
How to use the Syntacticon

Raphael Finkel raphael@cs.uky.edu Daniel Kaufman dkaufman@qc.cuny.edu

July 23, 2025

Contents

1 Introduction 3

2 Syntax patterns 4

2.1 Format . 4

2.2 Representation . 5

2.3 Multiple syntax patterns and wild cards . 5

3 Syntax rules 6

3.1 Format . 6

3.2 Conventions . 6

3.3 Conditions . 8

3.4 Flags . 8

3.5 Commands . 8

4 Preamble 14

4.1 Phonology . 14

1

2

4.2 Roots . 16

4.3 Morphology . 16

5 Morphophonological rules 17

5.1 Overview . 17

5.2 Conditions . 18

5.3 Changes . 18

5.3.1 Elements . 19

5.3.2 Replacements . 22

5.4 Disjunctive rules . 22

5.5 Autosegmental phonology . 22

6 User interface 26

6.1 General . 26

6.2 Quick links . 26

6.3 Discussion . 26

6.4 Errors and messages . 27

6.5 Results . 27

6.6 Metadata . 28

6.7 Syntax patterns . 28

6.8 Syntax rules . 28

6.9 Morphophonological rules . 29

6.10 Preamble . 29

6.11 Function buttons . 29

6.12 Sample rules . 29

3

6.13 Library . 30

6.14 IPA chart . 30

6.15 Segments and features . 31

7 Acknowledgements 31

References 32

Index 32

1 Introduction

The Syntacticon is a web-accessible facility that applies rules to syntax trees to achieve a surface-form
utterance. The input to the program includes a syntax tree, syntax rules to manipulate the tree, and
morphophonological rules to convert the resulting tree to a surface form. This program is intended both as
an aid in teaching syntax and to help researchers formalize syntax theories.

One can use the Syntacticon in several ways.

• Enter a syntax theory and have the Syntacticon compute its results.

• Choose a prepackaged syntax theory from the Library.

• Investigate the phonological features of IPA symbols.

The Syntacticon is the third in a series of facilities, building on the previous two: the Phonomaton (for
phonological theories) and the Syntacticon (for morphological theories). Many of the features of those
facilities are also available in the Syntacticon.

This document is organized according the input sections of the Syntacticon. Each section has a
show/hide button that lets the user expand or contract its contents. The Syntacticon preserves the

contents of input sections as it creates output, so the user can make modifications and resubmit the input.

4

2 Syntax patterns

This input section provides the starting tree (or rarely, trees) that the syntax theory manipulates. Each
tree representation should be on a single line, or, for convenience, split into multiple lines with
at the end of all but the last line. The symbol % introduces a comment that continues to the end of the
current line.

2.1 Format

Figure 1 shows a simple syntax tree.

Figure 1: Syntax tree example

Syntax trees should follow a particular format. Nodes in the tree can be phrases, intermediate constituents,
or heads. Each node has a name. All names in the tree must be unique.

The name of a phrase must end with P, optionally followed by digits to distinguish similar names. A
phrase must have one or two children. Generally, one of the children is an intermediate constituent, and
the other is an optional specifier, which is another phrase. It is also valid for a phrase to only contain a
surface expression, described below.

An intermediate constituent must have a name that ends with an apostrophe, optionally followed by
digits. (The Syntacticon accepts either the ordinary ' or the Unicode 02b9 ʹ). It must have two children, a
head and a phrase, which acts as a complement. The children may be in either order. As a special case,
usually at the end of a long tree chain, the complement may be a phrase that is also a head.

A head may have any name that does not end with an apostrophe (followed by digits). It has no children;
its content is a surface expression, which is called its feature.

A surface expression is meant to expand to part of the eventual surface form of the tree when it is
spelled out. It contains one or more units, separated by space. A morphological unit names a
morphological rule and provides morphological input. For instance, D:def,3sg names the morphological

5

rule D, perhaps intended to express a determiner, with the morphological input for definiteness and a 3sg
subject. A lexeme unit starts with √ and then names a lexeme.

In the tree shown in Figure 1, the root is a phrase (as it must be): VP. It has a specifier NP1 and an
intermediate constituent V'. The specifier NP1 is a head, containing the surface expression √boy, referring
to a particular lexeme. The intermediate constituent V' has a head V and a complement NP2, each of which
is a head. The head V contains a surface expression with two units, the lexeme unit √see, and a
morphophonological rule Verb, perhaps expressing tense, with the morphological property pres. Finally,
the phrase NP2 is a head containing √dog.

2.2 Representation

A tree can be represented in either a bracket or a brace form. The bracket form is more conventional,
although more verbose. Each node of the tree is represented in the form

[Name Content]

The tree shown in Figure 1 has this representation in bracket form:

[SP [NP1 √boy] [Vʹ [V √see Verb:pres] [NP2 √dog]]]

Because it is clumsy to count matching brackets, the Syntacticon accepts missing brackets at the start or
at the end of the bracket representation, adding brackets implicitly as needed. The representation, which
should be in a single line, may be split into multiple lines, with intermediate lines terminated by \.

The brace form takes advantage of the convention, visible in Figure 1, that an intermediate constituent
has the same name as its parent phrase, but with the P converted to an apostrophe, and that its head has
the same name again, without the P or apostrophe. The brace form of the tree shown in Figure 1 is

{V {N1 √boy} √see_Verb:pres {N2 √dog}}

The Syntacticon automatically adds P to phrase names and apostrophes to intermediate constituents. It
converts underscores to spaces in heads. It also inserts missing braces at the start and at the end of the
brace representation. Again, long lines may be split with \ at the end of intermediate lines.

2.3 Multiple syntax patterns and wild cards

The syntax pattern input may contain multiple trees. In this case, the Syntacticon evaluates each tree
separately.

A morphological unit in a syntax pattern may include a wild card. For instance, instead of Verb:pres,

6

the syntax pattern may say Verb:all(Tense), referring to all the tenses. This specification refers to the
Morphology region of the Preamble, described in Section ??. In particular, this region might include the
following:

Tense: past pres future

In this case, the syntax pattern expands to three patterns, one with Verb:past, one with Verb:pres, and
one with Verb:future. If a syntax pattern contains several wild cards, the Syntacticon generates all
possible combinations as separate trees to be evaluated by the syntax rules.

