
Noname manuscript No.
(will be inserted by the editor)

On adaptive density deployment to mitigate the sink-hole
problem in mobile sensor networks

Novella Bartolini · Tiziana Calamoneri ·
Annalisa Massini · Simone Silvestri

Received: date / Accepted: date

Abstract The use of mobile sensors is of great rele-
vance to monitor critical areas where sensors cannot be
deployed manually. The presence of data collector sinks
causes increased energy depletion in their proximity,
due to the higher relay load under multi-hop communi-
cation schemes (sink-hole phenomenon). We propose a
new approach towards the solution of this problem by
means of an autonomous deployment algorithm that
guarantees the adaptation of the sensor density to the
sink proximity and enables their selective activation.

The proposed algorithm also permits a fault toler-
ant and self-healing deployment, and allows the realiza-
tion of an integrated solution for deployment, dynamic
relocation and selective sensor activation.

We formally prove the termination of our algorithm.
Performance comparisons between our proposal and pre-
vious approaches show how the former can efficiently
reach a deployment at the desired variable density with
moderate energy consumption under a wide range of
operative settings.

Keywords Mobile sensors · Self-deployment · Sink-
hole problem

1 Introduction

The deployment of mobile sensors is attractive in many
scenarios. For example, mobile sensors may be used
for environmental monitoring to track the dispersion
of pollutants, gas plumes or fires. They may also be
used for public safety, for example to monitor the re-
lease of harmful agents as a result of an accident. In

Department of Computer Science
“Sapienza” University of Rome, Italy
E-mail: {bartolini, calamo,
massini, simone.silvestri}@di.uniroma1.it

such scenarios it is difficult to achieve an exact sen-
sor placement through manual means. Instead, sensors
may be deployed somewhat randomly from a distance,
and then reposition themselves to provide the required
sensing coverage. The potential of such applications has
inspired a great deal of work on algorithms for deploy-
ing mobile sensors. Most of this work has addressed the
deployment of homogeneous sensors to achieve a uni-
form coverage of a certain density in a specific Area
of Interest (AoI). When the sensor network centralizes
the communications towards a single or a few sinks,
the energy depletion due to communications is uneven
and may possibly cause the so-called sink-hole phe-
nomenon [1–3]. In this paper we address this practical
and challenging problem by deploying sensors at vari-
able densities to ensure uniform energy depletion even
under imbalanced communication load.

We propose an algorithm which is based on a gener-
alization of the Push & Pull approach presented in [4].
In summary, our contributions are:
– We identify the models of load imbalance caused

by centralized communications towards one or more
sinks in the network and propose a density function
that models the varying density requirements over
the AoI as a consequence of those unbalanced com-
munications;

– We propose a new algorithm based on the known
Push & Pull algorithm so as to allow it a more direct
control over the placement of redundant sensors, to
provide a sensor deployment at variable controlled
density;

– We formally prove the termination of our algorithm,
showing that the sensors stop moving after a finite
time.

– We extend a virtual forces based algorithm to oper-
ate in a scenario with variable density requirements,

2

in order to make fair comparisons between our ap-
proach and the one based on virtual forces.

The Push & Pull algorithm is practical as it provides
very stable sensor behavior, with fast and guaranteed
termination and moderate energy consumption. It does
not require manual tuning or perfect knowledge of the
operating conditions, and works properly if the sensor
positioning is imprecise. The algorithm does not require
any synchronization during the deployment phase. The
achieved deployment permits the use of alternate sensor
activation that can be adopted if a loose synchroniza-
tion is possible during the operative phase of the net-
work. Because it converges quickly and does not require
a priori knowledge of the deployment environment, it is
also well suited for dynamic environments in which mul-
tiple sinks can be dynamically placed in consequence to
dynamically changing missions.

The paper is organized as follows. Related work is
presented in Section 2. In Section 3 we motivate the
problem and introduce some preliminary concepts. Sec-
tion 4 is the core of the paper and presents a new algo-
rithm for variable density sensor deployment. We prove
the termination of the δ-Push& Pull algorithm in Sec-
tion 5. In Section 6 we show how to exploit the de-
scribed algorithm to jointly solve the problem of sensor
deployment, dynamic relocation, self-healing and selec-
tive activation. Section 7 is devoted to summarize a
virtual force based algorithm that we use to perform ex-
perimental comparisons whose results are shown in Sec-
tion 8. Section 9 concludes the paper addressing some
final remarks.

