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Abstract

Subdivision surfaces are powerful tools for graph-
ical modeling and animation because of their scal-
ability, numerical stability, simplicity in coding
and, especially, their ability to represent complex
shape of arbitrary topology.

The Doo-Sabin and Catmull-Clark surfaces are
two popular subdivision surfaces used in graphics
community. They are constructed by generalizing
the idea of obtaining uniform biquadratic and uni-
form bicubic B-spline patches from a rectangular
mesh, respectively.

In this paper, we make clear the relationship
between the Doo-Sabin and Catmull-Clark sur-
faces and show how to convert the Doo-Sabin
to Catmull-Clark surfaces by elevating the de-
gree of the original surface by one. Based on our
method, the rectangular faces of the usual uni-
form Doo-Sabin surface are exactly converted to
those of a non-uniform Catmull-Clark surface: one
of the NURSS(non-unifrom recursive subdivision
surface) and the other faces are approximately
done to those of it.

Keywords: Doo-Sabin  subdivision surface,
Catmull-Clark subdivision surface, NURSS(Non-
uniform Recursive subdivision surface), Degree
elevation.

1 Introduction

Subdivision surfaces are powerful tools for graph-
ical modeling and animation because of their scal-

ability, numerical stability, simplicity in coding
and, especially, their ability to represent complex
shape of arbitrary topology.

The Doo-Sabin and Catmull-Clark surfaces are
two popular subdivision surfaces used in graphics
community. They are constructed by generalizing
the idea of obtaining uniform biquadratic and uni-
form bicubic B-spline patches from a rectangular
mesh, respectively.

In this paper, we make clear the relationship
between the Doo-Sabin and Catmull-Clark sur-
faces and show how to convert the Doo-Sabin to
Catmull-Clark surfaces by elevating the degree of
the original surface by one. In fact, the usual
uniform Doo-Sabin surface is approximately con-
verted to a non-uniform Catmull-Clark surface:
one of the NURSS(non-unifrom recursive subdi-
vision surface).

2 Doo-Sabin and Catmull-Clark
Subdivisions

In this section we will review the Doo-Sabin and
Catmull-Clark surfaces as well as the Chaikin’s
algorithm and the B-spline subdivision curves that
triggered the developments of the two surfaces.

2.1 Chaikin’s algorithm

Chaikin’s algorithm [2] generates a quadratic B-
spline curve from a polygon by successively cut-
ting its corners. Each subdivision generates two
new points on each polygon leg at (1/4,3/4). For
a polygon with n + 1 vertices p!, i = 0,...,n at



the subdivision depth j, two new points defined

as follows are inserted into the polygon leg pipi_
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2.2 B-spline Subdivision

B-spline subdivision is a generalization of
Chaikin’s algorithm and it obeys a refinement
equation [11]. The refinement equation for B-

splines of degree [ is given by
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Quadratic B-spline subdivision is identical to
Chaikin’s algorithm and cubic B-spline subdivi-
sion is given by
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2.3 Doo-Sabin surface

Doo and Sabin [4] extended Chaikin’s idea for
curves to generate surfaces. A surfaces is gener-
ated from a polyhedral network by successively
cutting off its corners and edges. An algorithm
may be given as follows [9]:

1. For every vertex Vij of the polyhedron P7, a
new vertex VZ»]-H7 called an image, is gener-

ated on each face adjacent to V7.

2. For each face Fij of P7, a new face, called
an F-face, is constructed by connecting the
images vertices VZ»H'1 generated in Step 1.

3. For each edge I common to two faces F,ﬁ
and F}, a new 4-sided face, called an E-face,

is constructed by connecting the images of the
end vertices of £ on the faces F} and FIJ-H.

4. For each vertex Vf, where n faces meet, a new
face, called a V-face, is constructed by con-
necting the images of V. on the faces meeting
at V7.

An image vertex VZ»H'1 generated in Step 1 depends
only on the vertices of P’ and is given by

n—1
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where ij are vertices of the old faces and a;; are
coefficients defined as follows:

a;p = n—|—57 for i =k,
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2.4 Catmull-Clark surface

The Catmull-Clark subdivision method [1] is sim-
ilar to the Doo-Sabin method, but is based on the
tensor product bicubic splines. It produces sur-
faces that are C? everywhere except at extraordi-
nary vertices, where they are C'1.

The rules of the subdivision for a n-sided face
are as follows[1]:

1. New face points are calculated as the average
of all of the old points defining the face.

2. New edge points are obtained as the average
of all of the midpoints of the old edge with
the average of the two new face points.

3. New vertex points are given by the average:
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where () is the average of the new face points
of all faces adjacent to the old vertex point.
R is the average of the midpoints of all old
edges incident on the old vertex point and S
is the old vertex point.

