
1

Autonomous Deployment of
Heterogeneous Mobile Sensors

N. Bartolini, T. Calamoneri, T. La Porta, S. Silvestri

Abstract—In this paper we address the problem of deploying heterogeneous mobile sensors over a target area. Traditional approaches
to mobile sensor deployment are specifically designed for homogeneous networks. Nevertheless, network and device homogeneity is
an unrealistic assumption in most practical scenarios and previous approaches fail when adopted in heterogeneous operative settings.
For this reason we introduce VorLag, a generalization of the Voronoi based approach which exploits the Laguerre geometry. We
theoretically prove the appropriateness of our proposal to the management of heterogeneous networks. In addition, we demonstrate
that VorLag can be extended to deal with dynamically generated events or uneven energy depletion due to communications. Finally, by
means of simulations, we show that VorLag provides a very stable sensor behavior, with fast and guaranteed termination and moderate
energy consumption. We also show that VorLag performs better than its traditional counterpart and other methods based on virtual
forces.

Index Terms—Device heterogeneity, self-deployment, Voronoi-Laguerre diagrams.

✦

1 INTRODUCTION

THE deployment of mobile sensors is attractive in
many scenarios. Mobile sensors may be used for

environmental monitoring or public safety to track the
dispersion of pollutants, gas plumes or fires. In such sce-
narios it is difficult to achieve an exact sensor placement
through manual means. Instead, sensors are deployed
from a distance, e.g. from a safe location or from an
aircraft, and then reposition themselves to provide the
required sensing coverage.
The potential of such applications has inspired a great

deal of work on algorithms for deploying mobile sen-
sors. Most of this work has addressed the deployment
of homogeneous sensors to achieve a uniform coverage
of a certain density in a specific Area of Interest (AoI).
In this paper we address two more practical and chal-

lenging problems: (i) the deployment of heterogeneous
sensors to achieve full coverage, and (ii) the deployment
of sensors to achieve coverage of varying density within
an AoI. The first application accommodates sensors that
may have different sensing ranges due to design or oper-
ating conditions, for example depleted battery supplies
or damage to a transducer. The second application ad-
dresses the need for a higher density of sensing resources
at a particular site where perhaps an event has been
detected and requires more analysis.
In particular, we realize that the Voronoi based ap-

proach presented in [1] does not solve the problems
of deployment with heterogeneous sensors or varying

• N. Bartolini, T. Calamoneri and S. Silvestri are with the Department of
Computer Science, Sapienza University of Rome, Italy. E-mail: {bartolini,
calamo, silvestris}@di.uniroma1.it

• T. La Porta is with the Networking and Security Research Center, Penn
State University, PA. E-mail: tlp@cse.psu.edu

density over a field. Namely, in these scenarios, the sen-
sors do not cover the required area completely, because
they stop moving when they wrongly perceive that they
are exploiting their sensing capabilities at the maximum
extent. To solve this problem we introduce the notion
of Laguerre distance into the Voronoi based algorithm.
By using the Laguerre distance we are able to explicitly
take account of device diversity and varying density
requirements. The resulting algorithm, which we call
VorLag, solves both deployment problems effectively.
The primary additions to the original Voronoi approach
are the use of the Laguerre distance and the redefinition
of some algorithm rules to ensure algorithm termination
and improve convergence time.
We compare VorLag with an algorithm based on vir-

tual forces, i.e. belonging to another class of well ac-
cepted deployment algorithms. We modify the algorithm
introduced in [2] so that it may operate in scenarios
requiring the use of heterogeneous sensors or deploy-
ment of varying density. We find that VorLag has better
performance and characteristics than the virtual force
algorithm. Because the virtual force algorithm balances
the distance between sensors, and does not specifically
target sensor heterogeneity or a specific coverage density,
it takes longer to converge, and under some circum-
stances is not guaranteed to converge at all. Also, we find
that unlike VorLag, the virtual force algorithm requires
off-line tuning of several parameters that have a large
impact on its performance which makes the virtual force
algorithm impractical.
In summary, our contributions are:

• We identify the limitations of Voronoi-based al-
gorithms to deal with heterogeneous sensors; we
introduce the Laguerre distance and show several
important properties that allow it to be used in this
setting;

2

• We propose a new algorithm based on the use of
Voronoi diagrams in the Laguerre geometry to solve
the problem of deploying heterogeneous mobile
sensors; we also extend the new algorithm to make
it work in operative settings with time-varying and
position-dependent coverage requirements;

• We extend a previously published algorithm based
on virtual forces to accommodate heterogeneous
sensors and prove important properties about this
new algorithm.

We theoretically and experimentally give evidence that
the Voronoi-based approach does not operate correctly in
a setting with heterogeneous sensors. We also compare
VorLag with the virtual force algorithm and determine
the fundamental causes behind the limitations of the
virtual force approach.
The VorLag algorithm is practical in that it provides

very stable sensor behavior, with fast and guaranteed
termination and moderate energy consumption. It does
not require manual tuning or perfect knowledge of
the operating conditions, and works properly even if
the sensor positioning is imprecise. The algorithm only
requires loose synchronization and local communication.
Because it converges quickly and does not require a
priori knowledge of the deployment environment, it is
also well suited for dynamic environments in which the
sensing density requirements change over time.
The paper is organized as follows. Related work is

presented in Section 2. In Section 3 we motivate the prob-
lem and introduce some preliminary concepts. Section 4
presents the algorithm VorLag. In Section 5 we address
the problem of density driven deployment. Section 6
summarizes a virtual force based algorithm that we use
for performance comparisons whose results are shown
in Section 7. Section 8 concludes the paper with some
final remarks.

2 RELATED WORK

Various approaches have been proposed to self-deploy
mobile sensors. The virtual force approach (VFA) mod-
els the interactions among sensors as a combination
of attractive and repulsive forces. As a result of these
antagonist forces, the sensors spread throughout the
environment. One of the first algorithms based on VFA
was presented in [3]. Drawbacks of VFA include complex
required tuning of several parameters and an oscillatory
behavior of sensors. Possible improvements to decrease
the oscillations include the introduction of dissipative
forces [3], [4], or the definition of arbitrary thresholds as
stopping conditions [5], [6]. The tuning of such thresh-
olds is laborious and relies on an off-line configuration.
The virtual force model is also at the basis of several
other proposals [2], [7], [8], [9]. Of these proposals we
focus on the one presented in [2] under which a dy-
namically calculated constraint on the length of sensor
movements prevents oscillations. This algorithm is de-
scribed in more detail in Section 6 and is referred in this
paper as a benchmark for performance comparisons.

Techniques based on computational geometry model
the deployment problem in terms of Voronoi diagrams
or Delaunay triangulations. According to [1], each sensor
iteratively calculates its Voronoi polygon, determines the
existence of coverage holes and moves to a better posi-
tion if necessary. This approach inspired our proposal
and it can be obtained as an instance of our general
approach, when sensor capabilities are homogeneous.
A dual approach exploits Delaunay triangulation [10].
This approach does not guarantee oscillation avoidance
if proper threshold parameters are not set.

In [11], the authors introduce a technique for sensor
deployment for specific settings of the sensing radius.
Unlike this work, our approach deals with the more
typical devices for which the transmission radius is
significantly larger than the sensing radius, hence cov-
erage implies connectivity. Two other approaches based
on the construction of a regular triangular lattice are
proposed in [12] and [13], whereas some discussions on
the appropriateness of lattice deployments can be found
in [14] and [15]. A grid shaped deployment technique
is also proposed in [16] where sensors are static de-
vices dropped in the area of interest by mobile robots.
The work [17] illustrates the use of systems theory to
analyze emergent behaviors in biological systems and
to design autonomous and reliable robotic networks.
The proposed techniques rely on assumptions of device
homogeneity that we do not need in our proposal.

Recent papers [18], [19] focus on static sensor de-
ployment with variable density in order to mitigate the
effects of the uneven energy depletion due to communi-
cation with a sink [20], [21]. The work [4] introduces a
unified solution for sensor deployment and relocation to
adapt the density to the proximity of events of interest.
In [22] the problem of sensor heterogeneity is specifi-
cally addressed, but under assumptions on the network
topology that are very restrictive with respect to those
considered in this paper.

We conclude this section by pointing out that the
idea of using generalized Voronoi diagrams is not new
in the area of sensor networks. The work [23] uses a
generalization of the Voronoi approach to deploy devices
endowed with elliptic sensing capabilities, whereas the
work [24] makes use of Voronoi generalizations to calcu-
late the routing paths of sensors endowed with different
initial energy. To the best of our knowledge, none of
the previous works uses the approach proposed here
to address the problem of heterogeneous mobile sensor
deployment or deployment of varying density.

