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Goals for the Presentation

Provide a broad overview of my research area
Introduce relevant technical background

Describe logic PS+ - a focus for my research

Present my current work
Discuss research directions to pursue
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Overview

General area of study: logic in programming and
computing

Specific focus: answer-set programming (ASP)
ASP emerged in late 90’s
theories encode problems so that models represent
solutions
to program - we need a language
to compute - we need algorithms

Goal: to develop fast programs to support ASP
formalism based on logic PS+
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Overview (contd.)

ASP is in contrast with traditional use of logic in
programming and computing

automated theorem proving (50’s and 60’s)
logic programming (70’s PROLOG)
problems are encoded as queries to theories so
that proofs and variable substitutions determine
solutions
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Technical Background

Propositional logic
Basis for defining semantics of logic programs
Basis for computing models of logic programs

First order logic
Provides programming facilities
Separates data from programs

Logic programming

Default logic
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Propositional Logic - Language

Basic Syntax:
Atoms: a, b, c, . . .

Boolean connectives: ¬,∧,∨,→,↔
Parentheses: (, )

Formulas: (a ∨ b)→ ¬c

Literals: atoms and their negations: a, ¬a

Clauses: disjunctions of literals: a ∨ b ∨ ¬c

Theory: a collection of formulas

CNF theories (main focus): a collection of clauses
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Propositional Logic - Semantics

Interpretation: assignment I of truth value t or f to
atoms

often represented as the set of all atoms assigned t

all others, by default, assigned f

formulas obtain truth value in an inductive way
under I

Model: interpretation I is a model of a theory if every
formula in the theory obtains t under I
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SAT Problems

Problem: Given a propositional CNF theory ϕ, decide
whether it has a model.
It is a prototypical NP-complete problem.

We often want not only a decision but also a witness
(in case the answer is YES)
We sometimes want all models
SAT solvers are programs that compute models of a
propositional CNF theory

Propositional logic is an ASP formalism
We can encode problems by propositional CNF
theories and use SAT solvers to find solutions for
the problems
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Example - 3 Colorability Problem

Instance: An undirected graph and 3 colors

Question: Can we color the graph such that
1. each vertex gets exactly one color;
2. no two adjacent vertices have the same color;

Example Graph: A graph with 4 vertices and 5 edges

1 2

34
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CNF Encoding for 3-Col

% Each vertex gets at least one color

coloredi1 ∨ coloredi2 ∨ coloredi3

% Each vertex gets at most one color

¬coloredi1 ∨ ¬coloredi2

¬coloredi2 ∨ ¬coloredi3

¬coloredi3 ∨ ¬coloredi1

% No two adjacent vertices have the same color

¬coloredi1 ∨ ¬coloredj1

¬coloredi2 ∨ ¬coloredj2

¬coloredi3 ∨ ¬coloredj3
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Properties of the Encoding

Theorem:
the encoding in the previous slide correctly encodes
the 3-colorability problem on the given graph;
models of the encoding and the proper coloring
schemas have a one-to-one correspondence.

The encoding is not flexible because there is no
separation on data and program.
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Solvers for SAT Problems

To get solutions of the problem − we need to find
models of the CNF theory that encodes the problem

There are two types of solvers:
Complete Solvers

use a systematic search schema to examine the
whole search space
find and output models if the instance is
satisfiable; output “no” otherwise;

Incomplete Solvers
use stochastic local search schema
are not guaranteed to find models if there are
any, and will not output "no" when the instances
are unsatisfiable

Ph.D. Qualifying Exam Presentation – p.13/80



Systematic Search Schema

Basic Search Schema
Use backtrack search

Extend current partial interpretation by assigning
a truth value to a new atom;
Examine if there are any conflicts caused by the
current partial interpretation;
Undo the most recent assignment to the atom if
there are unsatisfied clauses, and trying the
opposite assignment to that atom, if it has not yet
been tried.

