H)=~6P 5+ 6P, o~ 4P/~ 2P0
l .

=6P;_, 5~ 6P, 0+ 2B+ 4R + B(oy o1 P/

d d
= FC‘”’(;‘ =)+ 8oy 1) ;;c“”(i)
’ _
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Figure 2. Effect of o, , when o, > 1.
The s —1 tangent vectors {“TPg-:Q] i=1,.,m=1} of C%u) can be found by solving (2.6)
with appropriate boundary conditions. Three boundary conditions are possible: given tangent

vectors at the endpoints, modified ngﬁzml boundary condition, and sthoothly joined closed curve,
For exampie, in the second case, one may use the following exiyg toaditions to solve (2.6) for

the tangent vectors, 4
(4o ) Poo+ Pl ==3Py o +3P,0; P o+ (L+ay, Py 0=3P, 55 +3P,, 27

These conditions aiso allow Py, and P, , to be shortened or lengthened by adjusting the values
of ag g and o, o
It can be shown that

lim P}y=0 238)
Oy gm0

Hence, when the tension parameters a; 9 and oy, o tend to infinity, the tangent vectors Py and
P 1,0 are forced to converge to 0 and, consequently, the curve. segment 8, (¢} is pulled towards
the line segment P, oP;.10- The proof of (2.8) is shown in the Appendix. Note that the reason
one can manipulate the smoothness of C(O)(u) is because that hy; 1(t) and &, (1) are not c*
continuous,

3. CONSTRUCTION OF INTERPOLATING SURFACE
WITH OPTIMAL TWIST VECTORS

In this section we will construct a C _]-continuous piecewise surface to interpolate the network
curves constructed in Section 2. The surface, denoted S(u,v), is a bicubic Hermite spline sur-
face with parameter space [0, m Ix{0, n].. S(u,v) interpolates the network curves CV(x) and
- ¢ )('#) at the iso%aramen'ic curves S(u,/) and 8(i ,v), i.e., for each fixed f, f =0, 1, ..., n, S(u J)

coincides with C"(u ) and for each fixed i, i =0, 1, ..., m, S(i,v) coincides with DO(v). S(u.v )
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has optimal twist vectors at the interpoiation points P;. The optimal twist vectors are genery

by minimizing the energy of the surface and, bence, guarantee the smoothness of the surfy;

The definition of a bicubic Hermite Spline surface and the construction of 8(u,v) are sh

. below. Techniques on piecewise Hermite surface interpolation can be found in (Farin, 1988)
Given a set of 3D data points Q, » and » tangent vectors U, 4+ v tangent vectors V, i

twist vectors T, ; at these points, i =0, 1,..,m, j =0, 1, ..., 1, a bicubic Hermite spline suy

B(u, v) is defined as follows '

O, v)=3 T Ay ()h, ,(v)Q, ¢ ¥ 2 T Ak ), ;

i=0 j=0 i=0 f=0
m n M a
+ Z Z }lj,l(u)hj,z(V)vl-J + Z E hig{“)hJJ(V)TIJ ] (
i=0 ;b i=) j=0 :

e

0zu<m, 0sv<n

where Iy () and Ay o(°) are Hermite basis functions of type one.and type two, &(u,v) intefp
lates Q; ;, U; ;, ¥, ; and T, , ie,, T 0, ©,, and ©,, denotéPthe partial derivatives of R
respect 0 # and v then we have 8(ij) =Q; Q;{i,j)=U,J, 0,0,j)= Vi, a
O, J)=T,; fori =0,1,..,m andj =0, 1,.., n. Each patch of ®(u,v) is a bicubic Herm;
surface patch. A bicubic Hermite spline surface is at least C ".continuous in both % an
parameters, ' _

The surface 8(u,v) to be constructed will be represented as a bicubic Hermite spline g
face, as follows. B

n n m nr
Swv)=3 T Ay (u P+ T T A 200 (V)P
i=0 j=0 i=0 j=0 .
m n : mn _ﬂ .
+¥y 3 h!,l(u)hj,z(")PiJ +T ¥ hr.‘z(u )hj!z(v)Piu;
i=0 j=0 i20 j=0 '
with B,7, the twist vectors of S(u,v) at (u, v) = (i, J), to be determined, P/ and P/, the

tial derivatives of S(u,v) with respect tow and v at (u, v)= (i, f), are known from Section
i easy to see that the S(u, v) defived in (3.2) interpolates all the network curves CU)(u):
DY) constructed in Section 2. _

