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Abstract

A new method to scale a trimmed NURBS surface while holding the shape and size of speci®c features (trimming curves) unchanged is

presented. The new method is ®x-and-stretch based: the new surface is formed by ®xing selected regions of the given trimmed NURBS

surface that contain the trimming curves and stretching the remaining part of the surface to reach certain boundary conditions. The stretching

process is performed using an optimization process to ensure that the resulting surface re¯ects the shape and curvature distribution of the

scaled version of the given surface. The resulting surface maintains a NURBS representation and, hence, is compatible with most of the

current data-exchange standards. The new approach is more robust than a previous, attach-and-deform based approach (Zhang P, Zhang C,

Cheng F. Constrained shape scaling of trimmed NURBS surfaces. In: Proceedings of the 1999 ASME Design Theory and Methodology

Conference. Las Vegas, Nevada, 1999) in that it can tolerate scaling factors of bigger values (up to 2 in some cases). The new approach also

guarantees that the features remain exactly the same after scaling. Test results on several car parts with trimming curves and comparison with

the previous approach are included. The quality of the resulting surfaces is examined using the highlight line model. The presented technique

is important for integrating standard parts into a sculptured product. q 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Constrained scaling; Subdivision; Constrained deformation; Optimization; Highlight lines; Constrained stretching; Trimming curves; NURBS

surfaces; Strain energy

1. Introduction

A surface design problem of special urgency to the design

community is the lack of constrained shape modi®cation

capabilities, i.e. lack of tools/techniques that are capable

of holding signi®cant features of a model unchanged

while globally or locally altering it. The altering process

may involve scaling and/or deformation. Addressing and

solving this problem would provide the design industry

with the capability of globally or locally modifying an exist-

ing model in length, height, or width without affecting

certain signi®cant features and, consequently, avoiding an

expensive redesign process.

Using scaling as an altering technique is common in

design. The problem of constrained shape scaling (i.e.

scaling a model with some features ®xed), however, has

not been seriously addressed in the literature yet. The only

known result is an attach-and-deform based approach

presented recently [3]. The new surface is formed by

scaling the given surface according to the scaling require-

ment ®rst, and then attaching the original features to the

scaled NURBS surface at appropriate locations. The attach-

ing process requires a minor deformation of the scaled

surface through an optimization process to ensure complete

attachment.

Another commonly used altering technique is defor-

mation. The free-form deformation (FFD) method for

surface design has been studied in several approaches.

The spatial deformation approach operates on the space

inside which the deformed objects are embedded. This

approach is independent of the representation of the surface.

Most works in this approach use a trivariate parametric

volume. Deformation is performed by manipulating the

control points of the trivariate volumes [4,5,10,12±16,20].

The physics-based deformation approach uses physical

simulation to obtain realistic shapes and motions. This

approach introduces a time variable into the surface repre-

sentation to form a dynamic model. The behavior of the

model is controlled by the physical laws, such as physical

properties of mass distribution, tension, rigidity, damping

and action of applied forces. The resulting surface is deter-

mined by the equilibrium state of the dynamic model

[6,18,22±24]. This method is mainly used in computer
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animation and focuses on the process of transforming physi-

cal forces into changes of the dynamic model.

Constrained deformation (i.e. deforming a model while

holding certain features of the model unchanged) was ®rst

studied by Celniker and Welch [7]. The purpose was to

provide a modeling technique that separates the surface

representation from the surface modeling operators. The

user controls the surface by requiring the surface to preserve

a set of geometric constraints while sculpturing it. The shape

of the surface is faired by minimizing a global energy func-

tion. This technique has also been used in direct surface

shape manipulation [26]. However, most of the time, it is

used in surface interpolation and lofting, where a surface is

designed to interpolate a curve net or scattered discrete

points. The optimization process used in [3] is similar to

Celniker and Welch's approach.

In this paper, we will present a new approach to the

constrained shape scaling problem. The new approach is

®x-and-stretch based: the new surface is formed by ®xing

selected regions of the given trimmed NURBS surface that

contain the trimming curves and stretching the remaining

part of the surface to reach certain boundary conditions. The

stretching process is performed using an optimization

process that leads to a system of linear equations. The

new approach is more robust than the attach-and-deform

based approach [3] in that: (1) it tolerates scaling factors

of bigger values (up to 2 in some cases); and (2) it guaran-

tees that the features remain exactly the same after scaling.