2 Related Work

Various solutions have been proposed to the problem
of mobile sensor self deployment. The majority of them
are either based on the virtual force approach (VFA) or
on computational geometry models. According to the
VFA technique [5–8] the interaction among sensors is
modelled as a combination of attractive and repulsive
forces. Other solutions [9,10] have been inspired by dif-
ferent physical models. In [9] the sensors are modelled
as particles of a compressible fluid and regulate their
movement acting upon a diffusive behavior. In [10], the
authors propose two approaches that make use of gas
theory to model sensor movements in the presence of
obstacles.

All these approaches require a laborious tuning of
thresholds and constants to determine the magnitude
of the forces and to control possible oscillations. The
choice of these values influences the resulting deploy-
ment, the overall energy consumption and the conver-

gence rate. Possible improvements to decrease the os-
cillations include the introduction of dissipative forces
[11, 12].

Most of the deployment methods based on compu-
tational geometry model the deployment problem in
terms of Voronoi diagrams or Delaunay triangulations
[13,14]. In [13] each sensor iteratively calculates its own
Voronoi polygon, determines the existence of coverage
holes and moves to a better position if necessary. The
algorithm proposed in [14] exploits the Delaunay tri-
angulation formed by the current sensor placement and
moves sensors so as to position them as vertices of a tri-
angular lattice. Similarly to the VFA approach, these
proposals rely on the off-line tuning of key parameters
to reduce movement oscillations.

All the above mentioned solutions do not address
the sink-hole problem. In [12] a unified solution for sen-
sor deployment and relocation crowding sensors in the
presence of events is presented. This approach could
be adopted to increase the sensor density in proximity
of the sink. Other papers, dealing with the sink-hole
problem explicitly, only focus on static sensor deploy-
ment [2, 3, 15, 16]. The aim is to mitigate the effects
of the uneven energy depletion due to communication
with a sink by means of a variable density deployment.
In the next section we will detail some of these results
that will be useful for our contribution. Only [17] specif-
ically address the sink-hole problem in the context of
mobile sensors. According to such an approach, sen-
sor can move only once and location information are
communicated to the sink which centrally compute the
movement strategy and then disseminate the results to
the sensors.

Many works deal with the k-coverage deployment
problem. In [18], Vu and Verma reduce the problem
of sensor placement with a redundancy of at least k
sensors to the problem of distributing k points evenly on
a torus manifold by minimizing the Riesz energy. In [19]
the k-coverage sensor deployment problem is considered
in both cases of the binary and probabilistic sensing
models. They also distinguish the problem of sensor
placement in the case of the different relation between
the sensing radius rs and communication radius rc, i.e.
rc <

√
3rs and rc ≥ √

3rs and propose two different
dispatch schemes.

The k-coverage sensor placement can be obtained
by shrinking a grid deployment until the k-coverage is
achieved. In both [4] and [20] the shrinking is used to
obtain a denser hexagonal grid.

In the present work, a redundant coverage with adap-
tive redundancy level k is obtained by superimposing
several grid translated from each other to the purpose
of achieving a variable controlled density deployment.

3

Furthermore the k-coverage is exploited to the purpose
of ensuring uniform energy depletion by performing a
selective activation of the sensors.

3 Energy consumption due to communications

Li and Mohapatra address the sink-hole problem in [2].
The authors analyze the applicative context of envi-
ronmental monitoring and data gathering. In this con-
text they assume that each sensor generates new traffic
with a constant bit rate (CBR) and sends it to the sink
via multi-hop communications. The examined deploy-
ment consists of a uniform random placement of devices
over the AoI, where N is the total number of devices
and Anet is the measure of the area of the AoI, hence
the uniformly deployed density is ρ = N/Anet. Sensors
transmit their packets to the destination by selecting
the next-hop which is closest to the destination.

The authors propose a model to evaluate the per-
node energy consumption, by considering three main
contributions, namely energy spent for sensing, trans-
missions and receptions. They divide the AoI into sev-
eral concentric circular crowns of radius equal to the
transmission range r, centered at the sink position. The
energy consumption of the sensors is then calculated
separately in each crown.

According to this model the per-node energy con-
sumption of the i-th crown is the following:

ECRringith = α1b +

γ1

(M2

π − (i + 1)2)
2i + 1

b +

(β1 + β2r
n)

(M2

3 − i2)
2i + 1

b (1)

where i = 0, 1, . . . , (M
2 − 1), and the parameters are

the following: b is the constant bit rate generated by
each sensor, α1, β1, β2 and γ1 are technology dependent
constant factors that are considered in the definition of
the three energy contributions mentioned above, and
the AoI is divided into M

2 concentric circular crowns
with a step size of r meters.