Optimizations
Constraint propagation
Learning from failure
Backjumping Ph.D. Qualifying Exam Presentation – p.14/80



Local Search Schema

Generate initial truth assignment randomly

Walk from one truth assignment to another by flipping
one atom at a time
Use greedy algorithm to find local minima

Use randomized techniques to escape from local
minima or plateau
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Generic Local Search Algorithm

Generic-Local-Search(F )
Input:

F - a propositional CNF formula

Output:

a satisfying assignment of F if it can
be found
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Generic Local Search Algorithm
(contd.)

BEGIN
1. For i← 1 to MAX-TRIES, do
2. σ ← randomly generated truth assignment;
3. For j ← 1 to MAX-FLIPS, do
4. If σ |= F, return σ;
5. a← Pick-Atom(F, σ);
6. (F, σ)← Flip(F, σ, a);
7. End for
8. End for
END
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Two Families of Local Search
Algorithms

GSAT Family: watch all atoms in the theory
GSAT: flips the variable that minimizes the total
number of unsat clauses;
GSAT-SA: uses simulated annealing algorithm to
escape from local minima or plateaus;
GSAT-RW: with probability p, it selects an unsat
clause and flip one of the variables; with probability
1− p, it follows GSAT;
GSAT-RW-TABU: keeps a FIFO list of flipped
variables of fixed length and forbids any of the
variables in the list to be flipped again;
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Two Families of Local Search
Algorithms Contd.

WSAT Family: pick an unsat clause and only watch
atoms in that clause

WSAT-G: with probability p flips any variable,
otherwise, flips the one that minimizes the total
number of unsat clauses;
WSAT-B: with probability p flips any variable,
otherwise, flips the one that causes the least
number of sat clauses to become unsat (i.e. the
least break -count);
WSAT-Free: if there is a variable such that none of
the clauses will become unsat if it is flipped, then
flips it; otherwise, follows WSAT-B;
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GSAT

Pick -Atom-GSAT (F, σ)
BEGIN
1. For each atom x in F, do
2. σ′ ←the truth assignment that
differs from σ in x;
3. u1 ←the number of unsatisfied
clauses in F under σ;
4. u2 ←the number of unsatisfied
clauses in F under σ′;
5. ∆w(x)← u2 − u1;
6. End for
7. return argminx({∆w(x) : ∆w(x) ≤ 0}) or
nothing if such x does not exist;
END
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WalkSAT-Free

Pick -Atom-WalkSAT -Free(F )
BEGIN
1. C ←randomly selected unsatisfied
clause;
2. For each atom x in C, compute
break-count(x);
3. If there are any atoms that have zero
break-count, return any one of them;
4. With probability p, return
argminx{break-count(x)};
5. With probability 1− p, return a randomly
chosen atom in C;
END
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First-order Logic - Language

Basic syntax
Variable symbols: x, y, z, · · ·
Function symbols: f, g, h, · · ·
Relation symbols: p, q, r, · · ·
Logic connectives: ∧,∨,¬,→,↔
Quantifiers: ∀,∃
Parentheses: (, )

Terms: f(t1, . . . , tn)

Formulas: r(t1, . . . , tn) ∧ (p(s1, . . . , sm) ∨ ¬q(u))

Theories: a set of formulas
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First-order Logic - Semantics

Interpretation (Model) I:
Nonempty universe: A

Interpretation of function symbols: f I : An → A

Interpretation of relation symbols: rI ⊆ An

Truth value of a formula under an interpretation I

∀xϕ obtains value t if ϕ{x/a} obtains value t for
every a ∈ A
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First-order Logic - Herbrand Models

We often focus on Herbrand models because
they define natural universes
a universal sentence has a model iff it has a
Herbrand model

Define a Herbrand model as follows:
Common parts for all Herbrand models w.r.t. a fixed
first-order theory

Herbrand universe: a, f(a), f(f(a)), · · ·
Herbrand base: r(a), r(f(a)), r(f(f(a))), · · ·

Difference between Herbrand models
Interpretation of relation symbols
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First-order Logic - Grounding