3 Syntax rules

The purpose of syntax rules is first to manipulate the syntax tree, then to create a resulting surface form of
an utterance. Each rule is on a single line, although long lines may be interrupted by a \ at the end of an
intermediate line. An empty line separates sets of syntax rules; the Syntacticon applies each set anew to
each syntax pattern. The character % introduces a comment that continues to the end of the line.

The syntax rules also allow literate comments, which start with %!, and which are meant to elucidate
the purpose of the rules. The Syntacticon collects literate comments and presents them at the top of the
output page.

3.1 Format

The format of all syntax rules is

RULENAME: COMMAND / CONDITION // FLAGS

A rule may omit the RULENAME and its colon. The purpose of the CONDITION is to restrict when the rule
should apply. The purpose of the FLAGS is to modify how the rule applies. Both CONDITION and FLAGS are
optional; if they are omitted, the syntax rule should also omit the / character(s) that introduce them.

Commands generally modify the syntax tree. Some commands are purely for debugging purposes. One
command changes the tree into a surface string.

3.2 Conventions

In the following, we use these conventions to describe syntax rules.

7

• NAME: The name of a particular node.

• HEAD: The name of a head node.

• NODES: A set of nodes, possibly empty. If there are several nodes in the set, they are sorted
breadth-first, left-to-right, according to their position in the tree.

– a NAME

– a Perl regular expression surrounded by slashes, such as /DP/. All nodes with names matching
the regular expression (anywhere in the name) are included.

– A specification in braces, such as {3sg}{past,fut}. All head nodes with content matching the
morphosyntactic specification are included. The rules for morphosyntactic specification are in
Section ??.

– A relation between nodes, as discussed below.

• FEATURE: A morphosyntactic feature set and its morphosyntactic rule-set name, such as
Agr:apart,3sg.

• PATTERN: a syntax tree in bracket form.

• RELATIONS: a comma-separated list of relations between nodes in the syntax tree. Each relation is a
test that returns “true” or “false”. Spaces are not allowed in relations. The relations are as follows.

– isSister(NAME, NAME) Tests if the two named nodes have the same parent. In Figure 1, NP1
and V' are sisters.

– contains(UPPER_NAME, LOWER_NAME) Tests if the first named node is an ancestor of the
second one. In Figure 1, V' contains NP2.

– ccommands(UPPER_NAME, LOWER_NAME) Tests if the first named node is either a sister of the
second node or if its sister is an ancestor of the second node. In Figure 1, NP1 ccommands NP2.

– isSpecifier(UPPER_NAME,LOWER_NAME) Tests if the second named node is a specifier of the
first node, that is, its parent is the first node and its sister is an intermediate constituent. In
Figure 1, NP1 is the specifier of VP.

– containsFeature(NAME, REGEXP) Tests if the named node or any of its descendants has
contents matching the regular expression. In Figure 1, V' contains feature /Verb:pres/.

– isOccupied(HEAD) Tests if the given head node contains a surface expression. In Figure 1, NP1
contains the expression √N1.

– headPhrase(HEAD_NAME, PHRASE_NAME) Tests if the given head node acts as the head of the
given phrase. In Figure 1, V is the head of VP.

8

– isHead(HEAD_NAME) Tests if the given node is a leaf of the tree. In Figure 1, nodes NP1, V, and
NP2 are all heads.

3.3 Conditions

The condition optionally attached to a syntax rule is formed of a list of relations (no spaces allowed), each
of which must hold for the syntax rule to apply. If a relation has _ instead of a NAME, it refers to the source
of the syntax rule. This facility lets a condition filter a set of source nodes to select only the ones of
interest. If a relation has ‗ instead of a NAME, it refers to the destination for syntax rules that have both
source and destination, such as CopyFeature.

3.4 Flags

Some flags are specific to particular commands; they are discussed as appropriate. Some flags apply to any
command.

• echo: Show the command in the “Errors and messages” section of the output, for purposes of
debugging.

• once: Only run the command once if NODES expands to more than one node. Here, ”run” means
”make an effective change to the tree;” nodes where no effective change happens are silently skipped.

• atEnd: In the MoveFeature command, place the feature at the start of the destination’s features
instead of at the end.

• global: In the Spellout command, initialize the environment by collecting all the features in the
tree instead of locally for each head.

• NAME: In the Spellout command, initialize the environment by collecting all the features in the
subtree of the node with the given NAME.

3.5 Commands

The commands generally modify the current syntax tree.

• DIR−Adjoin (NODES)(NAME)

9

Here, DIR is either L or R, indicating a left or right adjoin operation. The flags implicitly include
once. The destination node is replaced by a new node with the same name but with a superscript
suffix, such as 1. The superscript is chosen to make the new name unique in the tree. The new node
has the original destination node as one child and the source node as its other child, either to its left
or right, as specified in the syntax command. The source node is replaced by a trace [t]. For
example, applying R-Adjoin(V)(VP) to the tree in Figure 1 results in the tree in Figure 2.

=>

Figure 2: After R-Adjoin(V)(VP)

• AdjoinFeature(FEATURE)(NODES)

Adds the feature as a label on the destination nodes. A label is like the content of a head node, but
it can apply to any node, and it forms a part of the node name, separated by a colon. The purpose of
this rule is to let a subsequent syntax rule be conditional on the label. For instance, applying
AdjoinFeature(pres)(NP1) to the tree in Figure 1 results in the tree in Figure 3.

=>

Figure 3: After AdjoinFeature(pres)(NP1)

• MergeRoot(ROOT)(NODES)

Adds the given root (with a prefix √) at the start of the content of the NODES, restricted to heads.
For instance, applying MergeRoot(dog)(V) to the tree in Figure 1 results in the tree in Figure 4.

• MergeFeature(FEATURE)(NODES)

Adds the feature (such as Agr:past) to the given nodes, which should be heads that already have a
surface expression. If the morphosyntactic rule set (such as Agr) is already represented in the

10

=>

Figure 4: After MergeRoot(dog)(V)

destination node, then the morphosyntactic features are added to that surface expression, with
duplicates suppressed. Otherwise, the entire feature is added to the surface expression. For instance,
applying MergeFeature(Verb:pres,active)(V) to the tree in Figure 1 results in the tree in Figure
5.

=>

Figure 5: After MergeFeature(Verb:pres,active)(V)

• CopyFeature(MR1,NODES1)(MR2,NODES2)

Copies the contents of the first morphosyntactic rule set collected from all of the first set of nodes
into the second morphosyntactic rule set in all the second set of nodes. For instance, applying
CopyFeature(Verb,V)(D,NP1) to the tree in Figure 1 results in the tree in Figure 6.