3 MOTIVATION AND PRELIMINARIES

In the following subsections we show the limits of exist-
ing Voronoi based approaches to guide the movements
of heterogeneous sensors. We then give the basics of our
new algorithm.

3

(a) (b)

Fig. 1: Different positions of the line which is equidistant to C1 and C2

according to the Euclidean (Vor) and to the Laguerre distance (VorLag)
in the case of intersecting (a) and non-intersecting circles (b).

3.1 Traditional Voronoi approach

We recall that given N generating points in the plane,
Ci = (xi, yi) with i = 1, . . . , N , the Voronoi polygon
VVor(Ci) of the generating point Ci is defined as

VVor(Ci) = {P ∈ ℜ2|d2
E(Ci, P) ≤ d2

E(Cj , P), ∀j 6= i}.

The Voronoi algorithm [1] works on a round basis. In
each round every sensor communicates with its neigh-
bors to discover their position, then calculates its Voronoi
polygon, and moves inside it towards a point where
it can contribute a better coverage of the polygon. The
choice of the destination point can be based on several
criteria.
The algorithm is motivated by the observation that in a

homogeneous network, each edge of a Voronoi diagram
lies on a line which partitions the AoI in two half planes,
each one covered better by either one or the other of
the two generating sensors. In the homogeneous setting,
coverage holes are always crossed by at least one edge,
hence it is correct to use Voronoi diagrams to discover
them. Furthermore, a Voronoi polygon is covered better
by movements of its generating sensor, rather than of
any other one.
These properties no longer hold in the case of het-

erogeneous sensors thus causing the Voronoi-based ap-
proach to fail. Figure 1(a) shows an example in which
the line “Vor” is equidistant from the points C1 and C2,
centers of the circles C1 and C2, respectively. It is easy
to see that since this line does not cross the intersection
between the two circles C1 and C2, it does not partition
the plane as required and incorrectly assigns the shaded
portion of the circle C2 to the sensor located in the
point C1. Instead, the desired line position is the one
that assigns each sensor to the half plane that it can
cover best, as in the case of the line labeled “VorLag”. In
subsection 3.2 we will show that this line is equidistant
from the points C1 and C2 in the Laguerre geometry.
Figure 1(b) shows another case in which the Voronoi

axis does not properly partition the AoI as it is done by
the VorLag axis.
Let us consider the Figure 2 in which several hetero-

geneous sensors are deployed over a rectangular AoI,
where the left zone is covered redundantly and the
right zone is largely uncovered. The use of the Voronoi

0

1

2

3

45

6

7

8
9

10

11

12

13

14

Fig. 2: Critical configuration for the traditional Voronoi algorithm.

algorithm produces no movements in such a configura-
tion. The sensors with a small sensing circle (sensors 10-
14) do not move, as their sensing range is completely
included by their Voronoi polygon. The sensors with
larger sensing circles (sensors 0-9), do not move either,
because they already cover their own polygon com-
pletely. Figure 2 represents a critical configuration for
the Voronoi algorithm for which the wrong placement
of the edges leads to a barrier effect. This effect is one
of the reasons of the inapplicability of the traditional
Voronoi approach even in the case of varying density
requirements as will be clarified in Section 5.

3.2 Voronoi diagrams in the Laguerre geometry

The Voronoi diagram is one of the fundamental concepts
in computational geometry. It has been generalized in
many ways as summarized in [25]. A generalization can
be obtained by replacing the notion of Euclidean distance
with a variety of different formulations. Unfortunately,
most of them lead to diagrams whose edges are curves,
whereas in the ordinary Voronoi diagrams they are
portions of straight lines. An exception is the Voronoi-
Laguerre diagram [26]. In this case the diagram is formed
by straight lines. This property is particularly attractive
as it imposes that polygons are convex, which simplifies
the calculation of the sensor destinations. Moreover,
as shown in Theorem 3.1, the Voronoi polygon in the
Laguerre geometry properly identifies the responsibility
region of each sensor in a heterogeneous setting, guiding
its movement towards the region it can cover best.
Given a circle C with center C = (xC , yC) and radius

rC , and a point of the plane S = (xS , yS) ∈ ℜ2, the
Laguerre distance dL(C , S) between the circle C and the
point S is defined in terms of the Euclidean distance
dE(C, S) between points C and S:

d2
L(C , S) = d2

E(C, S) − r2
C .

It should be noted that this metric is not a distance
in the mathematical sense. Actually d2

L(C , S) can be
negative. The sign of d2

L(C , S) depends on the position of
S with respect to the circle C . It is negative if S lies inside
circle C , whereas it is positive if S is located outside. In
this sense, rather than a “distance”, this metric should
only be interpreted as a “degree of farness” [27].

4

(a) (b)

Fig. 3: Radical axes of two circles in the Euclidean and in the Laguerre
geometry.

Lemma 1. Given two circles C1 and C2 with distinct centers
C1 and C2, and radii r1 and r2, respectively, the locus of the
points equally distant, in the Laguerre geometry, from the two
circles is a straight line, called the radical axis of C1 and C2.
The radical axis is perpendicular to the segment connecting

the centers C1 and C2 of the two circles. This axis is located

at distance k from C1, with k ,
dE(C1,C2)

2 +
r2

1
−r2

2

2dE(C1,C2)
.

Proof: Without loss of generality, we can use a
Cartesian reference such that C1 ≡ (0, 0) and C2 ≡
(dE(C1,C2), 0). The locus of the points equidistant from
the two circles, according to the Laguerre geometry, can
be parametrized by the point P (t) = (x(t), y(t)) ∈ ℜ2,
by varying the parameter t ∈ ℜ. This locus is such
that dL(P (t), C1) = dL(P (t), C2). If the centers coincide,
the locus is either the whole plane (in the case with
r1 = r2, as all the points of the plane are equidistant
to the coincident circles C1 and C2) or does not exist
(in the case with r1 6= r2, as all the points of the plane
are closer to the circle having larger radius). Hence we
investigate the properties of such a locus in the case of
distinct centers C1 6= C2, i.e. with dE(C1,C2) > 0. In this
case, the equation of the aforementioned locus is:

x2(t) + y2(t) − r2
1 = (dE(C1,C2) − x(t))2 + y2(t) − r2

2 ,

from which we deduce

x(t) =
dE(C1,C2)

2
+

r2
1 − r2

2

2dE(C1,C2)
= k, ∀t ∈ ℜ.

As the equation of this locus is independent of the
parameter t, it represents a straight line of equation
x = k, thus proving the lemma.
We now focus on a case that does not occur with

ordinary Voronoi polygons. Depending on the extension
of the overlap between two circles, the two centers
may fall on the same side of the radical axis as shown
in Figure 3. The following lemma characterizes these
situations.

Lemma 2. Given two circles C1 and C2 with distinct centers
C1 and C2, and radii r1 and r2, respectively, their centers lie
on the same side of the radical axis if and only if d2

E(C1,C2) <
|r2

1 − r2
2 |.

Proof: Without loss of generality we position the
Cartesian reference as we did in the proof of Lemma
1. The two centers can lie on the same side of the axis
both on the right and on the left side. They both lie on

Fig. 4: Voronoi-Laguerre diagram with empty and null polygons

the left side of the axis if and only if their Euclidean
distance is such that dE(C1,C2) ≤ k, that is if and only
if d2

E(C1,C2) ≤ r2
1−r2

2. This is feasible only when r1 ≥ r2.
The two centers both lie on the right side of the radical

axis if and only if k is negative, that is k < 0, which
occurs if and only if d2

E(C1,C2) ≤ r2
2−r2

1 . This is feasible
only when r1 ≤ r2.
Merging the two results, the thesis follows.
Given N circles in the plane Ci with centers Ci =

(xi, yi) and radii ri, i = . . . , N , the Voronoi-Laguerre
polygon V (Ci) for circle Ci is defined as

V (Ci) = {P ∈ ℜ2|d2
L(Ci, P) ≤ d2

L(Cj , P), ∀j 6= i}.
As a consequence of Lemma 1, V (Ci) is always convex
and its vertices are called Voronoi-Laguerre vertices. Ob-
viously, if ri = rj for all i, j = 1, . . . , N , the Voronoi-
Laguerre diagram reduces to the ordinary Voronoi dia-
gram.
We highlight that the polygon V (Ci) may not contain

any point of the plane when the half-planes generated
by the radical axes of a circle Ci have no overlap. In this
case, the Voronoi-Laguerre polygon V (Ci) is called a null
polygon. We also note that in view of Lemma 2, the point
Ci may not lay inside V (Ci), even if this polygon is not
null. Such a polygon is called an empty polygon.
Figure 4 shows an example of Voronoi-Laguerre di-

agram that contains both null and empty polygons.
Namely, the Voronoi-Laguerre polygon of C6 is null,
and the polygons of C4 and C5 are empty. On the
contrary, the polygons of C1, C2 and C3 are non-empty
and consequently non-null.
The following theorem is fundamental for the formu-

lation of the Voronoi-Laguerre algorithm that we will
present in the next section. It states that the intersection
of V (Ck) with a circle Cj is contained in Ck, hence it
does not exist any point in V (Ck) contained in some Cj ,
that is not also contained in Ck. Vice-versa, it states that
if a point of V (Ck) is not also in Ck, then that point is
definitely uncovered. This property is fundamental for
sensors to detect coverage holes.