The remaining part of the paper is arranged as follows. A

formal description of the problem is given in Section 2. The

basic idea of the proposed method is presented in Section 3.

Techniques needed in constructing the new surface are

described in Sections 4±7. Test results of the proposed

method and comparison of the new approach with the

previous approach are shown in Section 8. Concluding

remarks are given in Section 9.

2. Problem formulation

The problem of constrained surface scaling can be

described as follows: given a NURBS surface S(u,v) and a

set of features Ci in the domain of the surface, construct a

new surface �S�u; v� whose representation is a scaled version

of the given surface S(u,v) but carries all the original

features S+Ci:

More speci®cally, let S(u,v) be a NURBS surface of

degree p in the u direction and degree q in the v direction

S�u; v� �

Xm
i�0

Xn

j�0

wi; jQi; jNi;p�u�N j;q�v�
Xm
i�0

Xn

j�0

wi; jNi;p�u�Nj;q�v�

�u; v� [ �0; 1� £ �0; 1�

�1�

where Qi, j are the 3D control points, Ni,p(u) and Nj,q(v) are B-

spline basis functions of degree p and q, respectively, and

wi,j are weights. Ni,p(u) and Nj,q(v) are de®ned with respect to

the knot vectors t � {t0; t1;¼; tm1p11}; and s �
{s0;s1;¼;sn1q11}; respectively, with t0 � ¼ � tp �
s0 � ¼ � sq � 0 and tm11 � ¼ � tm1p11 � sn11 �
¼ � sn1q11 � 1: The features to be held unchanged are

closed trimming curves S+Ci�t�; i � 1; 2;¼; r; where

Ci�t� � �ui�t�; vi�t�� are closed parametric curves de®ned

in the domain of S with S+Ci > S+Cj � B if i ± j: All

the trimming curves are inside the NURBS surface,

they do not intersect the boundary of the surface. If

the scaling factors in the x, y and z directions are Sx,

Sy and Sz, respectively, then the new surface �S�u; v� is

required to be as close to Ts+S as possible, where Ts+S is

the scaled NURBS surface with Ts being a scaling

matrix de®ned as follows:

Ts �
Sx 0 0

0 Sy 0

0 0 Sz

2664
3775 �2�

The requirement that the new surface carries all the origi-

nal features S+Ci means that S+Ci are also trimming curves

of the new surface subject to some translation and rotation.

In industrial applications, a trimming curve of a free-form

surface is usually represented as a linear polygon in the

domain of the surface with vertices of the polygon being

points of the curve. We follow the same approach in this

work.

3. Basic idea

The main idea of this approach is to ®x some selected

regions of the given NURBS surface that contain the trim-

ming curves while stretching the remaining part of the

surface until a certain boundary condition is reached. The

regions that need to be ®xed during the stretching process

have to be transformed to appropriate locations ®rst.

The stretching process ensures that the shape and curva-

ture distribution of the the resulting surface �S�u; v� are as

close as possible to those of the scaled version of the given

trimmed surface, Ts+S�u; v�; while carrying all the original

features S+Ci: This is achieved by minimizing a shape-

preserving objective function constructed based on the

difference of these two surfaces. The resulting surface
�S�u; v� is again a NURBS surface and it maintains the

same boundary continuity condition with adjacent surfaces.

The main steps of our approach are shown below. The last

step is for the user to visually examine the quality of the

resulting surface using a highlight line model.

1. Subdividing surface S(u,v);

2. Relocating control points;

3. Setting up shape-preserving objective function;
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4. Performing constrained surface stretching;

5. Rendering.

Details of the above steps are given in the subsequent

sections.

4. Subdivision of S(u,v)

This step recursively subdivides the surface S(u,v) until

two conditions are satis®ed. We need to de®ne three terms

®rst.

Given a trimmed NURBS surface S(u,v), the u-extent of a

trimming curve Ci(t) is the smallest interval in the u para-

meter space that contains the u components of the trimming

curve Ci(t). The v-extent of a trimming curve Ci(t) can be

de®ned similarly. The envelop of a trimming curve Ci(t) is

the smallest union of domain patches in the parameter space

of the trimmed NURBS surface that contains the trimming

curve. The set of control points needed to de®ne the image

of a trimming curve's envelop is called a control envelop.