=>

Figure 6: After CopyFeature(Verb,V)(D,NP1)

• DeleteFeature(NODES,FEATURE)

11

Modifies the surface expression of all the given nodes by removing the feature. If the feature is a
morphosyntactic rule set, it is removed along with all its morphosyntactic features. If it is a single
feature, it is removed from whatever morphosyntactic rule set it belongs to. For instance, applying
DeleteFeature(V,Verb) to the tree in Figure 1 results in the tree in Figure 7.

=>

Figure 7: After DeleteFeature(V,Verb)

• DeleteNode(NODES)

Removes all the nodes, which must be phrases, along with their children. For instance, applying
DeleteNode(NP1) to the tree in Figure 1 results in the tree in Figure 8.

=>

Figure 8: After DeleteNode(NP1)

• MoveFeature (NODES1)(NODES2)

The features in the first set of nodes (the sources, restricted to heads) are moved to become or add to
the features in the second set of nodes (the destinations, restricted to heads). Proper use of this
command requires that the CONDITION restrict the destinations to a single node, although NODES2
may specify more than one node. The list that the Syntacticon generates for NODES2 are sorted in
reverse to the usual breadth-first, left-to-right order. Each source node acquires a special content,
marked by [t], indicating a trace remaining after its original content has moved. Generally, the
features are placed at the start of the feature list of the destination node; the flag saying atEnd
overrides this convention. However, a feature starting with a root (such as √N1) always goes to the
front. For instance, applying MoveFeature(V)(NP1) to the tree in Figure 1 results in the tree in
Figure 9.

12

=>

Figure 9: After MoveFeature(V)(NP1)

• MoveToSpecifier (NODES)(NAME)

Move the first valid node in the source to the specifier sibling of NAME, which must be an intermediate
constituent that has no specifier. By default the node goes to the left of the destination, but if the
destination has a right-hand sibling with the special name [Spec], then the source is moved to the
right-hand position, replacing [Spec]. The flags implicitly include once. For instance, applying
MoveToSpecifier(V)(VP) to the tree in Figure 8 results in the tree in Figure 10.

=>

Figure 10: After MoveToSpecifier(V)(VP)

• Spellout

This syntax rule expands all features in heads, applying morphophonological rules to lexemes in those
features. It therefore refers to information about those rules; we describe those sections of the input
in detail later. For now, we only present the necessary information to apply Spellout to the tree in
Figure 1.

Roots
boy: boj
see: «seg» si «morph» pres | «seg» sɔ «morph» past
dog: «seg» dɔg

Applying Spellout to the tree in Figure 1 results in the tree in Figure 11.

• Apply (RULEBLOCK)(NODES)

13

=>

Figure 11: After Spellout

This syntax rule is usually applied after Spellout to apply a particular block of rules, typically
phonological rules, to the given head nodes. As a special case, NODES can be the word flattened, in
which case this rule is applied to the flattened (non-tree) current form.

• Flatten

This syntax rule is usually the last one. It collects all the «seg» content of the heads in left-to-right
order and results in a string, not a tree. Figure 12 shows the result of Flatten on the tree in Figure
11.

=> boj siz dɔg

Figure 12: Result of Flatten

• Crash (message)

This syntax rule is for debugging. It causes the Syntacticon to skip all remaining syntax rules (except
for Spellout and Flatten). It usually is associated with some condition.

• Expect TREE WHEN

This syntax rule is for debugging. It compares the given tree (which should be in bracketed form)
against the current tree. If it succeeds, the given tree is shown in green (in the Results region of the
output). If it fails, the tree is shown in red. This result does not affect the current tree in either case.
The optional WHEN specifies the name of the result group as shown in the result region, typically
indicating the wild-card replacements (if any) or a serial number such as 1.3. If there is a WHEN
specification, the Expect command only applies to that group.

14

4 Preamble

The preamble input section contains several regions, which are separated by a blank line.

4.1 Phonology

The Syntacticon associates segments with features. A segment is typically an IPA symbol, such as ɛ.
Features are those discussed by Hayes [Hayes (2009)], including syllabic, nasal, and many more.
Features of a segment have a polarity, which can be positive (ɛ is [+syllabic]), negative (ɛ is
[-nasal]), unlicensed (ɛ is [0strident], or unspecified (one can introduce a symbol with [⊗dorsal].

The morphophonological rules in the Syntacticon generally produce segments that are IPA characters.
However, many languages require IPA diacritics, such as ú, and some theories make use of custom
phonemes. The Phonology section introduces such symbols. This section of the preamble starts with the
word Phonology on a separate line and continues on the subsequent lines.

• Inventory: This keyword is followed by a space-separated list of IPA symbols (and diacritics if
needed) that defines a restricted inventory of symbols, replacing the full inventory that the
Syntacticon starts with. If the forms only use IPA symbols without diacritics, this specification is not
necessary. But if any segments need diacritics, then this line is required and must include all
segments, including standard IPA symbols, along with any diacritics, such as Inventory: a á ã b
t x. Also include in the inventory any unusual punctuation symbols that you use, such as ✥.

If a rule would produce a segment outside the inventory, the rule is ineffective; any changes (even
unrelated to the failed change) are abandoned, but the Syntacticon generates an error message.

The shorthand <all> introduces all IPA symbols without diacritics. So one can write Inventory:
<all> á ã.

Another shorthand adds diacritics that are associated with features to a set of IPA symbols.

It has this form: <a,i,u,ɪ><tone_high,long;tone_low> The available features include secondary
articulations, such as velar. Spaces are not allowed in this shorthand. All the IPA symbols in the
first delimited section (here a,i,u,ɪ) are entered into the inventory along with diacritics specified in
the second section. That section has semicolon-delimited subsections (tone_high,long and
tone_low). Each subsection has features (they can be either ordinary features or secondary
articulations, such as velar).

Each subsection is independently applied to the given IPA symbols. If it lists n features, the result is

15

all 2n combinations of those features. In the example above, the result is a á aː áː i í iː íː u ú
uː úː ɪ ɪ́ ɪː ɪ́ː à ì ù ɪ̀ .

