Please show all steps in your work. Please be reminded that you should do your homework independently.

1. (10 points) Verify that the polynomials
 \[p(x) = 3 + 2(x - 1) + 4(x - 1)(x + 2), \]
 \[q(x) = 4x^2 + 6x - 7 \]
interpolate the data
 \[
 \begin{array}{c|ccc}
 x & 1 & -2 & 0 \\
 y & 3 & -3 & -7 \\
 \end{array}
 \]
and explain why this does not violate the uniqueness part of the theorem on existence of polynomial interpolation.

2. (10 points) Given the data
 \[
 \begin{array}{c|cccc}
 x & 1 & 2 & 2.5 & 3 & 4 \\
 y & -1 & -\frac{3}{4} & \frac{5}{12} & \frac{5}{3} & 25 \\
 \end{array}
 \]
Find an interpolating polynomial using Newton’s method.

3. (10 points) Find the polynomial \(p \) of least degree that takes these values: \(p(0) = 2, \)
 \(p(2) = 4, \)
 \(p(3) = -4, \)
 \(p(5) = 82. \)
 Use divide differences to get the correct polynomial.
 It is not necessary to write the polynomial in the standard form \(a_0 + a_1x + a_2x^2 + \ldots. \)

4. (10 points) Show that if a function \(g \) interpolates the function \(f \) at \(x_0, x_1, \ldots, x_{n-1} \)
 and \(h \) interpolates \(f \) at \(x_1, x_2, \ldots, x_n, \)
 then
 \[g(x) + \frac{x_0 - x}{x_n - x_0}[g(x) - h(x)] \]
interpolates \(f \) at \(x_0, x_1, \ldots, x_n. \)

5. (10 points) Derive the approximation formula for the first derivative
 \[f'(x) \approx \frac{1}{4h}[f(x + 3h) - f(x - h)] \]
and find its leading error term.

6. (10 points) If \(\phi(h) = L - c_1h^{1/2} - c_2h^{2/2} - c_3h^{3/2} - \ldots, \)
 then what combination of \(\phi(h) \) and \(\phi(h/2) \) should give an accurate estimate of \(L? \)