After these points have been computed, new edges
are formed by

1. connecting each new face point to the new
edge points of the edges defining the old faces.

2. connecting each new vertex point to the new
edge points of all old edges incident on the
old vertex point.

New faces are then defined as those enclosed by
new edges.



3 Conversion from quadratic to
cubic subdivision curves

In the previous section, we have mentioned that
the Doo-Sabin and Catmull-Clark surfaces are
based on the tensor product biquadratic and bicu-
bic splines, respectively. In this section, before we
discuss how to convert the Doo-Sabin to Catmull-
Clark surfaces, we will argue how to convert a
quadratic to cubic subdivision curves. The conver-
sion process is usually called as the degree eleva-
tion. The conversion process from the Doo-Sabin
to Catmull-Clark surfaces can be regarded as the
extension of the curve conversion to the surface.
Therefore it can be said to be a kind of the degree
elevation.

3.1 Degree elevation

The degree elevation of a B-spline curve is shown
here. We follow the notations of Piegl and Tiller
[10] in this work.

Let C, = ", N;p(u)P; be an end point in-
terpolating (nonperiodic) degree p B-spline curve
with respect to the knot vector U. To elevate its
degree to p + 1, one needs to construct a knot
vector U/ and control points Q; so that

Cp(v) = Cpia(u) = Z Nipt1(w)Qi- (9)

Assume U has the following form:

U = {u07"'7um}
= {a7"'7a7u17"'7u17"'7
us7"'7u57b7"'7b} (10)

where the multiplicities of the interior knots are
my, -+, Mg, respectively. At a knot of multiplic-
ity m;, Cp(u) is CP~™ continuous and Cpiq(u)
must have the same degree of continuity there.
Therefore, n = n 4+ s+ 1 and

~

U = {uo,--- ,up}
= {a7"'7a7u17"'7u17"'7
us7"'7u57b7"'7b} (11)

where m = m+s+2. The control points Q; of the
degree-elevated curve Cppq(u) are determined by

solving the following system of linear equations:

D Nip1(u)Q; =D Nip(u;) Py,
1=0 1=0

j:07"'7ﬁ7 (12)
where u; are 7t + 1 appropriate parameter values.
The degree elevation of a NURBS curve can be
done similarly and there are more efficient meth-
ods to calculate @, [10].

In case of a periodic curve, if the knot vector U
is {wo, w1, ,Upy}, then U is given by

~

U:{uhuh"' 7um—17um—1}- (13)
For example, the closed quadratic B-spline curve
constructed from the triangular control polygon
in Figure 1(a) consists of three segments and its

knot vector U is as follows:

1 12 45

2
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The knot vector U and the control points Q; of
the degree elevated cubic B-spline curve are given

1 1 112 2 4 4
U={--,-2,0,0,-,-,2,21,1,=,=}, (15
{ 37 37 b 737373737 b 7373}7 ( )
and
5 1
= ZPi+-Pi,
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for ¢ = 0,---,3. The original quadratic B-spline
curve and the degree elevated curve can be re-
garded as a uniform and a non-uniform B-spline
subdivision curve, respectively. The knot intervals
of the degree elevated curve are shown in Figure

1(d).

3.2 Degree elevation of subdivision

curves

Chaikin’s algorithm [2] generates a quadratic B-
spline curve from a control polygon through recur-
sive subdivision. Each subdivision step generates
two new points on each polygon leg. If there are
n + 1 vertices p!, i = 0,...,n, after the j-th re-
cursive subdivision, then the two new points gen-
erated for the polygon leg p]pf_l_1 are defined as

7



follows:
, 3 . 1 .
+H_
Py = Pt IPi (17)
, 1 . 3 .
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The subdivision curve generated by Chaikin’s
algorithm is a quadratic B-spline curve.
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Figure 1: Quadratic and cubic B-spline subdivi-
sion curves.

The conversion of the control polygon of a
quadratic B-spline curve to that of a non-uniform
cubic B-spline curve is accomplished by generating
two new points defined as follows for each polygon

leg PiPiy1s

5 1

qy = 6P¢+6Pi+17 (19)
1 5

9241 = gpi‘i‘gpi-uv (20)

in a manner similar to Chaikin’s algorithm. The
converted control polygon is the control polygon
of a non-uniform cubic B-spline subdivision curve
proposed by Sederberg et al. [12]. For a peri-
odic cubic B-spline curve, there is an one-to-one
correspondence between the edges of the control
polygon and the segments of the curve. Following
the same notation of [12], a knot interval between
two consecutive knots is assigned to each control
edge of the converted curve, as shown in 1(b).
Note that for a periodic quadratic B-spline
curve, there is an one-to-one correspondence be-
tween the vertices of the control polygon and the
segments of the curve. However, for a periodic lin-
ear B-spline curve the correspondence is between
the edges of the control polygon and the segments.