• Define: This keyword introduces custom phonemes. It is followed by a space-separated list of
letters, typically capital Latin letters (but not XVCSU, which have special meaning) or Greek letters
(but not αβγδ, which are used for variable polarities). These letters are intended to be used as
morphophonological segments in underlying and intermediate, but not surface, forms. Each letter
may be associated with a bracketed list of features with polarity, such as A[+syllabic,-low]. If a
feature is omitted, it is treated as underspecified. Alternatively, a new letter may inherit all the
features of an existing phoneme, with modifications, such as A=a[+tense,0tone_low]. The
polarities may be any of 0+-⊗.

The Syntacticon automatically introduces any related features. For example, [+low] implies
[-high], and [+round] implies [+labial].

The features may include geometry clusters (see below), but only with polarity ⊗.

Don’t include custom phonemes in the inventory specification.

• Redefine: This keyword is followed by a single IPA symbol representing a segment, followed by a
bracketed list of features with polarity. This specification overrides the usual feature list for this
segment, but the segment retains any features not mentioned in the list. The features may include
geometry clusters (see below), but only with polarity ⊗.

• Disallow: This keyword is followed by a space-separated set of patterns, much like the patterns in
targets of morphophonological rules. Any rule that would result in a form that matches one of these
disallowed patterns fails to apply.

• Delete: This keyword is followed by a bracketed list of features (without polarity) that the
Phonomaton then removes from its set of features. Such features may not appear in any rule.
Removing features can make multiple segments appear identical; for example, Delete: voice makes
t and d indistinguishable.

• Geometry: A geometry cluster is a set of features, typically related in some way to each other.
The Phonomaton predefines several useful geometry clusters:
name feature set
cor coronal anterior distributed strident
dor dorsal high low front back tense
lab labial labiodental round
place cor dor lab
lar constr_gl spread_gl voice

16

You can introduce a new geometry cluster with the keyword Geometry: followed by a new name, =,
then a space-separated list of features. For instance, Geometry: StrTense = strident tense
introduces a new geometry cluster called StrTense that refers to the two features, strident and
tense. New geometry clusters introduced by Geometry: may refer to these predefined geometry
clusters as well. Geometry clusters can often be treated just the same as individual features. One
such use is in in Section ?? when we discuss the pseudo-polarity ∀.

4.2 Roots

This section of the preamble begins with Roots on its own line, followed by subsequent lines. Its purpose is
to present the principal parts of vocabulary that the syntax rules might need. When a syntax rule refers to
a lexeme, such as √see, the Roots section of the preamble specifies its details. The details always include
the relevant segments in the «seg» tier. They can also include category information in a «cat» tier, such
as noun or verbE (for e-stem Latin verbs),

Simple lexemes, such as English nouns, can have short descriptions:

boy: boj

The tier «seg» is implicit.

Lexemes with multiple principal parts generally have morphological restrictions indicated by bracketed
constraints in the «morph» tier:

see: «seg» si | «seg» sɔ «morph» past | «seg» seen «morph» pastPart
The Syntacticon uses the morphological information in choosing morphophonological rules, as discussed in
Section ??orphophonological.

4.3 Morphology

This section of the preamble begins with Morphology on its own line, followed by subsequent lines. Its
purpose is to specify morphosyntactic classes and their properties, such as

Tense: past pres future
Pol: neg pos
Voice: active pass
Aspect: perf prog

This information allows the Syntacticon to generate multiple syntax trees with wild cards and to select
morphophonological rules within rule blocks.

17

A morphosyntactic class (MC), such as Aspect, can have one or more binary values, such as +causative
+repetitive. If there are n binary values, then all 2n combinations exist for this property, such as
+causative,+repetitive, +causative,-repetitive, -causative,+repetitive, and
-causative,-repetitive.

An MC name can have the suffix ? to indicate that its presence is optional. This feature is generally used
for single-value MCs, and is therefore equivalent to using a binary value indicated by +.

5 Morphophonological rules

5.1 Overview

The input region of morphophonological rules is organized into blank-line-separated rule blocks. Each
rule block is prefaced by a single line indicating its block name, followed by an optional colon. The
content of each block is a list of rewrite rules that convert forms. Most morphological rule blocks are
selective: the Syntacticon selects at most one rule to apply. Other blocks are inclusive; they are marked
with (all) after their name.

The Syntacticon applies rule blocks in response to the Spellout and Apply syntax rules. The form that is
input to a block is given in the current syntax tree. In an all block, each rule provides input to the next
one in the block.

A rule may have an optional rule name, which can be any string followed by a colon. Rule names are only
useful for documentation; they need not be unique.

Following the name, a rule has a list of components. For instance, this rule

future−m: «cat» {conj3,conj4} «morph» {1sg} {future} «seg» 0 −> m / _>

has three components, each prefaced by a tier name in guillemet marks (« »). Some components are
conditions, such as the «cat» and «morph» components. Others are changes,) such as the «seg»
component. A rule only applies if all its conditions are satisfied. Here, the conditions are satisfied if the
«cat» tier, which contains information from the lexicon, has either conj3 or conj4 and the «morph» tier,
which contains features from the syntax tree, has both 1sg and future. If the conditions are satisfied, the
Syntacticon attempts all change components. In this example, the target, is the empty string in the «seg»
tier, represented by 0. This target matches between all segments of the current form. The replacement is
m. The context is _>, which restricts the target to be followed immediately by the end of the form. In
other words, this rule puts the segment m at the end of the current form if the lexeme category is either

18

conj3 or conj4 and the morphological context is both 1sg and future.

If the current form does not match the target, the rule has no effect. Details of change components are in
Section 5.3.

5.2 Conditions

The future-m rule above has two tier-based conditions. The first is in the «cat» tier with the single
constraint {conj3,conj4}. This constraint is only met if that tier contains either conj3 or conj4. The
second condition is in the «morph» tier; it has two constraints, which are only met if that tier contains
both 1sg and the future.

Within a constraint, a value may be negated, such as {-conj4}. A negated value matches only if that
given value is not in the current form.

In addition to a bracketed list of values, a constraint may be a bracketed pattern. For instance, the
constraint {/1/} in tier «morph» matches 1sg and 1pl, but not 3sg.