We will chocse twist vectors that minimize the strain energy of the surface, defined as fol
lows. : '

E@) =[[(}+<Hdo Y
$ . :

where «, and «, are the principal curvatures of the surface and dg is the surface area measue:
This is a standard- approach for surface smoothing in engineering (Kallay, 1990; Nowa
1982). Using the following equation: _ : _
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w? + xj = 2H -2

where H is the mean curvature and « is the Gaussian curvature, one can get the energy fom: in
“terms of the first and the second surface derivatives as follows.

LG-2MF+NE _, - -M*
EG-F* EG-F*

E(S)= jj [ TIEG— Fz)wdudv (3.4

where

E=8,8, F=35 G(G=8§.8§,
L=a8, M=nS, N=n§,

and @ is the unit normal vector, _
Since direct evaluation of (3.4} is a complicated process, severai approximation methods
have been used. These include the following simplified energy férm of Hagen and Schulze

(Hagen, 1987), 4
1262 2,72 2
E@®)={[1 =g +'EN + wm]dudv BN EE)
» EG? (EGY? (EG)

the thin plate model (Cheng, 1994; Quak, 1989, Quak 1990} which is a small deflection approx-
imation of the surface curvature, .

E(S) = [ 1S, + 28,1 +18,,I) dudv, (3.6)
D .
the membrane model (Szeliski, 1990) which is a small deflection approximation of the surface
area, .
E(S) =[] (5.If +I8,IF) duav 3.7
. .
and a generalized form of the thin plate model (Kailay, 1990)
E(S)=[f a0-AT) dudv (3.8)
D

where Q is a 9x9 symmetric, positive-definite coef‘ﬁc:ent matrix, A is a vector of second partial
derivatives of § deﬁued as follows

T ¥ Yo Z zZ,) 39

(rm' uv' uut Cuv? ute ? IW’

with X, ¥ and Z being the x-, y- and z- components of $(z,v), and AT isthe transpose of A.
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flagen and Schulze’s energy form is the result of assuming that $, and 8, are orthogg
(F =8,-8, =0). This assumption might not hold sometime. The membrane model ig
good smoothing tool due to the fact that it tends to generate interpolating surfaces with i
peaks and dips (Szeliski, 1990). Kallay and Ravani’s model (3.8) seems to be a good chg
that it not just covers the thin plate model as a special case, but also provides the user wiy;
capability of setting up an appropriate energy approximation form for a specific applicatiy;
adjusting the entries of the matrix Q. We will use this model in the minimization process*

For each (i, 7) in {(1, 1),(1,2), (2, 1), 2, 2)}, tet A% pe 2 vector of (m+1)(n+1)
ponents defined as follows.

' R (o (v)
r -

ho(u Y j (V)
AGD ' 4

hm 4 (u )h 0. (V )

“ ) J
hm,t-(u)hw(v)

where A, (u) and &, 4{v) are Hermite basis functions of type / and J. Then S{u,v) cap
expressed as follows :

8@, vy =PAND L P ARD 4 prAUD L p s 0D

where

? B (?0!0, PO,J.’ ey PO,JT Py Pl.l)- Pl,l’ ey ?I,ﬂ’ ery ?mgo, ?m,l’ saey ?m’”)
PY = (Pog Poss s P B PEL L PE L, P,oP

u u
on’ PR ERM Pm'”)

i v v ¥ v v v v v v
P =(PO.0' ?0'1, ey Pﬂ,n’ Pi.ﬂ’ Pl,l’ reay Pl,’!""’ ?m_'n, Pm,l’ reng Pm.n)
uv uv gty U UV v uv uy v uv
P = Rop P Pops Proy Prl e Pi s B BV L P Y

For these vectors, let X, X*, X, and X* be their x -components, ¥, ¥*, Y*, and Y* be i