Also Olariu and Stojmenović deal with the sink-hole
problem in [3]. The authors also consider a uniformly
deployed sensor network, with devices transmitting the
same number of reports towards the sink. The authors
conclude that the energy consumption of sensors lo-
cated inside the i-th circular crown centered at the sink,
and determined by the radii ri−1 and ri, is as follows:

Ei =
T

ρπ

[
1 − r2

i−1

rk
2

]
(ri − ri−1)α + c

r2
i − r2

i−1

(2)

where T is the number of tasks handled by the network
during its lifetime, c is a technology dependent positive
constant, α > 2 is the power attenuation and ρ is the
sensor uniform density over the AoI.

Finally the problem of uneven energy depletion due
to many-to-one communications is addressed in [1] un-
der nonuniform sensor deployment. The authors find a
suboptimal deployment technique to ensure energy ef-
ficiency and mitigate the sink-hole problem. They pro-
pose to deploy sensors into circular crowns at different
densities where the ratio between the sensor densities
of the adjacent (i + 1)-th and the i-th crowns is equal
to

ρi+1

ρi
=

(2i − 1)
q(2i + 1)

(3)

and q > 1 is the geometric proportion defining the in-
crease in the number of sensors from the outer to the
inner crowns. The circular crowns are centered at the
sink position, and are dimensioned so as to ensure that
the sensors of each crown act as forwarders for the outer
crowns.

The authors assume a constant bit rate generated by
each sensor and two energy contributions due to trans-
missions and receptions.

In this paper we refer to the above mentioned work
[1] to define the non-uniform density requirements to be
addressed by the deployment algorithm in order to bal-
ance the energy consumption among the sensors of the
network. By deploying the sensors according to Equa-
tion (3) the proposed approach ensures the network en-
ergy efficiency and prolong the network lifetime avoid-
ing the generation of sink holes due to communications.

4 Variable density self deployment of mobile
sensors

The proposed algorithm, called δ-Push&Pull, is inspired
by the algorithm introduced in [4], to which we made
major modifications to the purpose of deploying sensors
at variable densities according to position dependent re-
quirements.

Given a point P in the AoI, we define δ(P) the
coverage density required in position P . Let V be a
set of equally equipped sensors able to determine their
own location, endowed with boolean sensing capabili-
ties and isotropic sensing and communication model.
Notice that location capabilities are only necessary to
recognize the borders of the AoI while, in order to make
movement decisions, each sensor only needs to know the
position of its communicating neighbors.

4

As in its original counterpart, according to
δ-Push&Pull, the sensors aim at realizing a complete
coverage of the AoI and a connected network by means
of a hexagonal tiling deployment, where the side of each
hexagon is set to the sensing radius rs. The hexagonal
tiling is realized by snapping the necessary number of
sensors over the AoI in grid positions located in cor-
respondence to the vertices of a triangular lattice with
side

√
3rs. Such sensors will be referred to as snapped.

Given a snapped sensor x, we refer to Hex(x) as to the
hexagonal area that is covered by the sensor x and to
Px as to the position of the sensor x.

At the same time, δ-Push&Pull deploys redundant
sensors over the covered area, by distributing them at
variable density, according to δ(P) as follows: the num-
ber of sensors that will be located in Hex(x) centered
at Px is

nδ(Px) = �δ(P) · 3
√

3
2

r2
s�

The nδ(Px) − 1 sensors utilized to obtain the de-
sired density in a specific hexagon will be indicated as
adjunct-snapped sensors. The sensors located in Hex(x)
which are neither snapped nor adjunct-snapped will be
named slaves of x. We hereafter refer to S(x) as the set
of slave sensors of x.

The algorithm starts with the concurrent creation
of several tiling portions. Every sensor not yet involved
in the creation of a tiling portion gives start to its own
portion in an instant which is randomly selected in a
given time interval. Such a starter sensor is called sinit.
The algorithm consists of four main interleaved activi-
ties: snap, push, pull and merge.

4.1 Snap activity

The sensor sinit elects its position Pinit as the center
of the first hexagon of its tiling portion. It collects in-
formation on the sensors in radio proximity, that will
compose the set L(sinit). Among the sensors located
in its own hexagon, sinit chooses up to nδ(Pinit) − 1
sensors for the role of adjunct-snapped. Such sensors
will remain in their original hexagon and will not par-
ticipate in the following activities. The sensors belong-
ing to L(sinit) which have not been declared adjunct-
snapped can be used to cover adjacent hexagons. To
this purpose, sinit selects at most six sensors among
those belonging to L(sinit) and makes them snap to the
center of adjacent hexagons. Such deployed sensors, in
turn, give start to their own selection and snap activ-
ity, thus expanding the boundary of the current tiling
portion. This process continues until no other snaps are
possible, because either the whole AoI is covered, or the
boundary tiles do not contain any unsnapped sensors.