If all the constraints in a rule are met by the current form, the rule is available. The Pāṇini precedence
of the set of constraints in a rule is

∑
j 1/sizej , where the size of a constraint is the number of values it

contains. If a rule has no constraints, its Pāṇini precedence is a minimal positive number. The future-m
rule has Pāṇini precedence 2.5. As it applies a selective block to a form, the Syntacticon selects that
available rule with the highest Pāṇini precedence. If there is a tie, the Syntacticon complains about the
ambiguity.

Occasionally one needs to artificially raise the Pāṇini precedence of a constraint to avoid ambiguity. The
easiest way to do that is to duplicate one or more of the constraints.

An entire rule block may be subject to conditions. The conditions are placed after the rule name, the
optional colon, and the optional (all) designation. They must start with a tier name, such as «morph».
The entire block is skipped if the conditions fail.

5.3 Changes

Changes are applied to the current form, typically to the «seg» tier. A rule may have several changes,
which the Syntacticon applies sequentially to the form. We say that a change is effective if its target and
environment match the form and if its replacement modifies the form. If any of the changes in a rule fails
to be effective, all the changes are blocked and the form remains as it was.

19

A change component has these constituents.

• tier, such «seg». If a rule has only one component, then «seg» is assumed.

• target, such as 0. Targets can be much more complex, such as C¹V²[+long].

• replacement after an arrow (→ or ->), such as [-tense]

• optional environment introduced by ‘/’, such as _>. The environment must have a single
underscore ‘_’. The (optional) material before the underscore constitutes the previous context, and
the (optional) material after it constitutes the subsequent context.

• options introduced by ‘//’ that modify the way the Syntacticon applies the rules. By default, a rule
applies every place in which it can within a form, even if those places overlap. Options override this
behavior.

– once: The rule applies only once, in the leftmost place in the form, even if it could apply in
other places as well. For example,

intensify: V → [−tense] // once

changes ibik to ɪbik, modifying only the first i.
– iterate: The rule applies repeatedly until it makes no further changes. For example,

spreadTense: [+syllabic] → [+tense] / _C[+tense] // iterate

changes ɔfɪfi to ofifi; without iteration, the result would be ɔfifi.
– exclusive: The rule applies in all places, left to right, but suppressing later applications if they

apply in a region matched by an earlier application. For example,

Simple onset: ∅ → ❬ / _C?V // exclusive

changes abracadabra to ab❬ra❬ca❬dab❬ra; without exclusion, the result would be
❬ab❬r❬a❬c❬a❬d❬ab❬r❬a.

The target and the environment constituents are composed of a sequence of elements, the concatenation
of which is matched against the current form. A change matches a form if its target, surrounded if specified
by the previous and subsequent contexts, matches the form. It can match in more than one place in the
form. If a rule matches a form, the Syntacticon replaces all sequences in the form that match the target
with the replacement (unless this behavior is overridden by an option such as once or exclusive).

5.3.1 Elements

An element may be

20

• an IPA letter, with optional diacritics, representing a segment, such as ʁ or p͡f or á, Such an
element matches the identical segment in the form.

• a feature list: a bracketed, comma-separated list of features with polarities, such as
[+consonantal,-continuant]. The polarities are usually + or -; we discuss other polarities in
Section ??. A feature list matches any segment in the form that agrees on the given features,
ignoring any feature that it does not explicitly list.

• a shorthand: V for “vowel”, C for “consonant”, X for “any defined segment”, S for “white space”, and
U for “subscript”. Subscripts arise in autosegmental phonology, discussed in Section 5.5.

• Null: ∅ (Unicode 2005; one may use the ASCII 0 instead.) The null element matches between
segments in the form.

• a custom phoneme, introduced by a Define clause in the Phonology section of the Preamble.

• a punctuation symbol. These symbols need not be listed in the inventory.
Symbol Unicode Conventional meaning
= u003d enclitic
⇒ u21d2 proclitic
‑ u2011 affix symbol (not a minus sign)
' u20c8 stress symbol (not an apostrophe)
⟨ u27e8 left infix boundary
⟩ u27e9 right infix boundary
≣ u2263 juncture
❬ u276c left phrase boundary
❭ u276d right phrase boundary
~ u0073 reduplicant boundary

• various components of Perl pattern-matching regular expressions (regexps), such as parentheses and
repetition marks (*, +, and ?).

• abbreviations for more complex Perl regexps: ^ (the start of the form), $ (the end of the form), #
(the start or end of a word in the form), < (the start of a word), > (the end of a word).

• Ellipsis extends Perl pattern matching. The expression ❬...❭ matches any form surrounded by the
given brackets, even if there are enclosed bracketed expressions. The brackets may be any Unicode
bracketing pair except for parentheses and { }, which have other meanings. Some examples: ⁅ ⁆ and
⌊ ⌋. Similarly, the expression ❬...abc❭ matches any bracketed expression that contains, in order, a,
b, and c (which must be IPA segments), possibly with other intervening segments. For example,
consider these rules

21

hx: ⟨...hs⟩ → ∅
ha: ⟨...ha⟩ → ∅
hn: ⟨...hn⟩ → ∅

with current form this⟨⟨that⟩then⟩. The hs rule makes no change. The ha rule results in the form
this⟨then⟩ . The hn rule results in this.

• Indexing extends Perl pattern matching. A pattern in the target may include a superscript (limited
to ¹²³⁴) following a segment-like part of the target to index it. A segment-like part is any of these:

– A segment: an IPA symbol with optional diacritics

– A bracketed list of features, such as [+voice,-syllabic].

– A parenthesized region, such as (θɪs).

– A shorthand: V, C, or X. (Shorthands are implicitly parenthesized.)

The index can then appear in the change to refer back to the part of the form that matches the
indexed part. For example,

reduplicate: <(CV)¹C² → ²ə¹¹²

changes fonim to nəfofonim.

• First occurrence extends Perl pattern matching to match the first occurrence of a pattern in the
target or subsequent context. There are two versions of the feature:

– f([+coronal]&[+trill]) matches the first [+coronal]; if there is none, the pattern does not
match. If it finds an appropriate segment, it then succeeds only if that segment also matches
[+trill]. The outer parentheses are required.

– f[+coronal] matches the first [+coronal]; if there is none, the pattern does not match. The
pattern may be surrounded by parentheses or brackets; Shorthands V, C, and X are implicitly
parenthesized.

For example,

Rule1: x → g / _f([+coronal]&[+trill])a
Rule2: x → g / _f[+coronal]a

If the underlying representation includes axaaalaa and axaaaraa, then Rule1 only applies to
axaaaraa, because the first +coronal after x (l or r in the two underlying representations) must
also be +trill, which is only true of r. However, Rule2 applies to both underlying representations.