**  Qther criterion, such as minimal curvature variaticn (Moreton, 1992),

has been used in the minimizationj
cess as well. However, this i3 not our concem here,
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- eomponents, ard Z, Z°, Z', and Z* e their z-componeats. Furthermore, for each (7 ,/) in
' '(I 1), (1.2, &1, 22 define 2 3(m +1)(n-+1)9 marix W, ; as follows

o

| AINDAED Q6D 9 9 0 0 0 0
=10 0 0 AALPAY) ¢ 0 0
iJ ; uu w w

0 0 0 0 0 0 Alfi-f)AﬁJ)AgJ)

where A,f:‘n ) A,ff,”, and Av(,",_”') are the second partial derivatives of the vector A% defined in
(3.10), and 0 is a zero matrix of dimension (m+1)(n+1)x1. Then A defined in (3.9) can be
expressed in the following form.

A=CGY, Ty W+ (XY, T Wy + (0L Y 20y W, + (00, Y, 2y 0,

Consequently, _
AQAT =5+ 2K, Y, Ty, + (X, ¥4, 24y, 4K, Y 2V )
A '
(XNV)T | (xuv)
'Q-(WI,Z)T‘ (yuv)'l" + (xuv, Yuv’  d ¥ Wz‘z'Q'{Wz,z)T' (Yuv )T (3. 12)
(Zuv )T | . (Zm( )T

where § is the sum of six terms independent of P, Therefore, by substituting (3.12) into {3.8)

we have
ffa Q8 ydudv =c +287-G+G"4-G , (3.1'3)
1) .
for some constant ¢ with
G =X, Y™, 2"), A ={[(Wy0-W; ) dudv (3.14)
and ’
B=(X,Y, Z)v{ﬂ(Wl’l-Q-(Wu)T)_dudv] ' (3.15)
D _
XY 2y Q-(W ) udv]
D

- XY 2 Q- ) dedudv].
’ D

To minimize (3.13), it is sufficient to minimize
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fG)=87G+ -é-Gr-A G.

(3.16) can be minimized using quadratic programming method. However, note that (3. 13;
concave-up eiliptic paraboloid, its minimum always exists. Hence by setting the derivatj
(3.13) with respect to G to zero, we have :

A-G+B=0 ¢

a system of 3(m +1)(n-+1) linear equations in 3¢m +1)(n+1) vanabies with 4 being a symm
positive-definite matrix, Therefore, the minimum of (3.13) exists when

G=-4"'B. ¢

T

4. IMPLEMENTATION AND RESULTS

The new approach has been implemented on the followinggplatform: HPUX level 9. 05 (
Hewlett Packard HP 735 machine using an IBM RISC System/6000 machine a5 the display:
ice. The optimization process is performed by using the "o Fadf Subrounne of the N4 G For,
Library (NAG, 1993) to compute the LU factorization of the matrix -4~ in (3.18), and:
using the "f07aef" subroutine to solve the system of linear equations (3. 18) Several test ¢
are shown in Figures 8 - 15, :

Figure 3, Three adjacent data points.

The rollback and bump phenomena can be removed by adjusting the tension parameters
the regions where they occur, or one can avoid these problems by appropriately setting the:
sion parameters beforehand. In the second case, the tension parameters for each data point m
reflect the distribution of adjacent data points. For instance, to set the teasion parameter &
the point & in Figure 3, we can either set o following the chord length model:

_ max(J4 - B|}, B - C|))
min([ | ~ B[, }B - C|})

or the centripetal model (Lee, 1989):

12
_[mas(it - 8111 - |

min({{d - B|\, 1B - C[|)
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fﬁése‘ models are special cases of the following general form:

“{m(m -8|.jp -]’
i ~ .16 ~Cl)

. ~where B is. positive. However, according 10 our test results, p = 1/2 (i.e., the centripetal model)

gives the best results in the sense that this B value always generates the smallest strain energy.
In figure 8, a bicubic Hermite surface which interpolates the same data set (Figure 4) using our
technique is shown. The tension parameters are set using the centripetal model (B = 1/2) and the
swist ‘vectors are optimized. The patch corresponding to the one shown in Figure 6 is shown in
Figure 9. Note that the rollback problem does not exist here. : )
Figure 10 through Figure 13 are examples of tension control, In Figure 10, all the tension
parameters, in both x and v diréctions, are set to 10.. In figure 11, all the » direction tension
parameters are 10-but v direction tension parameters are set by the centripetal model. Figure 12
is the opposite, i.e, all the v direction tension parameters are 10 but 4 direction tension parame-