Theorem 3.1. Let us consider n circles Ci with centers
Ci = (xi, yi) and radii ri, i = 1, . . . , n, and let V (Ci)
be the Voronoi-Laguerre polygon of the circle Ci. For all
k, j = 1, 2, . . . , n, V (Ck) ∩ Cj ⊆ Ck.

5

Proof: By contradiction, assume there exists a point
P ∈ V (Ck) contained in Cj for some j 6= k but not
contained in Ck. On the one hand, as P ∈ V (Ck) and
in view of the definition of Voronoi-Laguerre polygon,
it must be dL(Ck, P) < dL(Cj , P) that is, equivalently,

d2
E(Ck, P) − r2

k < d2
E(Cj , P) − r2

j . (1)

On the other hand, since P is contained in Cj but not
in Ck, dE(Cj , P) ≤ rj and dE(Ck, P) > rk. Substituting
these inequalities in Equation 1 we get 0 < 0, a contra-
diction.
In the next section, we show how the concept of a

Voronoi-Laguerre diagram can be applied to partition
the AoI to support the movements of heterogeneous
sensors.

4 THE VORONOI-LAGUERRE APPROACH FOR
HETEROGENEOUS SENSOR DEPLOYMENT

In this section we describe the algorithm VorLag, based
on the construction of the Voronoi diagram in the La-
guerre geometry by N heterogeneous sensors, in order
to self-deploy in the AoI. We first state our assumptions,
give a high level view of the algorithm and finally
provide details.

4.1 Assumptions

Given N heterogeneous sensors:

1) The sensing and communication radii of the sensor
si are ri and rtx

i , respectively, with i = 1, . . . , N .
2) The communication and the sensing radii of any

two sensors are such that rk + rl < mini rtx
i , for all

k, l = 1, . . . , N , that is any two sensors are able to
communicate if their sensing circles are tangential.

3) Each sensor knows the coordinates of the AoI and
can determine its own location (e.g. using low cost
GPS, notice that the algorithm is not particularly
sensitive to inexact location).

4) The sensors are loosely synchronized (in order to
provide a round-based execution).

5) The sensors move at possibly different speeds vi,
i = 1, . . . , N .

4.2 The idea

VorLag is based on the calculation of the Voronoi-
Laguerre diagram determined by the sensor locations
over the AoI and their related sensing radii. Such a
diagram partitions the AoI into disjoint polygons, each of
them related to one generating sensor. Hence each sensor
uses the information related to its Voronoi-Laguerre
polygon to determine the presence of coverage holes and
to decide future movements.
Our sensor deployment protocol runs iteratively. In

each round, the sensors broadcast their locations and
construct their local Voronoi-Laguerre polygons on the
basis of the information received from neighbors. Each

0

1

2

3

45

6

7

8
9

10

11

12

13

14

0

1

2

3

4
5

6

7

8
9

10

11

12

13

14

(a) (b)

0

1

2

3

45

6

7

8
9

10

11

12

13

14

0

1

2

3

45

6

7

8
9

10

11

12

13
14

(c) (d)

Fig. 5: Execution of the VorLag algorithm under an initial configuration
that is critical for the traditional Voronoi approach: initial configuration
(a), round 6 (b), round 9 (c), round 12 - final configuration (d).

sensor evaluates the existence of coverage holes within
its polygon and makes movement decisions accordingly.
It should be noted that, as formalized by Lemma

2, in the Voronoi-Laguerre diagrams, there are some
interesting situations that do not occur with ordinary
Voronoi diagrams. First, the polygon of a sensor may
possibly be null (the sensor has no polygon: this can
happen when its sensing range is completely included
in the union of the sensing circles of other sensors). In
this case, the sensor should not move, as there is no
direction that it can take to locally improve its coverage,
and it should wait for other sensors to place themselves.
Second, a sensor may be situated outside its polygon,
that is therefore necessarily empty. In this case, the sen-
sor should move towards its polygon if the movement
can improve the coverage, as the generating sensor is
the best candidate to improve the coverage of its own
polygon.
In Figure 5 we show progressive runs of the algorithm

execution under the initial configuration of Figure 2. We
see that for VorLag, unlike Vor, this setting does not
cause a barrier effect.

4.3 The details

In this subsection we describe the algorithm in more
detail: we introduce the Voronoi-Laguerre diagram con-
struction and explain the way it can be used to guide
the basic movements of the sensors. The pseudo-code of
the algorithm executed by each sensor is in Figure 6.
To construct its Voronoi-Laguerre polygon, each sensor

calculates the radical axes it generates with respect to all

6

SKETCH OF THE VORLAG ALGORITHM AT EACH ROUND:

Perform neighbor discovery

Compute the Voronoi-Laguerre polygon V (si)

if V (si) is null

do nothing

else

if a coverage hole exists

compute Om(si)

compute local coverage

if |~vi,Om(si)
| > dmaxi

shrink |~vi,Om(si)
| to be dmaxi

if (a movement according to ~vi,Om(si)

increases the local coverage)

move according to ~vi,Om(si)

Fig. 6: VorLag executed by the sensor si.

its neighbors, by using the locally available information.
Each radical axis divides the plane into two half-planes,
of which only one should be considered; the intersection
of all the considered half-planes determined by each rad-
ical axis is the Voronoi-Laguerre polygon of the sensor.
If a sensor has a null polygon, it does not move, as

a null polygon is generated only when the sensor is in
an overcrowded area and there is no movement it can
make to locally improve the coverage.
If the sensor has a non-null polygon, the algorithm

determines the target location of the sensor s as the point
inside its Voronoi-Laguerre polygon whose distance to
the farthest Voronoi-Laguerre vertex is minimized. This
point is called miniMax of the polygon of s, denoted as
Om(s). Notice that, with respect to the calculus of the
miniMax point, either the Laguerre or Euclidean distance
may be used equivalently, with the same result.
Positioning sensors in their miniMax points can reduce

the variance of the distances to the Voronoi-Laguerre
vertices, resulting in a more regularly shaped Voronoi-
Laguerre polygon, which better utilizes the device sens-
ing capabilities.
Notice that, due to the limited communication range,

a node may not be able to perceive the presence of
some neighbor sensors. Hence we account for some
inaccuracies in the local construction of the polygons.
In order to avoid excessive movements and collisions

with the sensing disk of any other approaching sensor,
the sensor si is only allowed to make movements that
are smaller than dmaxi = rtx

2 − ri, where rtx = minir
tx
i .

It should be noted that we impose that dmaxi is the
maximum distance traversed in a single round along
~vOm(si), that is the vector directed from the position
held by si to Om(si). Hence, together with the minimum
sensor speed vmin = minivi, this influences the duration
of the algorithm round.
In order to reduce useless movements, we introduce

a movement-adjustment scheme similar to the one used in
[1]: a sensor moves towards its target location only if the
movement leads to an increase in the local coverage of

its own polygon.
We conclude this section by highlighting that we

adopt the optimization proposed in [1] that “explodes”
clusters of sensors at the first round in order to have a
more uniform initial deployment and a faster algorithm
execution. Briefly, each sensor determines the number of
its communicating neighbors. If this number is above a
certain threshold the sensor chooses a random position
within an area centered at itself whose extent is the size
of the area that would be occupied by the same number
of neighbors if all the sensors were evenly deployed.