A first-order formula is a universal sentence if it is of
the following form:
∀x1 · · · ∀xnϕ, where ϕ has no quantifiers and
x1, . . . , xn are all the variables that occur in ϕ

A substitution θ is a ground substitution of a formula
ϕ, if theta maps all free variables in ϕ to ground terms

Let ϕ be a universal sentence, ϕθ is a ground
instance of ϕ if θ is a ground substitution of ϕ

Let ϕ be a universal sentence, ground(ϕ) denotes the
set of all ground instances of ϕ

Let P be a set of universal sentences, ground(P)
denotes the union of all ground(ϕ) for every ϕ ∈ P
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First-order Logic - Grounding
(contd.)

Theorem: P is a set of universal sentences, the
following are equivalent:

P has a model
P has a Herbrand model
ground(P ) is satisfiable

Theorem: The set of Herbrand models of ground(P ) is
the same as the set of Herbrand models of P
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Semantics via Grounding

To define the notion of an “intended model” in some
formalism based on the language of first-order
language:

restrict to Herbrand models
define “intended models” for a propositional
fragment of the formalism
lift the semantics to the general case through
grounding
generic definition: M is an “intended model” of T if
M is an “intended model” of ground(T )

Ph.D. Qualifying Exam Presentation – p.27/80



Goals for the Presentation

Provide a broad overview of my research area
√

Introduce relevant technical background
√

Describe logic PS+ - a focus for my research
Present my current work
Discuss research directions to pursue

Ph.D. Qualifying Exam Presentation – p.28/80



Logic of Propositional Schemata

Syntax of logic PS is a fragment of first-order
language:

infinite denumerable sets R, C and V of relation,
constant and variable symbols;
symbol ⊥ and > (always interpreted as f and t);
boolean connectives ∧, ∨ and→, the universal and
existential quantifiers, and punctuation symbols ’(’,
’)’ and ’,’.
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E-Atoms and Formulas in Logic PS

∃X1, . . . , Xkp(t1, . . . , tn)
is an e-atom. As an abbreviation, variables X1, . . . , Xk

can be expressed by ’_’ (underscore).
p(_, X)

The only allowed formulas in the logic PS are rules,
which are of the following form:
∀X1, . . . , Xk(A1 ∧ · · · ∧Am → B1 ∨ · · · ∨Bn)
and e-atoms are allowed only in B ′

is.
q(X)→ p(_, X).
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Example of Grounding

Given a rule ∀Xq(X)→ p(_, X)., and the Herbrand
universe {a, b, c},

Ground of e-atom p(_, X) is

p(a,X) ∨ p(b,X) ∨ p(c,X)

An instance of the rule is

q(a)→ p(a, a) ∨ p(b, a) ∨ p(c, a)

There are three such instances
Ground theory of the rule consists of all three
instances
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Logic PS+

Cardinality constraints are common in combinatorial
problems: size of the vertex cover is at most 5;

C-atoms are used to model cardinality constraints
The resulting logic is called logic PS+
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Cardinality Atoms

A ground cardinality atom (or a c-atom) is of the
following form:

m{a1, ..., ak}n
where ai’s are atoms and m,n are two non-negative
integers

The c-atom obtains truth value t under an
interpretation I if there are at least m and at most n
atoms out of a1, ..., ak obtain t under I.
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Logic PS+ Theory

Logic PS+ theories are defined by data-program pairs
(D,P )

D is a finite set of ground atoms

P is a finite set of PS+ rules.
Cl(D) denotes the theory D ∪ {¬a : a 6∈ D}
The semantics is given by the set of Herbrand models
of Cl(D) ∪ ground(P )
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Logic PS+ as an ASP Formalism

Encode the problem into a data-program pair (D,P )

D - encoding of relevant input data
P - declarative specification of the computational
task

Ground P to ground(P ) using a grounder

Compute models of Cl(D) ∪ ground(P ) using a solver

Reconstruct solutions from models
Logic PS+ fits into the answer-set programming
paradigm, where models of a logic program
correspond to solutions of the problem that the
program encodes
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Logic PS+ Encoding for 3-Col

Define data part

% Define colors and the graph
color(red). color(blue). color(green).

vtx(1). vtx(2). vtx(3). vtx(4).

edge(1,2). edge(2,3). edge(3,4). edge(4,1).

edge(2,4).