The triangle in yellow in Figure 1(a) is a control
polygon of a quadratic B-spline subdivision curve
and the hexagon in pink in the same figure is that
of a non-uniform cubic B-spline subdivision curve.
The triangle is overlaped by the hexagon and some
parts of the triangle is not visible. These control
polygons generate an identical curve draw in blue.
The knot intervals for the non-uniform cubic curve
are shown in Figure 1(b).

4 Conversion from the Doo-
Sabin to Catmull-Clark subdi-
vision surfaces

The approximate conversion from a Doo-Sabin
subdivision surface to a non-uniform Catmull-
Clark subdivision surface can be performed topo-
logically in the same way as the Doo-Sabin sub-
division, but geometrically they are different and
different subdivision coefficients are used for the
conversion process. We apply to the Doo-Sabin
surface a linear B-spline function whose parameter
domain is identical to that of the original surface.
For a regular mesh, as the one shown in Fig-
ure 3(a), the conversion may be regarded as a de-
gree elevation of a uniform biquadratic surface to
a non-uniform bicubic B-spline surface. In the fig-
ure, the green lines are patch boundaries of the
quadratic B-spline surface. The yellow and red
lines are those of the non-uniform cubic B-spline
surface whose knot intervals are 1 and 0, respec-
tively. The new control points F, is given by

25 5 1
F, = —A+—B+C —D
36 +36( + )+36
V +2A B+C-A-D
Wt24)  BrCA-D o

where V.= (A4 B+ C + D)/4.

The n-sided faces where n # 4 remain n-sided
after the conversion in a manner identical to the
Doo-Sabin subdivision. In Figure 3(b), the new
vertex P; is calculated by

_ 4 1

P, = (-+
R 21|i —
o 4+¥¢’(5+4COS(T))PJ~. (22)
J=L0F

The yellow and red lines are boundaries of the non-
uniform cubic B-spline surface whose knot inter-



vals are 1 and 0, respectively, as the regular mesh
case.
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Figure 2: The conversion process.

For a regular mesh, the above conversion is
exact in the sense that a Doo-Sabin subdivi-
sion surface is exactly converted to a non-uniform
Catmull-Clark subdivision surface.
an irregular mesh, the conversion is approximate.
For example, the point Py of the Doo-Sabin con-
trol mesh in Figure 3(c) will converge to Pg’

However, for

9
—P
16 0+8(

P, + Ps + Pg).

Py = P, + Py + P3)

o (23)

The corresponding point QF° of the converted

Catmull-Clark surface is given by

629 293
o — 22 p L p P, +P
Qo 1152 0+172( 1+ Pat Py
77

+——(P4+ P5+ Pyg).

24
3456 (24)
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P,

Figure 3: Conversion error.

The difference of these two points is

-QF =
—0.00145( Py + P5 + Pg).

This is small enough for practical CG applications
where extremely high degree is not the primary
concern. The primary concern is the deformation
process.

5 Conversion examples

Figure 4(c) shows a typical Doo-Sabin surface de-
fined by the control mesh shown in 4(a). The con-
trol mesh is converted to the control mesh of a
non-uniform Catmull-Clark surface in 4(b) where
1 is assigned as the knot interval to each edge
in yellow color and 0 to each edge in red. Fig-
ure 4(d) shows a converted non-uniform Catmull-
Clark surface

Figure 4(g) shows another example of the Doo-
Sabin subdivision surface and its control mesh is
shown in 4(e). The control mesh of the converted
non-uniform Catmull-Clark surface and itself are
shown in 4(f) and (g).

6 Conclusions

We have discussed the relationship between the
Doo-Sabin and Catmull-Clark surfaces and have
shown how to convert the Doo-Sabin to Catmull-
Clark surfaces by elevating the degree of the orig-
inal surface by one. In our method, the usual
uniform Doo-Sabin surface can be approximately
converted to a special type of the NURSS: a non-

uniform Catmull-Clark surface.

0.0165Pg — 0.00405( Py + Py + Ps)
(25)



(a) Original control (b) Converted con-
mesh. trol mesh.

(¢) Doo-Sabin sur- (d) Non-uniform
face (depth=3). Catmull-Clark
surface (depth=3).

(e) Original control

mesh. (f) Converted mesh.

(g) Doo-Sabin sur- (h) Non-uniform
face (depth=3). Catmull-Clark
surface (depth=3).

Figure 4: Examples of converted surfaces.
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