4.4 Algorithm properties

Before proving some properties of the algorithm VorLag,
we make some observations and introduce some nota-
tion.
The Voronoi-Laguerre polygon locally computed by

each sensor can be inaccurate with respect to the one
calculated with complete information. We hereafter refer
to real polygon as to the polygon constructed under
complete information, whereas we define as local polygon
the polygon that is constructed on the basis of the
information that is locally available. In particular, the
local polygon of the sensor s includes its real polygon,
but can be larger because s does not take account of the
sensors that are not in radio proximity.
In Figure 7 we show an example where two sensors

s1 and s2 are out of the communication range of s3.
As a consequence s1 and s2 cannot know the position
of s3, hence they do not keep it into account when
building their local polygon. Likewise, s3 does not have
any information regarding the position of the sensors s1

and s2. Therefore there is a discrepancy between local
and real polygons. The real polygon V (C1) of s1 is AHIE,
while its local polygon is AHF. The real polygon V (C2) of
s2 is DHIG, while its local polygon is DHFBC. Similarly,
s3 assumes its local polygon is the whole AoI, whereas
its real polygon V (C3) is EIGCB.
Because of the possible discrepancy between the local

and real polygons, the movement of a sensor s towards
the miniMax point of its local polygon can target a
position that is potentially outside the real polygon of
s. Indeed even when a constraint on the maximum
movement dmax is applied, the heterogeneity among
devices is such that the “unknown” axis can be located
at a distance from the generating sensor which is smaller
than the threshold dmax. In fact, there is no way to set the
value of dmax so as to ensure that a sensor does not exit
its real polygon. This is due to the fact that the position
of the Voronoi-Laguerre axis depends not only on the
positions but also on the radii of potentially unknown
neighbor nodes.
The area where a sensor si can improve the coverage

of its local polygon with a single round movement is the
region polygon P (si) generated by the intersection of the
local polygon of sensor si, with the circle centered in the
location of si and radius rtx/2. Indeed the farthest point

7

Fig. 7: Example of local construction of the Voronoi-Laguerre polygons

that can be sensed by si with a single round movement
is at distance dmax + ri = rtx/2 from the current position
of si. The region P (si) will be hereby referred shortly
as the curve polygon of the sensor si. From the previous
considerations we derive the following lemma:

Lemma 3. P (si) ∩ P (sj) = ∅, for all i, j = 1, . . . , N with
i 6= j.

Figure 8 shows the construction of the sets P (si)
for three sensors, that correspond to the shaded areas
surrounding the sensor positions.
The following lemma states that the covered points of

P (si) are certainly covered by the generating sensor si,
and possibly by other sensors.

Lemma 4. Let us consider N sensors si located at Ci with
sensing radii ri, i = 1, . . . , N . Let Ci be the circle centered in
Ci with radius ri. For all i, j = 1, . . . , N , (P (si) ∩ Cj) ⊆ Ci.

Proof: The curve polygon P (si) may contain points
that either belong to the real Voronoi polygon V (Ci) or
are located outside V (Ci). For the points that belong to
V (Ci), Theorem 3.1 holds and the property follows triv-
ially. The other points are necessarily uncovered because
they are located at a distance from any other sensor sj

with j 6= i, that is larger than rtx/2, since rj < rtx/2,
∀j = 1, . . . , N by assumption (2) of section 4.1.
Lemma 4 provides the ground for the proof of conver-

gence and termination of VorLag.

Theorem 4.1. The VorLag algorithm converges.

Proof: Let P (k)(si) be the curve polygon P (si) at the
k-th round, and let us consider the following set family
at round k:

P
k , {P (k)(s1), P

(k)(s2), . . . , P
(k)(sN),AoI\∪N

i=1P
(k)(si)}.

Due to Lemma 3, Pk is a partition of the AoI. To make
it easier to follow the proof, in Figure 8, we provide
an example of the construction of the partition Pk. The
AoI is partitioned into four sets, the three shaded areas
are assigned to the three sensors as their responsibility
regions. The fourth element of the partition is constituted
by the zones of the AoI that are not shaded in the figure.

Let A
(k)
i and A

(k)
i (si) be the covered area of P (k)(si),

considering the coverage contribution of all the sensors

Fig. 8: Partition of the AoI with curve polygons

and of the sole si, respectively. Let Â
(k)
i be the covered

area of P
(k)
i , considering the sensor positions at round

(k + 1). In general Â
(k)
i (si) 6= A

(k+1)
i (si), as they are

calculated on different curve polygons. Finally, let A
(k)
total

be the total area covered by all sensors in the network
at round k.
The element AoI \ ∪N

i=1P
(k)(si) of the partition Pk

is only constituted by uncovered points that cannot be
covered by any sensor with only a one-round movement.

Hence this element does not contribute to A
(k)
total, that can

be calculated as A
(k)
total =

∑N
i=1 A

(k)
i .

Due to Lemma 4, A
(k)
i = A

(k)
i (si). According to

the movement adjustment, if a sensor si moves then

A
(k)
i (si) < Â

(k)
i (si). Because other sensors can contribute

to the coverage of P (k)(si) at round (k + 1), Â
(k)
i (si) ≤

Â
(k)
i .
The previous inequalities imply that, if at least one

sensor moves at round k:

A
(k)
total =

N∑
i=1

A
(k)
i <

N∑
i=1

Â
(k)
i . (2)

As the total coverage at round (k + 1) only depends
on the node positions and not on the partition in use:

N∑
i=1

Â
(k)
i = A

(k+1)
total . (3)

Therefore, by combining Equations 2 and 3 we can

conclude that, if at least one sensor moves A
(k)
total <

A
(k+1)
total .
Since the total coverage is upper bounded by the area

of the AoI the algorithm converges. All the sensors stop
moving when no coverage increase can happen.
In theory, although the algorithm will converge, it may

take progressively smaller infinitesimal steps towards
convergence, and thus never terminate. We therefore
introduce a positive minimum movement threshold ǫ.

Corollary 1. The VorLag algorithm terminates if movements
are allowed only if their extension exceeds a positive minimum
movement threshold.

The introduction of ǫ ensures fast termination and
power saving, at the expense of a small loss in the
coverage extension.

8

Theorem 4.2. At any fixed round k, the complexity of the
computation of a sensor si is O(∆k(si)), where ∆k(si) is the
number of sensors that are in radio proximity to si.

Proof: At each round k, the sensor si discovers all
∆k(si) sensors to which it is within radio proximity and
computes its Voronoi polygon in the Laguerre measure.
This takes O(∆k(si)) time. Then, si has to compute the
miniMax point of its Voronoi polygon in order to move
towards it. Megiddo [28] proposed a solution for the
equivalent smallest enclosing circle problem which is
linear in the number of points that must be included
in the circle. It follows that, applying this algorithm, the
processing time of each sensor s at round k is O(∆k(s)).

Observe that, if the starting configuration is a cluster of
sensors, during the first rounds ∆k(si) can be a Θ(N) but
when the sensors distribute over the AoI with average
density ρ, the number of sensors in radio proximity to

si are in average ρπrtx
i

2
, where rtx

i is the transmission
radius of sensor si.

5 THE VORONOI LAGUERRE ALGORITHM FOR
A DENSITY DRIVEN DEPLOYMENT

The algorithm described in Section 4 finds a natural
extension to the case of applications in which a deploy-
ment of homogeneous sensors is required at varying
density over the AoI. We translate this problem into the
problem of deploying heterogeneous sensors endowed
with position dependent sensing radii, called positional
radii, under uniform density requirements.
Given N homogeneous sensors, endowed with equal

sensing radius R and transmission radius rtx, we con-
sider the position dependent density requirements ex-
pressed in terms of average distance from a sensor
located in (x, y) to its neighbor nodes davg(x, y). Since
the optimal deployment consists in a regular hexagonal
tiling, we can define the positional radius as r(x, y) =
davg(x, y)/

√
3. VorLag can be used in this new operative

context if we consider each of the uniform sensors as
endowed with this positional radius.
It should be noticed that the use of positional radii to

modulate the deployment density would not be possible
under the ordinary Voronoi algorithm because of the
barrier effect shown in Figure 2.
Recall that dmaxi

is the maximum distance that the
sensor si is allowed to traverse without overlapping
the sensing range of other approaching sensors. As the
positional radius of the sensor si varies with its own po-
sition, even the proper value of dmaxi should be position
dependent and calculated on the basis of the sensing
radius that the sensor si would have at the movement
destination. To simplify the calculation of dmaxi we refer
to the following formulation which does not depend on
the particular sensor, nor on the destination coordinates:
dmax = rtx

2 − max(x,y)∈AoI r(x, y).
Inasmuch as under the considered applicative scenario

the sensing capability of each sensor varies with the

sensor position, we need to modify the movement ad-
justment scheme accordingly.
We refer to the same notation introduced in Section

4.4, and in particular, we consider the curve polygon
P (si) generated by the intersection of the local polygon
of sensor si, with the circle centered in its location
and radius rtx/2. Due to the new formulation of the
maximum traversed distance per round dmax, in this
varying density scenario, P (si) includes the area where
the sensor si can improve the coverage in a single round.
Indeed, the farthest point that can be sensed by si

with a single round movement leading it from (xi, yi)
to (x′

i, y
′

i), is at distance dmax + ri(x
′

i, y
′

i) ≤ rtx/2 from
the current position (xi, yi) of si. The sets P (si), for
i = 1, . . . , N are disjoint by definition.
We now introduce some further notation. Given a

sensor si, with positional sensing range Ci centered in
Ci = (xi, yi) with radius ri(xi, yi), we define the weighted
coverage w(P (si), Ci) as follows:

w(P (si), Ci) =

∫
P (si)∩Ci

R2

r2(x, y)
dxdy.