Sensor x starts the push activity if slave sensors are
still present in Hex(x) after the adjunct-snapped dec-
laration and the adjacent positions are all covered by
snapped sensors. By contrast, sensor x starts the pull
activity if (1) the number of adjunct-snapped sensors is
lower than necessary to fulfill the density requirement,
or (2) some hexagons adjacent to Hex(x) are left un-
covered and x has no slaves.

All the snapped sensors position the adjunct-snapped
sensors in their hexagon according to a same common
rule. This way it is possible to obtain the desired dis-
tribution of sensors over the hexagon area. Moreover,
it is possible to perform a selective sensor activation
which allows energy saving during the operative phase
of the network, giving rise to alternate activation of dif-
ferent hexagonal grids composed by adjunct-snapped
sensors in the same position. Obviously, these adjunct
grids have the same coverage and connectivity features
of the main hexagonal grid, that is the grid composed
by the snapped sensors.

4.2 Push activity

After the completion of their snapping activity, snapped
sensors may have slave sensors located inside their hexa-
gon. In this case, they pro-actively push such slave
sensors towards the areas demanding a higher number
of sensors. Consequently, slave sensors being in over-
crowded areas migrate to zones with unsatisfied density
requirements.

In order to avoid endless cyclic movements of slaves,
we introduce the following δ-Moving Condition. The
offer of slave sensors by a sensor x to a sensor y located
in radio proximity is allowed if and only if:

{|S(x)| > (|S(y)| + 1)} ∨
{|S(x)| = (|S(y)| + 1) ∧ id(x) > id(y)} (4)

where id(·) is a function initially set to the unique
identity code of the sensor radio device.

If the δ-Moving Condition is verified, sensor x can
push at least one of its slaves towards the destination
hexagon Hex(y) selected as the one that needs a higher
number of sensors to fulfill the local density require-
ments or to fill an adjacent coverage hole; among the
slave sensors which can be pushed to the destination, x

selects the closest to Hex(y).

4.3 Pull activity

The sole snap and push activities are not sufficient to
ensure the maximum expansion of the tiling and the

5

achievement of a deployment at the required density.
In the δ-Push&Pull algorithm, the pull activity starts
whenever a sensor x notices either a hole in its adjacent
snapping position or a density in Hex(x) that is lower
than nδ(Px).

Snapped sensors may detect a coverage hole adja-
cent to their hexagon and may not have available sen-
sors to make them snap. Similarly, a snapped sensor
may need more adjunct-snapped sensors than available
to fulfill the density requirements. In these cases, they
send hole trigger messages, and re-actively attract non-
snapped sensors and make them fill the hole or the den-
sity gap.

In order to start the pull activity, sensor x broad-
casts an invitation message at a higher and higher num-
ber of hops, until it receives an acceptance of invitation
from a snapped sensor having a redundant slave. The
inviter acknowledges the acceptance message if it has
not found a number of slave sensors sufficient to fill the
hole or the density gap, or reject it otherwise. In the
former case, an agreement has been reached between
the two sensors and the slave can start moving. When
the snapped sensor that is performing the pull activity
reaches its objective (to fill either the hole or the density
gap), it stops sending slave invitation messages.

4.4 Merge activity

The possibility that many sensors act as starters can
give rise to several tiling portions with different ori-
entations. In order to characterize and distinguish each
tiling portion, the time-stamp of each starter is included
in the header of all exchanged messages. Then, mes-
sages coming from sensors located in different tiling
portions include different starter time-stamps. When
the boundaries of two tiling portions come in radio
proximity with each other, the one with older starter
time-stamp absorbs the other one by making its snapped
sensors move into more appropriate snapping positions.
Hence this activity provides a mechanism to merge all
the tiling portions into a unique regular and uniformly
oriented tiling, simply adjusting the positions of already
snapped sensors.