Define program part

% Typing constraints

colored(X, C) → vertex(X).

colored(X, C) → color(C).

% Each vertex get exactly one color

vertex(X) → 1{colored(X,C):color(C)}1.
% No two adjacent vertices have the same color

edge(X, Y) ∧ colored(X, C) ∧ colored(Y, C) → ⊥.
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Computing with Logic PS+

Existing system for computing models of PS+
theories: psgrnd and aspps

psgrnd: a grounder that grounds logic PS+ theories
aspps: a complete solver that computes models of
ground logic PS+ theories
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Flow Chart

Theory of
logic PS+,
pair (D, P)

Theory of
the proposi−
tional logic

+

 EndBegin

Data File Ground
Logic
Program

Solutions

 (models)
Grounder  SolverLogic Prog
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Advantages of Logic PS+

Stable model semantics is more complex to
understand
Logic PS/PS+ is close to first-order/propositional logic

We can use off-the-shelf SAT solvers in addition to
solvers, such as aspps, designed for logic PS/PS+
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Local Search in Logic PS+

Local search is proved to be effective in solving SAT
problems

We want to experiment with local search in logic PS+
Ground logic PS programs are propositional
theories − we can use local search SAT solvers
directly;
Ground logic PS+ programs contain c-atoms − we
need to modify local search SAT solvers;
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Difficulties in Dealing with C-atoms

Break-count is easy to count in a propositional CNF
formula

watch only the clauses that have single true literal

It is hard to count when we have c-atoms
watching clauses with single true literal will not work
example 1: ¬a ∨ 1{a, b}1, with a = f and b = f

example 2: ¬a ∨ 1{a, b}1, with a = f and b = t
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Virtual Break-count

Facts:
We cannot apply WalkSAT-Free algorithm directly
We can unfold each c-atom into its equivalent in
propositional theory
We can count WalkSAT-Free break-count w.r.t. the
new theory containing unfolded c-atoms

Bad news: the new theory may become very large

Good news: we do not need to really unfold each
c-atom
Idea: Break-count w.r.t. the new theory can be
computed instead of being counted
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Virtual Break-count (contd.)

Observations:
The translation of a c-atom into a propositional
theory has a regular form
Computing the number of clauses that only have
one true literal given current truth assignment is a
combinatorial problem.

Break-count can be expressed in terms of (n
k)
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Translation of C-atoms

Two ways of translating each c-atom into a
propositional CNF formula
1. Using a brute-force way that does not introduce

extra propositional variables but ends up with a
huge propositional theory;

2. Using extra variables to model c-atoms that does
not explode the size of the theory too much but
adds too much structured information to the
program;
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Straightforward Translation

Upperbound C-atom {a1, . . . , ak}n
¬ai1 ∨ ... ∨ ¬ain+1

, for any n + 1 atoms ai1 , ..., ain+1

Intuition: given any subset {ai1 , ..., ain+1
} of size

n + 1, there is at least one atom that has the truth
value f.

Lowerbound C-atom m{a1, . . . , ak}
translation is similar to that of the upperbound case

Ph.D. Qualifying Exam Presentation – p.46/80



Approximating Virtual Break-count

(n
k) may become large and beyond the storing

capability of computers

Use of some software packages, such as GNU Calc
that operates arbitrary precision integers, makes the
computation much slower

Use of floating-point arithmetic also makes the
computation slow

Use of approximations to compute large integer
numbers is better
How to approximate virtual break-count is still an open
topic for research
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Approximations

We have tried several approximations of computing (n
k):

1. Stirling approximation:
uses float-point arithmetic;

2. Linear approximation:
(n
k) = n× k if k ≤ n/2; (n

k) = n× (n− k) otherwise;
results are accurate when k = 0, 1

3. Quadratic approximation:
(n
k) = a× k2 + b× k + 1, where a = (n2 − 5n + 2)/4

and b = (−n2 + 9n− 6)/4.
results are accurate when k = 0, 1, 2
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Exploiting the Structure of the
Program