More intuitively, we are introducing a local expansion
of the AoI that is proportional to the local contraction in
the sensing range due to the definition of the positional
radius, where a higher density deployment is required.
The new formulation of the movement adjustment con-
dition is the following: at round k, a sensor si is allowed
to move from the initial position (xi, yi) towards the
destination (x′

i, y
′

i) only if the movement increases the
weighted coverage with respect to the current curve
polygon P k(si). In other words, at the k-th round, si

moves towards (x′

i, y
′

i) if w(P k(si), Ci) < w(P k(si), C
′

i),
where C ′

i is the circle with center C′

i = (x′

i, y
′

i) and radius
ri(x

′

i, y
′

i), and w(P k(si), C
′

i) is the value of the weighted
coverage of the curve polygon P k(si) when si is located
at C′

i .
Observe that if the sensor si in (xi, yi) moves towards

a point (x′

i, y
′

i) of the AoI requiring a smaller positional
radius, i.e. r(xi, yi) > r(x′

i, y
′

i), some possibly useful
movements could be impeded by the movement adjust-
ment condition. For instance, if the distance between
(xi, yi) and (x′

i, y
′

i) is smaller than r(xi, yi)− r(x′

i, y
′

i), the
sensing circle at the destination C ′

i would be completely
included in the sensing circle that si would have in the
original position Ci. In order to make the algorithm work
in the described situations, we can impose the Lipschitz
continuity of the function r(x, y) with Lipschitz constant
equal to 1, i.e. |r(xi, yi)−r(x′

i, y
′

i)| ≤ |dE((xi, yi), (x
′

i, y
′

i))|.
Notice that Lipschitz continuity of the density require-

ment is not a necessary condition for the algorithm to
work and terminate. Nevertheless, in order to allow
VorLag to achieve the desired density, a non-continuous
density requirement should be translated into a Lipschitz
continuous function r(x, y). This condition on r(x, y) can
be met by artificially smoothing the density requirement
over the AoI allowing some over-provisioning of devices
over the areas with non-uniform requirements.

9

In the following theorem we prove the termination of
the VorLag algorithm in the context of variable density
requirements.

Theorem 5.1. Given a variable density requirement expressed
in terms of positional sensing radius r(x, y) defined over
the AoI, the VorLag algorithm is convergent, and thereby
terminates provided a positive minimum movement threshold.

Proof: In this proof we use the following simplified

notation: W
(k)
i (si) , w(P k(si), C

k
i) is the weighted cov-

erage at round k of the curve polygon P k(si) due to

the sensor si, while W
(k)
i ,

∑N

j=1 w(P k(si), C
k
j) is the

weighted coverage of P k(si) due to all the sensors at
round k.
Thanks to the fact that the sets P k(si), i = 1, . . . , N , are

disjoint, we can create a partition of the AoI as follows:

P , {P k(s1), P
k(s2), . . . , P

k(sN),AoI \ ∪N
i=1P

k(si)}.
The partition element AoI\∪N

i=1P
k(si) is made by points

that are currently uncovered and so they will remain
at the next step of the algorithm. This is due to the
limitation to the distance that a sensor can traverse in a
single round (dmax). Therefore, the total coverage W

(k)
total

can be calculated by summing up the coverage of the

first N parts of Pk, hence W
(k)
total =

∑N

i=1 W
(k)
i .

Due to Lemma 4 the coverage of the partition element

P k(si) at round k is W
(k)
i = W

(k)
i (si). It follows that

W
(k)
total can be calculated by summing the coverage that

each sensor contributes in its curve polygon specifically,

thence W
(k)
total =

∑N
i=1 W

(k)
i (si).

Let Ŵ
(k)
i be the weighted coverage of P

(k)
i at the

(k + 1)-th round, that is by considering the k-th round
curve polygon and the coverage contribution due to all
the sensors in their (k + 1)-round positions. Let also

Ŵ
(k)
i (si) be the weighted coverage of P

(k)
i specifically

due to sensor si in its (k + 1)-th round position.
According to the movement adjustment adapted to

the case of variable density requirements, if a sensor si

moves then W
(k)
i (si) < Ŵ

(k)
i (si). Because other sensors

can contribute to the coverage of P (k)(si) at round (k+1),

Ŵ
(k)
i (si) ≤ Ŵ

(k)
i . The previous inequalities imply that,

if at least one sensor moves at round k:

W
(k)
total =

N∑
i=1

W
(k)
i <

N∑
i=1

Ŵ
(k)
i . (4)

As the coverage at round (k + 1) only depends on the
node positions and not on the partition in use, even the
weighted coverage does not depend on the partition:

N∑
i=1

Ŵ
(k)
i = W

(k+1)
total . (5)

Therefore, by combining Equations (4) and (5) we can

conclude that if at least one sensor moves then W
(k)
total <

W
(k+1)
total , hence the total coverage increases at each round.
Since the total coverage is upper bounded by Wmax =∫

AoI
R2

r2(x,y)dxdy the algorithm converges. All the sensors

stop moving when no coverage increase can occur. By
introducing a minimum movement threshold we can
conclude that the algorithm terminates in a finite number
of rounds.

Notice that, a similar approach can be introduced to
address the case of position dependent accuracy require-
ments in the heterogeneous setting. In this case, it is
not possible to formulate the accuracy requirements in
terms of density, hence the reduction in the sensing
range should be formulated for each individual device
according to its specific sensing accuracy which varies
with the distance from the monitored area.

6 A VIRTUAL FORCE APPROACH FOR THE DE-
PLOYMENT OF HETEROGENEOUS SENSORS

In order to evaluate the performance of the VorLag
algorithm, we introduce another solution to which we
will refer in the Section 7 devoted to experiments.

Among the deployment algorithms proposed for mo-
bile sensors in the literature, very few specifically ad-
dress the problem of sensor heterogeneity, and none are
suitable for our applicative context due to the many
assumptions they introduce. This is the reason why we
prefer to introduce some modifications to a recently
proposed approach to area coverage based on the virtual
force technique, called Parallel and Distributed Network
Dynamics (PDND), proposed in [2]. In PDND the force
exerted by si to sensor sj is modelled as a piecewise
linear function. Therefore it is repulsive when the dis-
tance between si and sj is lower than an arbitrarily
tuned parameter r∗; it is attractive when the distance is
larger, until it vanishes at another arbitrarily set distance.
The formulation of this force respects the condition
of Lipschitz continuity that is necessary to ensure the
convergence of PDND. The single sensor movement is
limited by a dynamically set upper bound that guaran-
tees that the potential energy is always decreasing, hence
avoiding oscillations.

PDND works under the assumption that sensors are
homogeneous in terms of sensing and communication
capabilities. In order to make the algorithm feasible for
heterogeneous sensors, we need to redefine the force
that one sensor exerts on the others. According to the
algorithm PDND, this implies the definition of the rest
distance r∗ at which the force exerted by two interacting
sensors is null.

We propose a setting of r∗ that minimizes the overlaps
among neighbor sensors, hence r∗ = ri + rj ; that is two
sensors try to position themselves so that their sensing
circles are tangential.

The modification of PDND that deals with the case of
heterogeneous sensors proposed above, can be applied
as well to the problem of deploying sensors at varying
density by employing the notion of position dependent
sensing radius introduced in Section 5.