22

5.3.2 Replacements

The replacement may be

• ∅; such a replacement simply deletes the matching target.

• a sequence of IPA letters with optional diacritics.

• a bracketed set of features, such as [+voice,-tense]. Such a replacement is only appropriate if the
target matches a single segment. It modifies that segment by changing the polarities of the given
features as shown, if possible. If no valid segment results, no change occurs. The Syntacticon accepts
several special polarities that only apply in replacements; we discuss them in Section ??.

5.4 Disjunctive rules

A morphophonological rule can be conditioned on whether the current form matches a given pattern. For
example,

pluralize: IF [+strident]> THEN ∅ → əz / _> ELSE ∅ → z / _>

changes kɪs to kisəz and kɪd to kɪdz. The condition may be any pattern. The THEN and ELSE parts may
be any rules, including environments and options. The ELSE part is special: it may be omitted (in which
case the condition failing leads to the rule not triggering) and it may be, recursively, a disjunctive rule.
The THEN part must not be disjunctive.

A similar condition is to place an UNLESS-DO sequence in the change after the tier name. For example,

pluralize: UNLESS [+strident]> DO ∅ → z / _>

changes kid to kɪdz but does not modify kɪs.

Disjunctive rules are intended for morphological rules, building morphological forms that depend on the
phonology of stems. However, they are also valid for phonological rules.

5.5 Autosegmental phonology

The Syntacticon is able to deal with autosegmental phonology, first introduced by Bird and Ladd (1991).
Besides the standard tiers, «seg», «morph», and «cat», one can introduce other tiers, in particular,
«tone». The roots may include the «tone» tier. For example, the root in the following example contains
both a «seg» tier and a «tone» tier.

23

utterance: «seg» gaga da bala ma «tone» HL N LH HL

Only a restricted set of symbols may appear in the «tone» tier: THMLBthmlbN. These refer to tones top,
high, medium, low, and bottom, then their floating versions, then unassigned.

Autosegmental rules often have multiple change components. For example,

noDuplicateVowels: «seg» V¹ → ∅ / ¹_ «tone» H → N

simultaneously removes the second of a pair of identical vowels and reduces its tone to unassigned, but only
if its tone was high.

In addition to ordinary change components, multiple-tier changes also respond to special autosegmental
rules. Many of these rules take flags, signalled by --. We illustrate these rules by considering the following
morphophonological rule block:

Sandhi (all)
deduplicate: «tone» H → N / _S*H
Associate:
Spread:
Realize: --null=tone_low

applied to this form, which contains an entire utterance:

«seg» gaga da bala ma «tone» HL N LH HL

The Syntacticon shows the results of this theory as shown in Figure 13. It aligns words to express their
correspondence.

Figure 13: Autosegmental example

24

The deduplicate rule applies to the «tone» tier, replacing the LH (corresponding to bala) by LN. The
output shows this result in the Sandhi row.

The other rules are examples of the following.

• Associate: --tiers=tone-seg --dir=L-R --features=[+syllabic] --endpoint=# --max=3
This rule indicates which tiers to associate, the direction of association within a chunk (either L-R
(the default) or R-L), to which segments in tier2 to associate (by default, vowels), how to separate the
chunks (by default, by word boundaries), and how many elements of tier1 at most to associate with a
segment in tier2 (by default, 3). Traditionally, autosegmental theories display links between tiers by
drawing lines. Instead we show association by a common subscript in two tiers. So the first a in the
«seg» tier is associated with the first H in the «tone» tier. The N tone is always associated with
subscript 0. Often the number of tones is identical to the number of vowels. However, the last word
ma has two tones, HL. The result has two subscripts on the «seg» tier: ma₄₅.

• Spread: --tier=seg --dir=L-R --endpoint=#
This rule spreads associations in the given tier in the given direction across 0-subscripted elements.
In our example, it spreads L₃ to associate with both vowels in bala, changing ba₃la₀ to ba₃la₃ in
the «seg» tier.

• Realize: --tiers=tone-seg --null=tone_low
This rule uses tier1 (typically «tone») to realize the associated values in tier2 (typically «seg»).
Unassociated segments acquire the value in the --null option, which has no default value and must
be stated explicitly. In our example, the result is gágà dà bàlà mâ. The a in da is associated with
the N tone, so it becomes tone_low. The final a is associated with two tones, H and L, so it acquires
a falling tone.

The Syntacticon recognizes three autosegmental rules not covered by the example in Figure 13. We
demonstrate them by considering the following morphophonological rule block:

Sandhi (all)
Associate:
glide formation: «seg» [+syllabic,+high] → [−syllabic] / _Ua
Reassociate: --max=2
Join:
Split:
Realize: --null=tone_low

applied to this form, which contains an entire utterance:

«seg» ti tiari «tone» L LHL

25

The glide formation rule uses the abbreviation U in the environment; this abbreviation matches any
numeric subscript, such as those introduced by Associate. Figure 14 shows the output for this theory.

Figure 14: Autosegmental example

• Reassociate: --tiers=tone-seg --dir=L-R --features=[+syllabic] --endpoint=#
--max=1
This rule moves associations that no longer apply to later (if L-R) or earlier (if R-L) segments. An
association no longer applies if a rule has changed its segment so it no longer satisfies the features
parameter. In our example, after the glide formation rule, link 2 is now associated with j, which
is not syllabic. Reassociate fixes that problem. It is necessary to override the default max=1,
though, to allow two tones to link to the a in tjari, resulting in tja₂₃ri₄.

• Join: --tiers=tone-seg
This rule places information from tier1 into tier2, resulting in just one tier, here called «tone-seg»
for the default tiers. The purpose is to combine the tiers into a single pseudo-tier so further rules can
refer to the combined content. In our example, each subscript in the «seg» tier is followed by the
associated tone in the «tone» tier.

• Split:
This rule undoes the effect of the Join command, creating the original two tiers, so far as possible. It
takes no options. In our case, no rules intervene between Join and Split, and the Syntacticon

26

therefore re-creates the previous two-tier value.

6 User interface

The Syntacticon is an interactive web site with many features that assist the user in preparing syntactic
theories. The easiest way to see the features is to go to the Library section and click any of the green
buttons. The Syntacticon then accepts the theory you have selected and presents its results. The following
discussion describes the result page from top to bottom.