Logic PS+ programs can often be divided into two
parts:

a part containing c-atoms
a part consisting of only propositional clauses

Virtual break-count computation can be avoided when
we can easily satisfy the part that has c-atoms
we can keep the part satisfied during flipping

Specialized flip techniques include (not exhaustively)
double flip
permutation flip

They depend on the structure of the theory
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Constraints Suitable for Double Flip

Example: at most/at least/exactly n atoms should be
true

{in_cover(X) : vertex(X)}n.

Condition: Grounding the rule will yield a set of unit
disjoint c-atom rules
Intuition:

It is easy to generate an initial assignment to satisfy
all those rules
It is easy to maintain the truth values of all those
rules by allowing more than one flip

Ph.D. Qualifying Exam Presentation – p.50/80



Double Flip Algorithm

Flip(F, σ, a)
Input:

F - a logic PS+ formula

σ- current truth assignment

a - the chosen atom to flip

Output:

updated (F, σ) after a is flipped
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Double Flip Algorithm Contd.

BEGIN
1. If a occurs in one of the disjoint unit
c-atoms and flipping a will break it, then
2. pick the best opposite atom in that
c-atom w.r.t. break-count;
3. flip the chosen atom;
4. End if
5. Flip a;
6. Update (F, σ);
7. return (F, σ);
END
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Variants of Double Flip

Fact: we need to choose two atoms in performing
double flip
Possible changes to the Pick -Atom algorithm

follow the original Pick -Atom algorithm
choose a such that BC(a) + BC(b) is minimized,
where b is the best opposite atom w.r.t. a;

Possible changes to the Flip algorithm
allow to break unit c-atom rules during random walk
step
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Experiments and Results

In all of the following experiments, we used machines
with P4 1.5GHz CPU, 1.0GB memory, running Linux
version 2.4.18 (gcc version 2.95.3)

We considered the following NP-complete problems:
vertex cover, dominating set problem, 4-colorability
problem, Schur number (5), open Latin square problem
and n-queens problem.

In local search algorithms, we specified the followings:
Number of Retry: 10
Number of Flips in Each Try: 100000
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Format of Measurements

Results are shown in the following format:
t/f/s/r, where

t is the running time of all tries and all runs;
f is the number of flips in all success tries of all
runs that find at least one solution;
s is the success rate in all runs that find at least one
solution;
r is the ratio of the number of runs that find solution
over the total number of runs.
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Vertex Cover

Noise: 0.1 (10 : 100)

Graph size: 2000 vertices, 4000 edges

Number of Graph’s: 50 randomly generated

Instance VBC2 VBC3 DBF

1035 (8 / 50) 137/34792/63%/75% 133/32072/78%/62% 310/51283/82%/87%

1040 (24 / 50) 110/33638/87%/83% 110/34101/84%/83% 220/36392/87%/95%

1045 (35 / 50) 77/22739/87%/91% 79/23281/89%/88% 152/23481/85%/100%

1050 (50 / 50) 41/21063/90%/96% 44/21531/90%/96% 48/24551/95%/100%

1055 (50 / 50) 18/13202/99%/100% 17/13026/100%/100% 16/10907/100%/100%
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4-Colorability

Noise: 0.1 (10 : 100)