10

7 EXPERIMENTAL RESULTS

In order to evaluate the performance of VorLag, we com-
pare it with its traditional counterpart (Vor) and with the
algorithm PDND described in Section 6. We developed
a simulator on the basis of the wireless module of the
OPNET environment [29].
We ran three sets of experiments. In the first set we

study the deployment of heterogeneous sensors. In the
second we consider varying density requirements within
the AoI. In the last set, we consider time-varying density
requirements due to dynamic missions.
We perform these experiments to quantify the dif-

ferences in performance and behavior of VorLag, Vor
and PDND caused by a fundamental difference in the
algorithms: VorLag and Vor specifically target a coverage
density and then terminate, while PDND terminates only
when its forces are balanced. We expect that Vor will
terminate without meeting the coverage requirements
and that VorLag will converge faster than PDND, using
less energy.
In all of the following experiments, we consider a

random deployment of sensors in an AoI of 80m ×
80m. We set the communication radius of all sensors
rtx to 11m and the sensor movement speed to 1m/sec.
For PDND we use the settings proposed in [2]: the
length of a round is 1sec, and the minimum movement
threshold ǫPDND is 0.1m. Notice that the setting of the
round length of PDND is particularly critical, because
the value results in a trade-off of high communication
overhead and energy expenditure (shorter rounds) with
longer convergence times (longer rounds). For both Vor-
Lag and Vor, the duration of a round is determined by
the distance maxi dmaxi and by the sensor speed. The
plotted results are obtained by averaging the values of
80 simulation runs.

7.1 Heterogeneous sensors

In this set of experiments we consider a network com-
posed of heterogeneous sensors. Hence, we set the radius
of each sensor to a random value that is either 2m or 5m.
Figure 9(a) shows an example of initial deployment

obtained with 250 sensors. Figures 9(b), 9(c) and 9(d)
show the final deployments achieved by VorLag, Vor,
and PDND, respectively.
We now compare the algorithms in terms of deploy-

ment performance (e.g. coverage and termination time)
as well as energy metrics (e.g. average traversed distance
and total consumed energy). In the experiments we
progressively increase the number of deployed sensors
from 50 to 500.
Figure 10(a) shows the percentage of area that is

covered at the end of the deployment phase. As ex-
pected, the coverage increases with the number of sen-
sors and is complete with a sufficient numbers of sensors
with VorLag and PDND, whereas Vor never achieves a
complete coverage in the simulated settings. As Figure
10(b) shows, Vor terminates earlier than the other two

(a) (b)

(c) (d)

Fig. 9: Random initial deployment of 250 heterogeneous sensors (a).
Final deployment obtained with VorLag (b), Vor (c) and PDND (d).

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

%
 C

ov
er

ag
e

Number of sensors

VorLag
PDND

Vor

(a)

 0

 500

 1000

 1500

 2000

 0 100 200 300 400 500

T
im

e
(s

ec
)

Number of sensors

VorLag
PDND

Vor

(b)

Fig. 10: Percentage of covered AoI (a), completion time (b).

algorithms in the majority of cases. It should be noted
that this fast termination denotes that Vor is not moving
the sensors sufficiently to achieve a good coverage. By
contrast, VorLag and PDND require a similar amount of
time to reach the final coverage when few sensors are
available. In both cases, when the number of deployed
sensors is lower than the minimum required to achieve
full coverage, all the available sensors are necessary to
expand the network coverage. Hence the deployment
time grows as the number of sensors increases. This
trend changes to the opposite when the number of
sensors exceeds the minimum necessary. In this last
case, as the number of sensors increases, VorLag requires
significantly less time to achieve the final deployment,

11

because with more sensors the initial random deploy-
ment results in a higher coverage and less movements
are needed to complete the coverage. Therefore VorLag
terminates earlier than PDND because it stops as soon as
the area is completely covered. On the contrary, PDND
requires more time because of the nature of the virtual
forces: it is more time and energy consuming to find the
force balance when there are more sensors available. For
example, with 450 sensors, VorLag converges in about
17% of the time required by PDND.
We now compare the performance of the algorithms

in terms of energy consumption. A sensor consumes
energy as a consequence of movements (start/stop and
traversed distance [30]) and communications (sending,
listening and receiving messages). Figure 11(a) shows the
average distance traversed by the sensors. Vor does not
achieve a complete coverage, hence with this algorithm
the distance traversed by the sensors is relatively small.
Both Vorlag and PDND show an increasing traversed
distance when the number of sensors is not sufficient to
complete the coverage of the AoI. Since VorLag stops its
movement as soon as the area is completely covered, the
traversed distance decreases as the number of sensors
increases. This is also true for PDND, although the
sensors traverse longer distances with respect to VorLag.
The average number of starting and stopping actions is
shown in Figure 11(b). PDND performs a higher number
of starting/stopping actions with respect to VorLag. This
is due to the short distance that a sensor moves in each
round. According to the definition of PDND, in order
to guarantee the convergence of the algorithm, once a
sensor has calculated the resulting force, it is allowed to
move in the direction of the force for a short distance
that guarantees a decrease of the potential energy in
that direction. VorLag, on the other hand, makes longer
(but still accurate) movements, resulting in a much lower
number of starting stopping actions. Also in this case,
Vor causes a lower amount of starting/stopping actions
with respect to the other algorithms. This apparently
good behavior of Vor is instead motivated by its incapa-
bility to meet the requirements on coverage. Figure 11(c)
shows the unified energy consumption, which includes
the energy spent by the sensors for communications
and movements, expressed in energy units (eu). The
reception of one message corresponds to 1 eu, a single
transmission costs 1.2 eu, a 1 meter movement costs 340
eu as a single starting or stopping action [31].
Because the energy spent for communication is gen-

erally much smaller than for movements, the energy
consumption is dominated by the traversed distance
and the number of starting/stopping actions. VorLag
consumes less energy than PDND, whose performance
is affected by the high number of starting and stopping
actions. Moreover VorLag shows once again a good
scalability with the number of sensors, as it requires
less energy when the number of available sensors grows.
Once more, even though Vor consumes a smaller amount
of energy than the other two algorithms, it is so because

it does not meet the requirements.
Until now we have assumed that sensors have perfect

knowledge of their sensing range. If the sensors have
a known bounded imprecision, this can be taken into
account simply by assuming that sensors work at a
virtual radius which is the minimum in their uncer-
tainty interval. VorLag will still guarantee the coverage
completeness if the number of sensors is slightly over
provisioned.
In cases in which the sensors are not aware of their

reduced sensing capabilities, both the VorLag and PDND
may leave some coverage holes. In Figure 12 we show
the amount of coverage achieved by the two algorithms
when a certain percentage of the 350 available devices
are defective, i.e. have a reduction of 10% of their nomi-
nal sensing range. Both the algorithms show a small loss
in coverage when the percentage of defective sensors
increases. This loss is slightly less with PDND because
PDND tends to result in a uniform deployment. Note,
however, that PDND requires one order of magnitude
more energy than VorLag just to achieve no more than
1% of gain in coverage, as shown in Figure 12.
We conclude this subsection by considering the ap-

plicability of these algorithms in the presence of packet
losses with probability ploss. In particular we consider
the cases of no losses ploss = 0 and ploss = 0.4%.
Both VorLag and PDND are very resilient to packet
losses, as shown in Figure 13(a) which shows the cov-
erage achieved over time. Nevertheless, Figure 13(b)
evidences that in the case of packet loss the gap be-
tween PDND and VorLag in terms of average traversed
distance increases with time. This means that VorLag is
more attractive than PDND in realistic scenarios where
communications are error prone.

7.2 Density driven deployment

In the second set of experiments we consider the prob-
lem of covering an AoI with varying density. In these ex-
periments, we assume that all sensors are homogeneous,
i.e. have the same sensing radius rs of 5m.
Figure 14(a) depicts a scenario with 350 sensors ran-

domly placed over an AoI where a circular zone around
the epicenter of an event of interest requires more sen-
sors than the rest of the area. The density requirement
inside the central high density zone is 0.08 sensors per
unit area, corresponding to a position dependent radius
of about rhigh = 2m, while the rest of the area only
requires coverage, hence a position dependent radius
of rlow = 5m. The smaller circles around the sensors
located inside the higher density disk represent the lower
position-dependent radii. We recall that the Lipschitz
continuity of the position dependent sensing radius is
required for VorLag to improve the coverage capabilities
of the algorithm, as explained in Section 5. Likewise, this
requirement implies the Lipschitz continuity of the force
function that is necessary for PDND to terminate, as ex-
plained in Section 6. For this reason, we consider a linear

12

 0

 2

 4

 6

 8

 10

 0 100 200 300 400 500

M
ov

in
g

di
st

an
ce

 (
m

)

Number of sensors

VorLag
PDND

Vor

 1

 10

 100

 1000

 0 100 200 300 400 500

A
vg

 S
ta

rt
in

g/
st

op
pi

ng

Number of sensors

VorLag
PDND

Vor

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500C
on

su
m

ed
 e

ne
rg

y
(u

ni
ts

 x
 1

00
0)

Number of sensors

VorLag
PDND

Vor

(a) (b) (c)

Fig. 11: Average traversed distance (a), average number of start/stop actions (b), average consumed energy (c).