Fig. 1 shows the envelops of two trimming curves.

The two conditions to be satis®ed by the recursive sub-

division process are:

1. Each trimming curve has at least p 1 1 1 i knots on each

side of its u-extent and q 1 1 1 i knots on each side of its

v-extent if the trimmed NURBS surface satis®es Ci-conti-

nuity with adjacent surfaces.

2. Control envelops of different trimming curves do not

overlap and they should be at least three control points

apart in each direction.

These conditions are to ensure that the stretching process

can be performed with enough ¯exibility. The second con-

dition is satis®ed if the envelops of two trimming curves

intersect the same v-span (u-span) then the envelops in this

v-span (u-span) are 2p u-spans (2q v-spans) apart. The

envelops shown in Fig. 1 do not satisfy this condition.

It is possible to perform subdivision on boundary spans

and spans that intersect the trimming curves only. This

would reduce the subdivision time to a certain extent.

However, the highlight line model of the stretching results

show that the curvature distribution in this case is not as

good as the results of uniform subdivision on all the spans.

This is reasonable because a movement of a control point in

a large patch causes shape change in a larger area.

Without the loss of generality, we shall use the same

notations for the control points and parameter knots after

the subdivision step even though both of them might have

been changed during the subdivision process.

5. Relocating control points

The control points of a trimmed NURBS surface are

divided into three categories. Type one control points are

those that belong to one of the control envelops. Type three

control points are those that determine a boundary region of

the trimmed surface. Type two control points are the ones

between the type one and type three control points. Fig. 2

shows the partition of the control points of a trimmed

NURBS surface. The width of type three control points

depends on the degree of continuity of the trimmed surface

with adjacent surfaces. For simplicity, we assume that the

NURBS surface has multiple knots at the beginning and end

of its knot vectors. In this case, the width of type three

control points is one for C0-continuity and two for C1-conti-

nuity. Since the desired surface �S�u; v� is required to have

the same trimming curves as the given trimmed NURBS

surface S(u,v) (subject to some translation and rotation),

type one control points of the new surface �S�u; v� should

be the same as type one control points of the given trimmed

NURBS surface S(u,v) (subject to some translation and rota-

tion). On the other hand, the new surface should maintain

the same boundary curve and degree of continuity with

adjacent surfaces after scaling. Therefore, type three control

points of the new surface �S�u; v� should be the same as type

three control points of the scaled version of the given

trimmed NURBS surface Ts+S�u; v�: In the following, we

will show how type one and type three control points for

the new surface are arranged. The construction of type two
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control points for the new surface is shown in Section 7. We

will use Q̂i; j and �Qi; j to represent the control points of

Ts+S�u; v� and �S�u; v�; respectively.

5.1. Type one control points

Each control envelop of the given trimmed NURBS

surface S(u,v) has to be transformed to an appropriate loca-

tion so that a corresponding trimming curve can be de®ned

for the new surface �S�u; v�: This is the most critical step

since it has a decisive in¯uence on the curvature distribution

of the new surface �S�u; v� in the vicinity of the trimming

curves. We need to de®ne two terms ®rst.

Let Pi; j; j � 1;¼; ni; be the vertices of the trimming curve

S+Ci�t�: The centroid of the trimming curve S+Ci�t� is

de®ned as follows.

Pi � 1

ni

Xni

j�1

Pi; j

The direction vector Ni of the trimming curve S+Ci�t� is

de®ned by

Ni � 1

ni

Xni

j�1

Ni; j �3�

where Ni, j are normal vectors of the surface S(u,v) at vertices

Pi, j.

Three steps, one rotation and two translations, will be

used to transform the control envelop of the trimming

curve S+Ci�t� to its new location. First, the control envelop

of S+Ci�t� is rotated, with Pi as pivot, so that its direction

vector would be in the same direction as the direction vector

of the scaled trimming curve Ts+S+Ci�t� where Ts is de®ned

in Eq. (2). It is easy to see that the direction vector of the

scaled trimming curve is �TsNi where

�T s �
SySz 0 0

0 SxSz 0

0 0 SxSy

2664
3775 �4�

with Sx, Sy and Sz being the scaling factors for the x, y and z

directions. Second, the rotated control envelop of S+Ci�t� is

translated from its centroid Pi to TsPi, the centroid of the

scaled trimming curve Ts+S+Ci�t�: These two steps align an

original trimming curve with the corresponding trimming

curve on the scaled surface in both centroid and orientation.