6.1 General

Many input regions contain a show/hide button, which lets you toggle whether or not the region is shown.

There are resubmit buttons in several places. These buttons submit the current theory. They do not
refresh the material in the lower part of the page (Library, IPA chart, Segments and features). While the
Syntacticon is working, the background of the page turns green; it reverts to its standard color when the
results are ready. You can also invoke the resubmit function by typing <ctrl-enter> anywhere in the page.
All submissions are logged for debugging purposes.

Some input regions, such as Morphophonological rules, include a Keyboard button that brings up a
frame with buttons for characters that are not in the ASCII set, particularly IPA symbols and features
that give rise to diacritics. Clicking any of these buttons places the corresponding character or diacritics at
the current cursor position in the associated region. The Close button at the bottom dismisses this

frame, as does a second click the Keyboard button.

6.2 Quick links

Right after the banner is list of sections. You can click any of the items to move to the named section,
which is helpful if there are lots of results that you want to quickly move past.

6.3 Discussion

This section only appears if the theory includes literate comments. It collects all the literate comments
from the theory (lines starting %! in the syntax rules and morphophonological rules). A literate comment

27

follows the rule it documents; literate comments at the head of a section are generic to the whole section.

6.4 Errors and messages

This section only appears if the theory is malformed in some way. The Syntacticon tries to continue even
in the presence of errors, but it ignores rules that have errors.

6.5 Results

The pop out button generates a separate window showing the results, which lets you examine results
while you look at other things such as the syntax rules in the main screen. The results window updates
when you resubmit the theory.

The results are organized in groups. Each syntax pattern in the input has its own group, with a subgroup
for each substitution of all() in that pattern.

Within a group are lines for the original syntax tree and for the result of each syntax rule that modifies the
tree. Syntax rules that do not apply (for example, because their condition is not met) do not generate a
result line; rules that apply more than once (for example, when the source pattern refers to several nodes)
generate multiple result lines.

Figure 15 shows the line that results from invoking AdjoinFeature(pres)(NP1), as shown in Figure 3.

Figure 15: Result of AdjoinFeature(pres)(NP1)

A result line has two parts. On the left is a heading based on the syntax rule as it applies. In figure 15, the
heading is AdjoinFeature-NP1. If you hover the cursor over this heading, you see the literate comment
associated with this rule, if any.

On the right is either a bracket-form representation of the resulting syntax tree or the «seg» tier of the
result of applying a morphophonological rule. In figure 15, this representation is [VP [NP1:pres √boy]
[Vʹ [V √see Verb:past] [NP2 √dog]]]. If you hover the cursor over this section, you see the name of
the rule. If the rule has no name, the Syntacticon invents a name based on the rule itself.

If you click the bracket-form representation, the Syntacticon opens a window with a graph of the tree. If

28

you resubmit the theory, that graph acquires a red line at the bottom, indicating that it might no longer
apply to the updated results. You can dismiss the graph window by typing q in that window.

After the syntax rule Flatten, the right side shows the content of all the «seg» features, collected in
left-to-right order from the tree. If you click this information, the Syntacticon sends the IPA to a
text-to-speech program and plays the resulting sound. The result is not necessarily of high quality. In
addition to a media-control interface, which allows you to replay the sound, the Syntacticon also presents a
new button, spectrogram , which you can click to send the resulting sound file to a Praat routine to
generate a spectrogram of the sound. The result can be useful in demonstrating how spectrograms look.

6.6 Metadata

This input region contains optional information about the syntax theory. Its fields, with sample values, are
these:
Language = English
Date = 2024−12−3
Family = Germanic, Indo−European
Code = stan1293
Sources = various books
Implementation = Jane R. Doe
Details = active and passive forms
Complexity = 5

The Code is, by convention, the Glottolog code [Hammarström et al. (2020)]. The Complexity is a guess at
the difficulty of constructing and understanding the theory, on a scale from 1 to 5.

6.7 Syntax patterns

This input region is described in detail in Section 2.

6.8 Syntax rules

This input region is described in detail in Section 3. The suggestions button opens or closes a short
summary of the syntax rules.

29

6.9 Morphophonological rules

This input region is described in detail in Section 5.

6.10 Preamble

This input region is described in detail in Section 4.

6.11 Function buttons

The row of buttons after the Preamble provides several ways to enter a theory. The Submit button
causes the Syntacticon to evaluate the current theory. It does so without reloading the whole page, so any
changes you have made to an input region you can usually undo with <ctrl-Z>. The Refresh-submit
button also submits the theory, but it also refreshes the whole page. This function is seldom needed, but it
is helpful if the Syntacticon has gotten confused (which would be a software bug). You can use the
browser’s “back” arrow to return to the previous page.

The checkbox show all tiers is useful for debugging; it causes the results lines to show not only the
«seg» tier but any other tier provided by the lexicon.

The Clear button empties all the input regions.

The Download button formats the theory and downloads it to the browser as a text file on your

computer. You can edit this file and then uploaded it by selecting it with the Browse button and then

using any of the Submit buttons (or the <ctrl-enter> equivalent).

6.12 Sample rules

We have found many morphophonological rules to be helpful. Some of these are visible if you expand
Sample rules. The rules are categorized by general type, such as Syllabification and Footing. Each rule
is presented as a button, such as Labialization: C → [+round] . Clicking a rule adds it to the end of
the current block of morphophonological rules. You most likely want to modify the rule to fit your theory.

30

6.13 Library

We have built a syntax theory for English syntax, and we plan to build others. These theories are available
if you expand Library; they are arranged in a table. The Search input lets you restrict the table to lines
containing all the (space-separated) strings you type in. Each table entry names a language and names the
phenomena the theory explores. When you click its green button, the Syntacticon evaluates the associated
theory.

For pedagogical and testing purposes, some theories in the Library might be password-protected, in which
case the theory name includes a lock symbol. The passwords are kept on the server.

6.14 IPA chart

The IPA chart is a valuable tool to allow you to see the features underlying every IPA symbol, to compare
the features of several symbols, to select symbols based on features, and to choose restricted inventories.

The chart is divided into Vowels, Consonants, Other symbols (like ʍ), Affricates (like ʧ), and
Doubly-articulated stops (like k͡p). The layout of the vowels and consonants is meant to reflect standard
organization, separating characteristics such as tongue positions (such as front for vowels and dental for
consonants).