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

 14

%
 C

ov
er

ag
e

C
on

su
m

ed
 e

ne
rg

y
(u

ni
ts

 x
 1

00
00

)

% Defective sensors

VorLag - coverage
PDND - coverage

VorLag - energy
PDND - energy

Fig. 12: Coverage and energy consumption
varying the percentage of defective sensors.

 75

 80

 85

 90

 95

 100

 0 50 100 150 200 250

%
 C

ov
er

ag
e

Time (s)

VorLag ploss = 0.0
VorLag ploss = 0.4
PDND ploss = 0.0
PDND ploss = 0.4

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250

A
ve

ra
ge

 m
ov

in
g

di
st

an
ce

 (
m

)

Time (s)

VorLag ploss = 0.0
VorLag ploss = 0.4
PDND ploss = 0.0
PDND ploss = 0.4

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250

A
ve

ra
ge

 m
ov

in
g

di
st

an
ce

 (
m

)

Time (s)

VorLag ploss = 0.0
VorLag ploss = 0.4
PDND ploss = 0.0
PDND ploss = 0.4

(a) (b)

Fig. 13: Performance of VorLag and PDND in the presence of packet losses: Coverage percentage (a)
and average traversed distance (b).

(a) (b)

(c) (d)

Fig. 14: An example of random initial deployment of 350 sensors (a),
final deployment achieved by VorLag (b), Vor and (d) PDND (c).

interpolation of the position dependent sensing radius
in a circular crown containing the border of the high
density zone, so as to ensure a smooth variation. The
width of such a crown is set to rhigh + rlow = 7m. Figure
14 shows the final deployment achieved by VorLag (b),
Vor (c) and PDND (d). Notice the poor performance of
Vor, due to the barrier effect detailed in Section 3.
Figure 15(a) shows the termination time of the al-

gorithms. VorLag outperforms PDND. As we already
mentioned for the previous set of experiments, although

 1

 10

 100

 1000

 10000

 200 300 400 500 600

T
im

e
(s

ec
)

Number of sensors

VorLag
PDND

Vor

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 200 300 400 500 600

D
en

si
ty

 (
se

ns
or

s/
m

2)

Number of sensors

 VorLag
 PDND

 Vor
 ρ* = 0.08

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 200 300 400 500 600

D
en

si
ty

 (
se

ns
or

s/
m

2)

Number of sensors

 VorLag
 PDND

 Vor
 ρ* = 0.08

(b)

Fig. 15: Completion time (a), density of the event area (b).

in some scenarios Vor terminates earlier than VorLag,
this is only due to its incapability to reach the complete
coverage. Figure 15(b) shows the density achieved inside
the event area, and the desired density is represented
by the horizontal line at ρ∗ = 0.08. PDND is incapable

13

 0

 2

 4

 6

 8

 10

 12

 14

 16

 200 300 400 500 600

M
ov

in
g

di
st

an
ce

 (
m

)

Number of sensors

VorLag
PDND

Vor

 1

 10

 100

 1000

 10000

 100000

 200 300 400 500 600

A
vg

 S
ta

rt
in

g/
st

op
pi

ng

Number of sensors

VorLag
PDND

Vor

 1000

 10000

 100000

 1e+06

 1e+07

 200 300 400 500 600

C
on

su
m

ed
 e

ne
rg

y
(u

ni
ts

)

Number of sensors

VorLag
PDND

Vor

(a) (b) (c)

Fig. 16: Average traversed distance (a), average number of starting/stopping (b), average consumed energy (c).

(a) t=0 sec (b) t ≃ 1000 sec

(c) t=7200 sec (d) t ≃ 9000 sec

Fig. 17: VorLag with dynamic missions.

of controlling the density around the epicenter and
achieves density which is higher than necessary when
the number of sensors increases. By contrast, VorLag
succeeds in achieving the required density without un-
necessary movements. Vor is not capable of meeting the
density requirements, except in the case with about 550
sensors, where the requirement is already met by the
initial deployment.
In Figure 16(a) we show the average traversed distance

during the deployment phase. VorLag shows the best
behavior among the three algorithms, allowing sensors
to complete the deployment (which is not done by Vor)
by traversing shorter distances with respect to PDND.
Figures 16(b) and 16(c) show the average number of
starting/stopping actions and the average consumed
energy, respectively. These results are explained in a
similar way to those presented in Section 7.1.

7.3 Dynamic mission arrival

A mission is seen as a change in the coverage require-
ments over the AoI. Such a change aims at making the
sensor density high around the epicenter of the mission,
in order to have a better detection of the ongoing event.

(a) t=0 sec (b) t ≃ 4500 sec

(c) t=7200 sec (d) t ≃ 14000 sec

Fig. 18: PDND with dynamic missions.

The density of sensors around a mission is set to 0.1
sensors per unit area. In these experiments we focus
on the algorithm self-reconfiguration capabilities, i.e. on
the time to relocate sensors in order to fulfill dynamic
density requirements. We omit comparisons with Vor as
we already pointed out its incapability to face variable
density requirements in the previous set of experiments.

Figure 17(a) shows the initial deployment with 300
randomly placed sensors. The disk located at the top
left of the AoI represents a first mission, known at the
beginning of the deployment. Figures 17(b) and 18(b)
show the deployment achieved by VorLag and PDND for
the first mission, respectively. Once the first mission has
ended a second one appears at time t=7200 seconds, with
the same density requirement, but located on the bottom
right corner of the AoI, as depicted in Figure 17(c) and
18(c), and requires the network to reconfigure. Figure
17(d) and 18(d) show the final deployments achieved by
VorLag and PDND respectively.

In Figures 19(a) and (b) we show the density over time
of the first and second mission area respectively. VorLag
shows a shorter configuration and reconfiguration time
with respect to PDND, although PDND shows a more
regular deployment. Note that in this context the goal of

14

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 4000 8000 12000

D
en

si
ty

 (
se

ns
or

/u
ni

t a
re

a)

Time (s)

 VORLAG
ρ*

 PDNDSUM

(a)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 4000 8000 12000

D
en

si
ty

 (
se

ns
or

/u
ni

t a
re

a)

Time (s)

 VORLAG
ρ*

 PDNDSUM

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 4000 8000 12000

D
en

si
ty

 (
se

ns
or

/u
ni

t a
re

a)

Time (s)

 VORLAG
ρ*

 PDNDSUM

(b)

Fig. 19: Density of the first mission (a) and second mission (b) area.

the algorithm is to achieve a minimum required density
on the mission locations and simple coverage elsewhere.
Once this is achieved, there is no reason to move sensors
in order to make the deployment more regular. The
VorLag algorithm achieves its goal faster than PDND,
whereas PDND wastes energy with useless movements
creating a regular deployment as side effect.

8 CONCLUSIONS

We introduced a novel algorithm, called VorLag, to
deploy heterogeneous mobile sensors over a field of
interest. The VorLag algorithm works even with time
and position dependent density requirements. We for-
mally proved the termination of VorLag under both the
applicative scenarios. The proposed algorithm is self-
adaptive to runtime changes of the operative condi-
tions. It requires no prior knowledge of the applicative
scenario, and does not necessitate manual tuning of
its working parameters. We compared VorLag with its
traditional counterpart, showing that it resolves stale and
critical situations. Furthermore, we introduced modifi-
cations to a virtual force based approach in order to
make it work in the heterogeneous and variable density
scenario. Extensive simulations show that our algorithm
outperforms the other approaches in many respects.

REFERENCES

[1] G. Wang, G. Cao, and T. La Porta, “Movement-assisted sensor
deployment,” IEEE Trans. on Mobile Computing, vol. 6, pp. 640–
652, 2006.

[2] K. Ma, Y. Zhang, and W. Trappe, “Managing the mobility of a
mobile sensor network using network dynamics,” IEEE Trans. on
Parallel and Distributed Systems, vol. 19, no. 1, pp. 106–120, 2008.

[3] A. Howard, M. J. Mataric, and G. S. Sukhatme, “Mobile sensor
network deployment using potential fields: A distributed, scalable
solution to the area coverage problem,” Proc. of DARS, pp. 299–
308, 2002.