The third step is to move the rotated and translated

control envelop along the direction vector of the scaled

trimming curve Ts+S+Ci�t� to a new location that is most

appropriate for the new surface �S�u; v�: If we use ~Qik;il to

represent the control points in the rotated control envelop of

the trimming curve S+Ci�t�; and Di to represent the displace-

ment vector TsPi 2 Pi of the second step, then the corre-

sponding control points �Qik;il for the new surface are de®ned

by

�Qik;il � ~Qik;il 1 Di 1 di� �T sNi� �5�

where di is a constant to be determined. In Ref. [3], a similar

quantity in relocating a trimming curve is determined indi-

vidually for each trimming curve using a least squares

method. While this is possible, it may not provide a solution

as good as the one produced through a global optimization

process. In this paper di, i � 1; 2;¼; r; will be determined

with the type two control points in an optimization process

to be performed in Section 7.

It is possible to write Eq. (5) as

�Qik;il � ~Qik;il 1 �Di �6�
with �Di being a displacement vector to be determined in an

optimization process. This approach provides bigger ¯ex-

ibility for the relocation process of the control envelops.

However, it works well only if the trimming curves are

located on convex portions of the surface. Further discus-

sion on this issue will be given in Section 7.

5.2. Type three control points

Type three control points of �S�u; v� for a C0-continuity

boundary constraint are arranged as follows

�Q0; j � Q̂0; j
�Qm; j � Q̂m; j j � 0;¼; n �7�

�Qi;0 � Q̂i;0
�Qi;n � Q̂i;n i � 1;¼;m 2 1 �8�

where Q̂i; j are control points of the scaled surface Ts+S�u; v�:
If C1 continuity is required, additional equations should be

included as follows:

�Q1; j � Q̂1; j
�Qm21; j � Q̂m21; j j � 1;¼; n 2 1 �9�

�Qi;1 � Q̂i;1
�Qi;n21 � Q̂i;n21 i � 2;¼;m 2 2 �10�

The subdivision process performed in Section 4 guaran-

tees that, in each direction, there will be at least three type

two control points between type one and type three control

points, or between type one and type one control points of

different control envelops. Hence, there will be enough type

two control points for us to perform the stretching process.

6. Setting up shape-preserving objective function

The stretching process requires the construction of a

shape-preserving objective function. This function is used

to determine the type two control points of the new surface
�S�u; v� in an optimization process. The new surface must

re¯ect the shape and curvature distribution of the scaled

surface. Hence, the objective function should be constructed

based on the difference of these two surfaces. In our

problem, the displacement function is

V�u; v� � � �S 2 Ts+S��u; v� �11�
where �S�u; v� represents the new surface.

Several approximated energy functions have been used as

the objective functions in geometric deformation
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[6,19,23,26]. The goal is to minimize the energy of the

displacement function so as to minimize the shape change

of the deformed surface. We will use a physics-based

approach similar to the one followed by Celniker and

Welch [7] and Welch and Witkin [26].

The manipulation of a surface is like the manipulation of

a thin plate. In our case, we only need to consider a free

plate [21] since external forces such as moment, edge force

and gravity either do not exist or are not required. On the

other hand, since stretching is also involved in the manip-

ulation process, the potential energy of the free plate consid-

ered in our case can be expressed as follows:

E�V� � aEbending 1 bEstretching 1 gEspring �12�
where Ebending, Estretching and Espring are the bending strain

energy, stretching strain energy and spring potential energy

of V, respectively, and a , b and g are weights to be deter-

mined. The strain energy of a thin plate bending process is

de®ned as follows [17,25]:

Ebending � 1

2

ZZ
D
k��Vuu 1 Vvv�2

22�1 2 s��VuuVvv 2 V2
uv�� du dv �13�

where s is the Poisson constant and k is a constant depend-

ing on the thickness and material property parameters of the

plate. Here s is set to zero and k is set to one.

The strain energy of the thin plate stretching process, by

ignoring the in¯uence of the shearing strain, is [17,25]

Estretching � 1

2

ZZ
D
��2G 1 l��V2

u 1 V2
v �1 2l�VuVv�� du dv

�14�
where G and l are constants depending on the material

property parameters of the plate. In our case, l is set to

one and G is set to zero.