Number of Graph’s: 50 randomly generated

Instance DBF+SW ZCHAFF WSAT

1000X2000 (50/50) 0/1267/99%/100% 0/0/100%/100% 0/2170/100%/100%

1000X3000 (50/50) 0/5360/99%/100% 0/0/100%/100% 0/10017/100%/100%

1000X3400 (50/50) 1/17429/98%/100% 0/0/100%/100% 1/42280/100%/100%

1000X3800 (50/50) 15/136968/40%/96% 21/0/100%/100% 6/154107/17%/74%

1000X3850 (50/50) 17/145976/23%/70% 110/0/100%/100% 7/159637/12%/34%

1000X3860 (50/50) 18/150745/18%/57% 225/0/100%/100% 7/155154/13%/26%

1000X3870 (50/50) 18/152365/13%/66% 368/0/100%/100% 7/153467/10%/20%

1000X3880 (50/50) 18/149555/16%/34% 438/0/100%/100% 7/155585/10%/16%

1000X3890 (50/50) 19/159549/15%/24% 891/0/100%/100% 7/183606/12%/16%

1000X3900 (50/50) 19/140410/12%/34% 1137/0/100%/100% 7/155648/12%/8%
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Research Directions - my Future
Work

Extend logic PS+

Improve solvers to compute models of logic PS+
programs

Demonstrate applicability in knowledge reasoning (KR)

Demonstrate applicability in solving hard combinatorial
problems
Implement hybrid programming systems
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Extending Logic PS+

Additional high-level constraints (such as weight
constraints)

Aggregates: “max”, “sum”, “avg”, . . .

Ability to specify optimization tasks, such as to find
minimum weight vertex cover or maximum average
weight vertex cover
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Improvement on Solvers

Local search solvers:
design an automated way to use solutions of a
smaller instance of the problem and extend them to
solutions of a larger instance;
improve local search in the structured programs;

Complete solvers: new heuristics; learning
components; backjumping schema; restart policy;
efficient data structure
Both:

integrating grounding into solvers to avoid full
grounding
integrating systematic search into local search or
vice versa
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Applicability in KR

Develop PS+ theories for diagnosis, abduction and
planning

Develop or use specialized front-ends such as action
language A, planning language STRIP

Existing front-end: puzzle language
ConstraintLingo (Raphael Finkel)

Represent stable logic programming in PS+ (similar to
cmodels and as-sat)
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Applicability in Solving Hard
Problems

Computing Ramsey-type numbers (at least, bounds)
Ramsey numbers
Schur numbers
Vander Werden numbers
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Hybrid Systems

Integrating PS+ programming environment with
external program libraries

Implementing PS+ APIs for other programming
environments
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End of the Presentation

Thank you!
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Logic Programming with Negation

Logic programs: collection of rules of the following
form:
p← b1, . . . , bm, not c1, . . . , not cn.

First-order logic interpretation: rules as implications
and not as negations

Intended (procedural) reading of rules: if all of
b1, . . . , bm, not c1, . . . , not cn are computed, we can
compute p
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Logic Programming with Negation
(contd.)

More appropriate semantics:
stable model semantics (Gelfond and Lifschitz)
supported model semantics (Clark’s completion)
well-founded model semantics ()
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Logic Programming as ASP System

Existing software to compute stable models of a logic
program: Smodels, DLV

Procedures to solve a problem:
encode the problem as a logic program P so that
stable models of P represent solutions
use Smodels (or dlv) to find stable models of P

reconstruct solutions from the stable models
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Example - 3 Colorability Problem

Instance: An undirected graph and 3 colors

Question: Can we color the graph such that
1. each vertex gets exactly one color;
2. no two adjacent vertices have the same color;

Example Graph: A rectangle with 4 vertices and 4
edges
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Smodels Encoding for 3-Col

% Define colors and the graph

color(red). color(blue). color(green).

vtx(1). vtx(2). vtx(3). vtx(4).

edge(1,2). edge(2,3). edge(3,4). edge(4,1).

% Each vertex get exactly one color

colored(X,red)←vtx(X),not colored(X,blue),not

colored(X,green).

colored(X,green)← vtx(X),not colored(X,red),not

colored(X,blue).

colored(X,blue)← vtx(X),not colored(X,green),not

colored(X,red).