[4] M. Garetto, M. Gribaudo, C.-F. Chiasserini, and E. Leonardi, “A
distributed sensor relocation scheme for environmental control,”
The ACM/IEEE Proc. of MASS, pp. 1–10, 2007.

[5] J. Chen, S. Li, and Y. Sun, “Novel deployment schemes for mobile
sensor networks,” Sensors, vol. 7, pp. 2907–2919, 2007.

[6] N. Heo and P. Varshney, “Energy-efficient deployment of intelli-
gent mobile sensor networks,” IEEE Trans. on Systems, Man and
Cybernetics, vol. 35, pp. 78–92, 2005.

[7] Y. Zou and K. Chakrabarty, “Sensor deployment and target local-
ization in distributed sensor networks,” ACM Trans. on Embedded
Computing Systems, vol. 3, no. 1, pp. 61–91, February 2003.

[8] S. Poduri and G. S. Sukhatme, “Constrained coverage for mobile
sensor networks,” Proc. of IEEE ICRA, pp. 165–171, 2004.

[9] M. R. Pac, A. M. Erkmen, and I. Erkmen, “Scalable self-
deployment of mobile sensor networks; a fluid dynamics ap-
proach,” Proc. of IEEE IROS, pp. 1446–1451, 2006.

[10] M. Ma and Y. Yang, “Adaptive triangular deployment algorithm
for unattended mobile sensor networks,” IEEE Trans. on Comput-
ers, vol. 56, pp. 946–847, 2007.

[11] G. Tan, S. A. Jarvis, and A.-M. Kermarrec, “Connectivity-
guaranteed and obstacle-adaptive deployment schemes for mo-
bile sensor networks,” IEEE Transactions on Mobile Computing,
vol. 8, no. 6, pp. 836–848, 2009.

[12] N. Bartolini, T. Calamoneri, E. Fusco, A. Massini, and S. Silvestri,
“Autonomous deployment of self-organizing mobile sensors for
a complete coverage,” ACM/Springer Wireless Networks, vol. 16,
no. 3, pp. 607–625, 2010.

[13] X. Li, H. Frey, N. Santoro, and I. Stojmenovic, “Focused-coverage
by mobile sensor networks,” The IEEE Proc. of MASS, 2009.

[14] A. Bar-Noy, T. Brown, M. P. Johnson, and O. Liu, “Cheap or
flexible sensor coverage,” Distributed Computing in Sensor Systems,
Lecture Notes in Computer Science, vol. 5516, pp. 245–258, 2009.

[15] M. P. Johnson, D. Sar, A. Bar-Noy, T. Brown, D. Verma, and C. W.
Wu, “More is more: the benefits of denser sensor deployment,”
The ACM/IEEE Proc. of INFOCOM, 2009.

[16] C.-Y. Chang, C.-T. Chang, Y.-C. Chen, and H.-R. Chang, “Obstacle-
resistant deployment algorithms for wireless sensor networks,”
IEEE Transactions on Vehicular Technology, vol. 58, no. 6, pp. 2925–
2941, 2009.

[17] S. Martinez, J. Cortes, and F. Bullo, “Motion coordination with
distributed information,” IEEE Control Systems Magazine, pp. 75–
88, August 2007.

[18] X. Wu, G. Chen, and S. K. Das, “On the energy hole problem of
nonuniform node distribution in wireless sensor networks,” Proc.
of IEEE MASS, pp. 180–187, 2006.

[19] M. Cardei, Y. Yang, and J. Wu, “Non-uniform sensor deployment
in mobile wireless sensor networks,” Proc. of WoWMoM, pp. 1–8,
2008.

[20] J. Li and P. Mohapatra, “Analytical modeling and mitigation
techniques for the energy hole problem in sensor networks,”
Pervasive and Mobile Computing, no. 3, pp. 233–254, 2007.

[21] S. Olariu and I. Stojmenovic, “Design guidelines for maximizing
lifetime and avoiding energy holes in sensor networks with
uniform distribution and uniform reporting,” Proceedings of IN-
FOCOM, pp. 1–12, 2006.

[22] M. Lam and Y. Liu, “Two distributed algorithms for heteroge-
neous sensor network deployment towards maximum coverage,”
Proc. of IEEE International Conference on Robotics and Automation
(ICRA), pp. 3296–3301, 2008.

[23] A. Gusrialdi, S. Hirche, T. Hatanaka, and M. Fujita, “Voronoi
based coverage control with anisotropic sensors,” Proc. of the
American Control Conference (AAC), 2008.

[24] H. Ammari and S. Das, “Promoting heterogeneity, mobility, and
energy-aware voronoi diagram in wireless sensor networks,”
IEEE Trans. on Parallel and Distributed Systems, vol. 19, no. 7, pp.
995–1008, 2008.

[25] F. Aurenhammer, “Voronoi diagrams - a survey of a fundamental
geometric data structure,” ACM Computing Surveys, vol. 23, no. 3,
pp. 345–405, 1991.

[26] H. Imai, M. Iri, and K. Murota., “Voronoi diagram in the Laguerre
geometry and its applications,” SIAM J. Comput., vol. 14, no. 1,
pp. 93–105, 1985.

15

[27] K. Sugihara, “Laguerre voronoi diagram on the sphere,” Journal
for Geometry and Graphics, vol. 6, no. 1, pp. 69–81, 2002.

[28] N. Megiddo, “Linear-time algorithms for linear programming in
ℜ3 and related problems,” SIAM J. Comput., vol. 12, pp. 759–776,
1983.

[29] “Opnet technologies inc.” http://www.opnet.com.
[30] G. Sibley, M. Rahimi, and G. Sukhatme, “Mobile robot platform

for large-scale sensor networks,” IEEE International Conference on
Robotics 158 and Automation (ICRA), pp. 1143–1148, 2002.

[31] G. Anastasi, M. Conti, A. Falchi, E. Gregori, and A. Passarella,
“Performance measurements of mote sensor networks,” Proc. of
ACM MSWiM 2004, pp. 174–181.

Novella Bartolini graduated with honors in
1997 and received her PhD in computer engi-
neering in 2001 from the University of Rome,
Italy. She is now assistant professor at the Uni-
versity of Rome. She was researcher at the Fon-
dazione Ugo Bordoni in 1997, visiting scholar
the University of Texas at Dallas in 1999-2000
and research assistant at the University of Rome
’Tor Vergata’ in 2000-2002. She was program
chair and program committee member of several
international conferences. She has served on

the editorial board of Elsevier Computer Networks and ACM/Springer
Wireless Networks. Her research interests lie in the area of wireless
mobile networks and web based systems.

Tiziana Calamoneri graduated in Mathematics
in 1992 and got her Ph.D. in Computer Science
in 1997, at University of Rome ”La Sapienza,”
Italy. Since 2006, she is associate professor
at the Department of Computer Science, Uni-
versity of Rome ”La Sapienza” where she also
was assistant professor from 2000 to 2006.
Her research interests include sensor networks,
parallel and sequential graph algorithms, lay-
out of networks topologies and optimal routing
schemes, channel assigment in wireless net-

works.

Thomas F. La Porta is a Distinguished Profes-
sor in the department of computer science and
engineering at Penn State University. He joined
Penn State in 2002. At Penn State, Dr. La Porta
is the Director of the Networking and Security
Research Center. Prior to joining Penn State, he
was with Bell Laboratories since 1986. There
he was the Director of the Mobile Network-
ing Research Department where he led various
projects in wireless and mobile networking. He
is an IEEE Fellow, Bell Labs Fellow, received

the Bell Labs Distinguished Technical Staff Award in 1996, and an Eta
Kappa Nu Outstanding Young Electrical Engineer Award in 1996. He
also won Thomas Alva Edison Patent Awards in 2005 and 2009. Dr.
La Porta received his B.S.E.E. and M.S.E.E. degrees from The Cooper
Union, New York, NY, and his Ph.D. degree in Electrical Engineering
from Columbia University, New York, NY. He was the founding Editor-
in-Chief of the IEEE Transactions on Mobile Computing, and served as
Editor-in-Chief of IEEE Personal Communications Magazine for three
years. He has published over 150 technical papers and holds over 30
patents. His research interests include mobility management, signaling
and control for wireless networks, mobile data and sensor systems, and
network security.

Simone Silvestri graduated with honors in 2005
and is currently a PostDoc researcher in Com-
puter Science at Sapienza, University of Rome,
Italy. He was a visiting scholar at the Electrical
and Electronic Engineering Department, Impe-
rial College, London. He served as program
committee member of several international con-
ferences. His research interests lie in the area of
sensor networks and web based systems.