When you click any entry in the chart, it is selected and acquires a colored background, and a light blue
pop-out on the right side of the page shows its features. Click the entry again to unselect it. You can click
the Features region of that pop-out to copy the list of features with polarity into your clipboard; you can
then paste the list into a Define rule in the preamble.

If you click multiple entries in the IPA chart, the pop-out shows the features that distinguish those entries.
For instance, if you click t and d, you see that t is -voice, whereas d is +voice. The list of features they
share is also shown (and can be copied by a click).

You can select all IPA symbols by clicking Select all , and you can unselect all IPA symbols by clicking

Clear selection .

If you have selected several IPA entries, you can click Make inventory at the top of the chart. IPA entries
in the inventory are shown with blue-outlined cells, and a new or replacement Inventory line appears in
the Preamble. Once you have built an explicit inventory, selecting entries shows how those entries are
distinctive within the inventory; that is, if they form a natural class. For instance, if the inventory contains
only p, b, t, and d, then selecting t and d causes the blue pop-up to show not only that they differ with

31

respect to voice, but that they have the distinction within the inventory of being -labial. Similarly, p
and t are have the inventory-based distinction -voice. However, p and d do not form a natural class.

Below the IPA chart is a Select by features button, which leads to a pop-up menu listing every
phonological feature. Each can be asserted to have polarity +, -, 0, or any. Initially, all are set to any. You
can assert any combination of features and then click Select (at the end of the list, which scrolls up and
down). For instance, if you select +distributed -strident +sonorant, you see that ɲ, ɹ, and ʎ are
selected in the chart, and the associated blue pop-out frame shows their features.

6.15 Segments and features

The chart of segments and features is an alphabetical list containing a row for each segment and a column
for each phonological feature. You can select segments here just as in the IPA chart; in fact, a selection in
either is also displayed in the other and brings up the blue pop-out. The header showing the features also
emboldens those features for which the selected segments differ.

7 Acknowledgements

The IPA charts are based on ones at
www.internationalphoneticalphabet.org/ipa-sounds/ipa-chart-with-sounds/. The
text-to-pronunciation tool is based on code at ipa-reader.xyz/ by Katie Linero. The graphing tool for
syntax patterns (mshang.ca/syntree) is by Miles Shang

The authors coded the Syntacticon in Perl (Wall et al., 2000). The code is available under a Creative
Commons CC-BY license.

References

Bird, S. and Ladd, D. R. (1991). Presenting autosegmental phonology1, Journal of Linguistics
27(1): 193–210.

Hammarström, H., Forkel, R., Haspelmath, M. and Bank, S. (eds) (2020). Glottolog 4.2.1, Max Planck
Institute for the Science of Human History, Jena.
URL: https://glottolog.org/

www.internationalphoneticalphabet.org/ipa-sounds/ipa-chart-with-sounds/
ipa-reader.xyz/
mshang.ca/syntree

32

Hayes, B. (2009). Introductory Phonology, Wiley-Blackwell, Hoboken, NJ.

Wall, L., Christiansen, T. and Orwant, J. (2000). Programming Perl, ” O’Reilly Media, Inc.”.

Index

autosegmental phonological rule
Associate, 24
Join, 25
Realize, 24
Reassociate, 25
Split, 25
Spread, 24

autosegmental phonology, 22
available rule (morphophonological rule whose

constraints are met), 18

block name (of a rule block), 17
brace form (representation of a syntax tree), 5
bracket form (representation of a syntax tree), 5

change (component of a morphophonological rule, 17
component (of a morphophonological rule), 17
condition (component of a morphophonological

rule), 17
context (constituent of a change, introduced by /),

17
custom phoneme (phoneme like δ, introduced by

Define), 15

effective change (of a morphological rule
application), 18

feature (characteristic of a segment, such as
syllabic), 14

feature (of a syntax-tree node), 4
flags (on autosegmental phonological rules), 23
flags (on syntax rules), 8
form (the input and output of a

morphophonological rule), 17

geometry cluster (set of features, such as cor), 15

head (kind of syntax-tree node), 4

inclusive rule block, 17
intermediate constituent (kind of a syntax-tree

node), 4
IPA chart (region of the web page), 30

label (on a syntax-tree node), 9
lexeme unit (part of a surface expression, marked

with √), 5
literate comments, 6

Metadata (region of the web page), 28
morphological unit (part of a surface expression), 4
Morphophonological rules (region of the web page),

17
morphosyntactic class (MC, set of morphosyntactic

properties), 17
morphosyntactic property, 17

name (of a syntax-tree node), 4

Pāṇini precedence (indication of the level of
constraint of a morphophonological rule),
18

phonology command
Define, 15
Delete, 15
Disallow, 15
Geometry, 15
Inventory, 14
Redefine, 15

phrase (kind of a syntax-tree node), 4
Preamble (region of the web page), 14

replacement (constituent of a change), 17

33

34

Results (region of the web page), 27
rule block (section of a morphophonological rules),

17

segment (smallest fragment in the segmental tier,
typically an IPA symbol), 14

Segments and features (region of the web page), 31
selective rule block, 17
surface expression (content of a head node), 4
syntax command

AdjoinFeature, 9
Apply, 12
CopyFeature, 10
Crash, 13
DIR-Adjoin, 8
DeleteFeature, 10
DeleteNode, 11
Expect, 13
Flatten, 13
MergeFeature, 9
MergeRoot, 9
MoveFeature, 11
MoveToSpecifier, 12
Spellout, 12

Syntax patterns (region of the web page), 4
Syntax rules (region of the web page), 6

target (constituent of a change, introduced by →) ,
17

wild card (in a syntax pattern), 5

	Introduction
	Syntax patterns
	Format
	Representation
	Multiple syntax patterns and wild cards

	Syntax rules
	Format
	Conventions
	Conditions
	Flags
	Commands

	Preamble
	Phonology
	Roots
	Morphology

	Morphophonological rules
	Overview
	Conditions
	Changes
	Elements
	Replacements

	Disjunctive rules
	Autosegmental phonology

	User interface
	General
	Quick links
	Discussion
	Errors and messages
	Results
	Metadata
	Syntax patterns
	Syntax rules
	Morphophonological rules
	Preamble
	Function buttons
	Sample rules
	Library
	IPA chart
	Segments and features

	Acknowledgements
	References
	Index