% No two adjacent vertices have the same color

f← vtx(X),vtx(Y),edge(X,Y),color(C),

colored(X,C),colored(Y,C),not f.
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Default Logic

A generalization of logic programming with negation

Logic program rules are replaced by more general
inference rules: defaults

syntax: α:Mβ1,...,Mβn

γ

rule p← b1, . . . , bm, not c1, . . . , not cn is interpreted
as default b1∧···∧bm:M¬c1,...,M¬cn

p
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Some Notions

C = l1 ∨ l2 ∨ ... ∨ lr ∨ c1 ∨ c2 ∨ ... ∨ cp

Ch =
∧

0

@

kh

nh + 1

1

A

i=1
Pi ∧

∧

0

@

kh

kh −mh + 1

1

A

j=1
Nj for ch

C = l1 ∨ l2 ∨ ... ∨ lr ∨ C1 ∨ C2 ∨ ... ∨ Cp
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Three Cases in Flipping an Atom

Case 1: after flipping an atom a ∈ C, at least one
normal literal is true;
Case 2: after flipping a ∈ C from true to false, all
normal literals are false;
Case 3: after flipping a ∈ C from false to true, all
normal literals are false;
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Case 1

A trivial case because clause C will not contribute to
the break-count of a
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Case 2

Virtual break-count of a is updated by the following
formula:

V BC(a)← BC(a) +

p
∏

i=0

Vi(a)−
p

∏

i=0

Ui(a)

where Vi(a) =

{

“

negi
ki−mi

”

+

“

negi
ki−mi+1

”

+(posi−1

ni+1 ), if a∈ci
“

negi
ki−mi+1

”

+(posi
ni+1) , otherwise

and Ui(a) =

{

“

negi
ki−mi+1

”

+(posi−1

ni+1 ), if a∈ci
“

negi
ki−mi+1

”

+(posi
ni+1) , otherwise
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Case 3

Virtual break-count of a is updated by the following
formula:

V BC(a)← BC(a) +

p
∏

i=0

Vi(a)−
p

∏

i=0

Ui(a)

where V i(a) =

{

(posi
ni )+(posi

ni+1)+

“

negi−1

ki−mi+1

”

, if a∈ci

(posi
ni+1)+

“

negi
ki−mi+1

”

, otherwise

and U i(a) =

{

(posi
ni+1)+

“

negi−1

ki−mi+1

”

, if a∈ci

(posi
ni+1)+

“

negi
ki−mi+1

”

, otherwise
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Example

Let C = ¬a ∨ 1{a, b}1. and current truth assignment
I0 = {b}
1{a, b}1 is equivalent to the following two propositional
clauses:
¬a ∨ ¬b and a ∨ b

C is equivalent to
C ′

1 = ¬a ∨ ¬a ∨ ¬b and C ′

2 = ¬a ∨ a ∨ b

flipping atom a will breaking C ′

1 and will not break C ′

2

thus the break-count of atom a is 1.
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Example Contd.

k = 2,m = 1, n = 1, p = 1, pos = 1, neg = 1 and
a ∈ 1{a, b}1,

V 1(a) = (pos
n ) +

(

pos
n+1

)

+
(

neg−1

k−m+1

)

= (1
1) + (1

2) + (0
2) = 1

U 1(a) =
(

pos
n+1

)

+
(

neg−1

k−m+1

)

= (1
2) + (0

2) = 0

virtual break-count V 1(a)− U 1(a) = 1,
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Generalized Double Flip

We can apply double flip idea in SAT solvers
Idea: select an arbitrary set of disjoint rules (not
necessarily to be the unit c-atom rules) and perform
double flip on them

We need to solve one problem:
how to choose the set of disjoint rules
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Grounding of Logic PS Formulas

Grounding of an e-atom p(t):

t is a tuple that contains ’_’;

let t′ be a tuple obtained by replacing all occurrences of ’_’
with constants in the Herbrand universe;

grounding of p(t) is defined as pd(t) = p(t′);

Grounding of a rule r:

let rd be the rule obtained by grounding all e-atoms in r;

instance of r is defined as rdθ, where θ is a ground
substitution;

grounding of r is defined as ground(r) = rdθ : ∀θ
Grounding of a logic PS program T is defined as
ground(T ) =

⋃

r∈T
ground(r)
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