Note: This is longer than the actual midterm will be. It covers only a sampling of topics that might be on the exam.

1. (a) Prove that if $f(n)$ and $g(n)$ are polynomials with the same degree, then $f(n) \in \Theta(g(n))$.
 (b) Prove that for every real number k, $n^k \in o(2^n)$.

2. (a) In this question only you may use any theorems proved in class, but say how they are being used and show that any hypotheses to the theorem are true. Find a Θ estimate for $T(n)$ if:

 $$T(n) = 8T(\lceil n/3 \rceil) + n^2 \log(n)$$

 (b) Explain why the Master Theorem for divide and conquer recurrences cannot be used to solve the recurrence

 $$S(n) = S(n/2) + \log(n)$$

 (c) Explicitly (no big-O) solve the recurrence in part (b) when n is a power of 2.

3. Consider the following problem:

 Instance: A list $X = x_1, \ldots, x_n$ of integers

 Output: The index of the largest integer in X.

 (a) Give a pseudocode description of an efficient iterative (nonrecursive) algorithm that solves this problem.
 (b) Give a formal correctness statement for your algorithm and prove the algorithm is correct using the method of invariants.

4. Give a high level description of a data structure for maintaining a set of integers with the usual operations $INSERT$, $DELETE$, and the new operation

 $STAT(k$: integer): return the integer with rank k (the kth largest integer).

 You may describe your data structure by saying how to modify data structures we have discussed in class, and just say briefly in words how $INSERT$ and $DELETE$ must be modified. Give pseudocode for $STAT(k)$. All operations should take time $O(\log(n))$, where n is the number of integers in the set.

5. (a) Give asymptotic estimates for the worst case complexity and average case complexity for basic QuickSort.
(b) State a sharp lower bound on the number of comparisons used by a comparison based sorting algorithm.

(c) Let H be a min-heap with n elements, stored in an array in the usual way. Give a pseudocode description of an efficient implementation of the operation $INSERT(H, x)$ that inserts item x in heap H.

6. Give a high level description of a data structure that supports the following operations:

- $Insert(x)$: insert key x in the structure only if it is not already there.
- $Delete(x)$: delete key x from the structure if it is there.
- $Next(x)$: return a pointer to the smallest key in the structure that is larger than x (or a NIL pointer if x is the largest key in the structure).

You may refer to structures and algorithms we have described in class in describing $Insert$ and $Delete$. All operations should take time $O(\log(n))$.

7. Insert in order into a red-black tree: 7, 3, 2, 9, 11, 15. Show the tree after each insertion.

8. (a) Describe an efficient algorithm that determines whether a given undirected graph $G = (V, E)$ is a tree.

(b) Analyze the running time of your algorithm if the graph is represented by an adjacency list and if the graph is represented by an adjacency matrix.