As far as the spring effect is concerned, we introduce

springs between the scaled surface and the stretched surface

to pull the stretched surface toward the scaled surface.

Based on the spring energy de®nition, the potential spring

energy is

Espring � 1

2

ZZ
D

K´V�u; v�2 du dv �15�

where K is the stiffness of the spring. Its value is set to one

here.

The values of the weights a , b and g in Eq. (12) are set as

follows:

a � Ea

Ea1b1g
b � Eb

Ea1b1g
g � Eg

Ea1b1g
�16�

where

Ea �
ZZ

D
�Wuu�u; v�2 1 2Wuv�u; v�2 1 Wvv�u; v�2� du dv

�17�

Eb �
ZZ

D
�Wu�u; v�2 1 2Wu�u; v�Wv�u; v�

1 Wv�u; v�2� du dv �18�

Eg �
ZZ

D
Wu�u; v�2 du dv �19�

Ea1b1g � Ea 1 Eb 1 Eg �20�
and W(u,v) denotes Ts+S�u; v�: This follows from the obser-

vation that a term in expression (12) with a bigger energy

should carry a bigger weight in the minimization process.

Note that in an approximation process with ®xed degree of

freedom, the error is proportional to the complexity of the

function. V(u,v) is the approximation error of �S�u; v� to

Ts+S�u; v�: Hence, if the bending energy of W(u,v) is bigger

than the stretching energy and the spring energy (i.e. Ea .
Eb and Ea . Eg�; we would have Ebending�Ga� .
Estretching�Gb� and Ebending�Ga� . Espring�Gg�; where Ga ,

Gb and Gg are the solution vectors of Eqs. (13)±(15),

respectively.

On the other hand, let G be the solution vector of Eq. (12),

i.e.

E�G� � aEbending�G�1 bEstretching�G�1 gEspring�G� �21�
The bending energy Ebending(G) in the above equation is

inversely proportional to a . Thus, to ®nd a minimum point

G that is close to that of Ebending(Ga ), one needs to use an a
that is relatively large compared with b and g (note that

G! Gb if b! 1 and G! Gg if g! 1: Here, without the

loss of generality, we assume that the weights are normal-

ized). Hence, a bigger bending energy of W(u,v) should

imply a bigger a value. Similarly, a bigger stretching

energy or spring energy of W(u,v) should imply a bigger

b or g value. Therefore, a , b and g should be de®ned in

a way that their values are proportional to Ea , Eb and Eg ,

respectively.

A simpler approach is to set all the weights in expression

(12) to one. The result of this approach sometimes is not as

good as that of the above approach. This is because setting

a , b and g to one in Eq. (12) means minimizing the average

energy of Ebending(Ga), Estretching(Gb ) and Espring(Gg) while

setting the values of a , b and g based on Eq. (16) means

minimizing the maximum energy of expressions (13)±(15).

7. Optimization: the constrained stretching process

For NURBS surfaces, minimization of (13), (14) and (15)

leads to a quadratic equation with respect to the control

points if a homogeneous representation is used. The homo-

geneous representations of Ts+S�u; v� and �S�u; v� (see Section

2 for the de®nition of S�u; v�� areXm
i�0

Xn

j�0

�wi; jQ̂ij;wi; j�Ni;p�u�Nj;q�v�
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and

Xm
i�0

Xn

j�0

�wi; j
�Qij;wi; j�Ni;p�u�Nj;q�v�

respectively. For simplicity of notations, we shall use

Ts+S�u; v� and �S�u; v� to represent their own homogeneous

forms, i.e. Q̂i; j and �Qi; j are homogeneous control points of

the following forms:

Q̂i; j � �wi; jQ̂ij;wi; j� �Qi; j � �wi; j
�Qij;wi; j�

Ts+S�u; v� and �S�u; v� can be written as linear equations

with respect to their control points as follows:

Ts+S�u; v� �
XD
i�0

Q̂kNk�u; v� �22�

�S�u; v� �
XD
i�0

�QkNk�u; v� �23�

where

D ; �m 1 1� £ �n 1 1�2 1 �24�

Q̂k � Q̂i; j
�Qk � �Qi; j �25�

Nk�u; v� � Ni;p�u�Nj;q�v� �26�
with

i � k 2 bk=�m 1 1�c £ �m 1 1� j � bk=�m 1 1�c
By representing type one, type two and type three control

points of �S�u; v� by �Q1
ig
; �Q2

jg
and �Q3

lg
; respectively, �S�u; v� can

be expressed as

�S�u; v� �
XD1

g�0

�Q1
ig

Nig
�u; v�1

XD2

g�0

�Q2
jg

Njg
�u; v�1

XD3

g�0

�Q3
lg

Nlg
�u; v�

�27�
where D1 1 D2 1 D3 � D 2 2: According to Eq. (5), and

Eqs. (7) and (8) (or, Eqs. (9) and (10), depending on the

boundary smoothness condition), the unknowns of the

above equation are r scalars di, i � 1; 2;¼; r; for the r

control envelops and D2 1 1 type two control points, �Q2
jg
;

g � 0; 1;¼;D2:

By substituting Eqs. (22) and (27) into Eq. (11) and

expressions (13)±(15), and then substituting expressions

(13)±(15) into Eq. (12), one gets a quadratic expression

with unknowns di; i � 1; 2;¼; r; and �Q2
jg
; g � 0; 1;¼;D2 :

G� �Q2
j0
; �Q2

j1
;¼; �Q2

jD2
; d1; d2;¼; dr� �28�

The unknowns are determined by differentiating expres-

sion (28) with respect to di and �Q2
jg

to get the following

system of linear equations:

2G� �Q2
j0
; �Q2

j1
;¼; �Q2

jD2
; d1; d2;¼; dr�

2di

� 0

2G� �Q2
j0
; �Q2

j1
;¼; �Q2

jD2
; d1; d2;¼; dr�

2 �Q2
jg

� 0

�29�

where i � 1; 2;¼; r and g � 0; 1;¼;D2; and then solving

the system (29) for di and �Q2
jg
:

Instead of using Eq. (5) for the type one control points in

Eq. (27), one can use Eq. (6) for the same thing. This would

lead to a quadratic expression with unknowns �Di; i �
1; 2;¼; r; and �Q2

jDg
; g � 0; 1;¼;D2 as follows.

G� �Q2
j0
; �Q2

j1
;¼; �Q2

jD2
; �D1; �D2;¼; �Dr� �30�

The unknowns are determined similarly, i.e. differentiat-

ing Eq. (30) with respect to �Di and �Q2
jg

to get the following

system of linear equations:

2G� �Q2
j0
; �Q2

j1
;¼; �Q2

jD2
; �D1; �D2;¼; �Dr�

2 �Di

� 0

2G� �Q2
j0
; �Q2

j1
;¼; �Q2

jD2
; �D1; �D2;¼; �Dr�

2 �Q2
jg

� 0

�31�

where i � 1; 2;¼; r and g � 0; 1;¼;D2; and then solving

the system (31) for �Di and �Q2
jg
:

These two approaches produce similar results if the trim-

ming curves are located on convex portions of a surface.

Otherwise, Eq. (29) generally produces better results than

Eq. (31). The reason that Eq. (29) produces better results in

scaling concave NURBS surfaces is that, with Eq. (29) the

rotated control envelop of the trimming curve S+Ci�t� can

only move along the line Pi 1 Di 1 di
�TsNi (here di is

viewed as a parameter) to minimize the objective function

(28). The optimization process will make the computed di

small and, hence, the ®nal position of the control points in

the control envelop, �Q1
ig
; will be close to that of ~Q1

ig
1 Di: On

the other hand, with Eq. (31) the rotated control envelop of

the trimming curve S+Ci�t� can move in any direction to

minimize the objective function (30). In case that S(u,v) is

not a convex surface, the determined �Q1
ig

may not be close to
~Q1

ig
1 Di and, thus, the new surface �S�u; v� may be visually

very different from the original surface S(u,v).

The advantage of Eq. (30) is that it will result in three

smaller independent sets of linear equations with X-compo-

nents, Y-components and Z-components as unknowns,

respectively. The X-, Y- and Z-components include those

of both �Q1
ig

and Di. As the three sets of equations are inde-

pendent of each other, the computation cost is lower and the

systems are easier to solve. expression (28) will result in a

set of linear equations with X-components, Y-components,

Z-components and d1;¼; dr as its unknowns. Such a system

is more costly to solve since it involves all the unknowns in

a large system.
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8. Implementation

Test results on three data sets are presented here. These

data sets include a trimmed door panel (Figs. 3±5), a

trimmed trunk hood (Figs. 6±8), and a trimmed front

hood (Figs. 9±11). The front hood is a degree 3 £ 5

NURBS surface with 8 patches. The trunk hood and the

door panel are bicubic NURBS surfaces with 36 patches

each. These three surfaces are also B-spline surfaces

because the weights in the NURBS representations of

these surfaces are all equal to one.

