For each problem, explain your answer or show how it was derived.

1. For each of the following relations and each property \{ symmetric, anti-symmetric, reflexive, transitive \}, state whether it has that property.

 (a) \(R_1(x, y) \) holds iff \(x \) is \(y \)'s sister, where \(x \) and \(y \) are drawn from all living women.

 (b) \(R_2(x, y) \) holds iff \(x + y > 0 \), where \(x, y \in \mathbb{R} \)

 (c) \(R_3(x, y) \) holds iff there is a road with no intersections connecting \(x \) and \(y \), and \(x, y \) are intersections in Lexington.

2. If \(f: A \to B \) is onto and \(g: B \to C \) is one-one, what can we say about the relative values of \(|A|, |B|, \) and \(|C|\)?

3. Prove or disprove that \([(x \Rightarrow y) \Rightarrow z] \Rightarrow (x \Rightarrow z)\).

4. Let \(A = \{1, 2, 3, 4\} \) and \(B = \{1, 3, 5\} \).

 (a) Give an element of \(A \times B \)

 (b) What is \(|A \times B|\)?

 (c) Give an element of \(A \oplus B \)

 (d) What is \(|A \oplus B|\)?

5. Suppose you are told that \(|A| = 7, |B| = 12, \) and \(|A \cup B| = 15\). What is \(|A \oplus B|\)? (To insure partial credit if you are unsure of your answer, indicate how you derived the answer, showing a formula, a Venn diagram, or other.)

6. Consider the following functions. For each function and each property from the set \{one-one, onto, total\}, list the properties that that function has.

 (a) \(f: \mathbb{N} \to \mathbb{R}, f(x) = \log_2(x) \)

 (b) \(g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, g((x, y)) = 2^x3^y \)

 (c) \(h: \mathbb{R}^+ \to (0, 1), h(x) = \frac{1}{x+1} \).

7. For each of the pairs \(f \) and \(g \), state whether \(f \) is \(O(g) \), \(g \) is \(O(f) \), or \(f \) is \(\Theta(g) \).

 (a) \(f(n) = n \) and \(g(n) = n \log n \)

 (b) \(f(n) = n^2 \) and \(g(n) = n \log n \)

 (c) \(f(n) = 2^n \) and \(g(n) = n! \)
8. Let

\[S(n) = \sum_{\{a_1, a_2, \ldots, a_k\} \subseteq \{1, 2, \ldots, n\}} \frac{1}{a_1 \cdot a_2 \cdots a_k}. \]

Here, the sum is over all nonempty subsets of \(\{1, 2, \ldots, n\} \).

Note: \(S(3) = \left(\frac{1}{1} + \frac{1}{2} + \frac{1}{1\cdot2} \right) + \left(\frac{1}{3} \right) + \left(\frac{1}{3\cdot1} + \frac{1}{3\cdot2} + \frac{1}{3\cdot1\cdot2} \right) \).

(a) What can you say about the third group of fractions, in terms of the first?

(b) How do you express \(S(3) \) in terms of \(S(2) \)?

(c) Prove \(S(n) = n \) by induction.