1. What do we know about the deterministic time and space complexity of co-NP? (Give a brief argument that your claims are true.)

2. True or False:
 - If \(L_1 \) is not recognizable, and \(L_1 \subseteq L_2 \), then \(L_2 \) is not recognizable.
 - If \(L \) is NP-complete, and \(L \leq^p S \), then \(S \) is NP-complete.
 - If \(L \) is NP-complete, then \(L \) is decidable in exponential time.
 - If \(L \) is decidable in exponential time, then \(L \) is NP-complete.

3. Reductions
 a) What does it mean that \(f \) is a reduction from \(A \) to \(B \)?
 b) If we know \(A \leq^P \text{SAT} \), what can we conclude about \(A \)?
 c) If we know \(\text{SAT} \leq^P A \), what can we conclude about \(A \)?

For each of the following languages, choose one of the following classes, and prove that this language is in that class: in P, in NP, decidable, semidecidable, or not semidecidable. The best grade will be given for the tightest bound.

4. The set of graphs that have paths of length at least 3.

5. Set Cover: Given a universe \(U = \{1, \ldots, n\} \) and a set \(S \subseteq \mathcal{P}(U) \) of subsets of \(U \), and \(k \in \mathbb{N} \), is there a set \(S' \subseteq S \) of \(k \) subsets of \(U \) whose union is \(U \)?
 For instance, if \(n = 4 \) and \(S = \{\{1, 2\}, \{1, 3\}, \{1, 4\}\} \), then \(\langle U, S, 3 \rangle \) is in Set Cover, but \(\langle U, S, 2 \rangle \) is not.

6. \(L = \{e(T) : T \text{ accepts no more than 3 distinct inputs}\} \).