Three images are shown for each case: the ®rst one shows

the patches of the given trimmed surface; the second one

shows the trimmed surface before the scaling process and

the third one shows the result of the constrained scaling

process. The surfaces in Figs. 5, 8,and 11 are produced

using expression (28). The scaling factors for the three

cases are: Sx � 1:1; Sy � 1:2; Sz � 1:25: The shaded

trimmed surfaces before scaling and after scaling are

displayed with a set of highlight lines [1,2,8]. Highlight

lines are sensitive to the change of normal directions,

hence, can be used to detect surface normal (curvature)

irregularities. This sometimes is not possible with wire-

frame drawings or shaded pictures [9,11].
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Fig. 3. Patches of the trimmed door panel.

Fig. 4. Trimmed door panel before scaling.

Fig. 5. Trimmed door panel after scaling.

Fig. 6. Patches of the trimmed trunk hood.



The examples show that, in each case, the result of the

constrained scaling has the same features as the original

surface, while having the same shape as the scaled surface.

The curvature distribution of the result is also the same as

the scaled surface. This can be veri®ed by comparing the

highlight lines on the surface before and after the

constrained scaling process.

Comparison of the new approach and the previous

approach [3] has also been performed. In addition to the fact

that the new approach maintains both the shape and size of

the features after the constrained scaling process, it also toler-

ates larger scaling factors. While the attach-and-deform

based approach generates distorted results for scaling factors

as low as 1.3, the new approach can tolerate scaling factors as

large as 2 in some cases. Fig. 12 shows the result of

constrained scaling using the attach-and-deform based

approach with scaling factors Sx � 1:3; Sy � 1:3 and Sz �
1:3: Fig. 13 shows the result of constrained scaling using the

®x-and-stretch based approach with scaling factors Sx � 2:0;

Sy � 2:0 and Sz � 2:0 (result is scaled down to ®t into the

®xed sized viewport). The distorted highlight lines of Fig.

12 shows that the curvature distribution of the resulting

surface is not the same as the original surface (Fig. 4). Figs.

12 and 13 also show that the displacement vector �Di
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Fig. 7. Trimmed trunk hood before scaling.

Fig. 8. Trimmed trunk hood after scaling.

Fig. 9. Patches of the trimmed front hood.

Fig. 10. Trimmed front hood before scaling.



has much to do with the curvature distribution of the

new surface near the region of the trimming curve

S+Ci:

9. Conclusion

A new, ®x-and-stretch based approach for constrained

surface scaling of trimmed NURBS surfaces is presented.

The new surface is formed by ®xing selected regions of the

given trimmed NURBS surface that contain the trimming

curves and stretching the remaining part of the surface to

reach certain boundary conditions. The stretching process is

performed using an optimization process to ensure that the

resulting surface re¯ects the shape and curvature distribu-

tion of the scaled version of the given surface. The resulting

surface maintains a NURBS representation and, hence,

is compatible with most of the current data-exchange

standards.

Advantages of the new approach over the previous,

attach-and-deform based approach include: (1) it tolerates

bigger scaling factors (up to 2 in some cases) than the

previous, deformation based approach; and (2) it guarantees

that the features remain exactly the same after scaling.

However, the new approach requires more memory than

the previous approach in some cases.

The features considered in the new and previous

approaches are within a single NURBS surface. A future

work is to consider the case when a feature intersects the

boundary of the given surface. Another future research

direction is to scale different components of an object

with different scaling factors while maintaining the

overall smoothness of the object and keeping certain

features ®xed.
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Fig. 11. Trimmed front hood after scaling.

Fig. 12. Constrained scaling using the attach-and-deform based approach

with scaling factors Sx � 1:3; Sy � 1:3 and Sz � 1:3:

Fig. 13. Constrained scaling using the ®x-and-stretch based approach with

scaling factors Sx � 2:0; Sy � 2:0 and Sz � 2:0:
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