" ters are set by the centripetal model. _"Injigure 13, all the tension g'arameters are set by the cen-

tripetal model but the tension parameters at dafa points 4 and B, where the tension parameters
are set to 10. Twist vectors in all these cases are optimized,  , ¥

In Figure 14 the Gaussian curvature distribution of the patch identified in Figure 8 but with
zero iwist vectors is shown. The Gaussian curvature distribution of the patch with optiniized
twist vectors i3 shown Figure 13, Note that in Figure 15, the curvature is distributed more uni-
formly on the left half of the patch than Figure 14. The upper right portion of Figure 15, how-
ever, is only slightly better than that of Figure 15. This is because the twist force needed for the

. patch to change its direction from perpendicular to the xz plane to be parallel to the .z plane is

especially large at the upper right corner of the patch which, consequently, makes the effect of

- the optimization process not 5o obvious there.

5. SUMMARY AND FUTURE WORXK

. We have described a new approach to the surface interpolation problem. The new approach con-

sists of two steps: (1) constructing a rectangular network of 32 cubic Hermite spline curves with
tension control to interpolate the data points, and (2) construeting 2 C ! bicubic Hermite spline

- .surface with. optimnal twist vectors to interpolate the network of curves. The cubic Hermite

spline curves and bicubic Hermite spline surface are represented in new forms. Tension control
of the Hermite spline curves is achieved through the intreduction of a parameter so control the
magnitude of each tangent vector. The optimal twist vectors are generated by minimizing the
strain energy-of the surface.

The new representation schemes of the Hermite spline curves and surface have proven
effective in tension control and energy minimization; they makes the tension control process
natural and the e¢nergy computation process simpler. 7

Our method provides a user with easy control on the shape of the interpolating surface, and
the smoothness of the interpolating surface is automatically guaranteed. Cur work also proves
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that it is not necessary to require C2 patch boundaries to produce an overal} ¢! surfaé
claimed by Farin (Farin, 1988; p 227). Note that, although it was proven by Nielson that g{;@z
and C? are equivalent for piecewise polynomial curves (Mielson, 1986), these concepts ar
equivalent for piecewise polynomial surfaces.

A number of areas of future research remain, including: (1) investigate implementatiog
parallel architectures, (2) study the possibility of geuerating network curves of more gen,
topological type, and (3) extend the current surface- generation technique to more general
work curves such as etwork curves of arbitrary topological type. S
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APPENDIX

We prove (2.8) for the second boundary condition: modified natural boundary conditioé'
‘proof for the other two boundary conditions can be proved similarly. The proof of (2 i
involves the solution process of P/ o

From (2.6) and (2.7), we get a system of equations A = P where

(g 1
1= 4{11}0 I
= 4
4= 5 :
1 4, 4o L
- 1 (e,
Q=[P30’ ftov - mﬂ] and P= [3(P20“P00) 3@y Py o) 3Ry 5Py o) o IR, B :

3R, 0P 200 3By 5~Ppa)l Matrix 4 is diagonally dominant and positive deﬁmt
oo > 0 @, o> 0and oy o> 12 for i =1,2,...,m—1. To solve this system for P/, one:

reduces A Q = P into an upper triangular system z_i Q =V with

1 Wq .

1
I

and¥V=[V, V..V, .V, } where
| [wo= Ul+agy) o
- _ @A
W, = 1/(40‘:',0_"”:'-1)’ i=1,2,..,m

T TR TR bt g e 4 o e U e
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{Vo =3w,(P50Po0)

o V=B R~ VoW, i=1L2,m -
oﬂé then solves 4 Q =V backward as follows.
? ; 0 = Vm
(A3)

Plo=V,+wPlg, i=m-1,.,0

When ¢; 4 tends to infinity, w, and V¥, tend to zero (see (A.1} and (A.2)) and, consequently P
tends to zero (see (A.3)). X LYo

lan
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Figure 12, v tension control

Figure 14. Curvature distribatior 1. Figure 15. Curvature distribution IL.