We conclude this description of the algorithm with
an activity called role exchange. According to the pre-
vious description of δ-Push&Pull, slaves consume more
energy than snapped and adjunct-snapped sensors, be-
cause they are involved in a larger number of mes-
sage exchanges and movements. We introduce a mech-
anism to balance the energy consumption over the set
of available sensors making them exchange their roles.
This mechanism is similar to the technique of cascaded

movements introduced in [21]. Namely, any time a slave
has to make a movement across a hexagon as a conse-
quence of either push or pull activities, it evaluates the
opportunity to substitute itself with the snapped and
adjunct-snapped sensors of the hexagon it is traversing.
The criterion at the basis of this mechanism is that two
sensors exchange their role whenever the energy im-
balance is reduced. As a result, the energy balance is
significantly enhanced, though the role exchange has a
small cost for both the slave and the snapped sensor
involved in the substitution. Indeed, the slave sensor
has to reach the center of the current hexagon and per-
form a profile packet exchange with the snapped sensor
that has to move towards the destination of the slave.
A profile packet contains the key information needed
by a sensor to perform its new role after a substitution.

4.5 An example of the algorithm execution

Figure 1 illustrates the interleaved execution of the al-
gorithm actions through an example. For simplicity, we
do not consider the role exchange activity.

Figure 1(a) shows a starting configuration in which
a sink is positioned in the central point of the right
vertical side of the AoI and requires a density variation
in its proximity. The sensor 8 assumes the starter role.

This sensor snaps three of its slaves, as shown in
Figure 1(b), where the id values of such snapped sensors
are highlighted.

Figure 1(c) shows that the snapped sensor 8 has
some un-snapped sensors in its hexagon, and therefore
starts the push activity towards its three adjacent hexa-
gons. In the meantime, the sensor 4 acts as starter and
another grid portion is initiated. As it is in a zone with
density requirement 4, it designates the sensors 20, 36
and 11 as adjunct-snapped.

In Figure 1(d) the snapped sensor 19 detects a cover-
age hole. As it has an un-snapped sensor in its hexagon,
it performs the snap activity. The sensor 6 must satisfy
a density requirement 2, so it designates the sensor 34 as
adjunct-snapped. Notice that the snapped sensor 1 does
not have any hole around its hexagon, so its slave re-
mains where it is; furthermore, it does not execute any
push action as the Moving Condition is not satisfied.
The snapped sensor 8, having many slaves, continues
its push activity. At the same time, the snapped sen-
sor 4 snaps three of its slaves. Figure 1(e) shows that,
while the snapped sensors 4 and 8 continue their push
activities, the sensors 3 and 7 start the pull activity, as
both detect a coverage hole and do not have any slaves
to snap, so new sensors are snapped in the left grid.

In view of the pull activity, some sensors arrive in
the hexagons of sensors 3 and 7, and become adjunct-

6

8

Required density 1

Required density 2

Required density 4

(a)

6

1

19

8

(b)

6

1

19

8

4

20

11
36

(c)

6

1

19

8

4

20

11
3615

28

313

34

(d)

6

1

19

8

4

20

11

3615

28

313

34 7

2

(e)

6

1

19

8

4

20

11

3615

28

313

34 7

2

25

22

10

16

9

(f)

6

1

19

8

4

20

11

3615

28

313

34 7

2

25

22

10

16

9

12

27

13

5

17

14

35

(g)

6

1

19

8

4
20

11

36

15 28

31

3

34 7

2

25

22

10

16

9

12

27

13

5

17

14

35
24

21

29

(h)

6

1

19

8

4
20

11

36

15 28

31

3

34 7

2

25

22

10

16

9

12

27

13

5

17

14

35
24

21

29

23

(i)

Fig. 1 Algorithm execution: an example

snapped. The same happens in the right grid, with sen-
sors 15, 28 and 31 – see Figure 1(f). The sensors 4 and
8 continue their push activity.

In Figure 1(g) the snapped sensors 4 and 8 continue
their push activity while some new sensors are snapped.
In the meantime, the snapped sensors in the zone with
density requirement 4 designate some adjunct-snapped
sensors.

As soon as the grid portions come in radio proxim-
ity with each other, the tiling merge activity is started
(Figure 1(h)) and a unique grid is built. The adjunct-
snapped sensors located inside the hexagon of the sen-
sor 31 will change their status from adjunct-snapped to
slaves, because the sensor 31 has been snapped outside
the AoI in consequence of the merge activity. Finally,

Figure 1(j) concludes this example, showing the last
activities performed to completely cover the AoI.

5 Algorithm termination

In this section we formally prove the termination of
our algorithm. Let L = {�1, �2, . . . , �|L|} be the set of
snapped sensors.

Definition 1 A network state is a vector s whose i-
th component represents the number of slave sensors
deployed inside the hexagon Hex(i) governed by the
snapped sensor i. Therefore s =< s1, s2, . . . , s|L| >

where si = |S(i)|, ∀i = 1, . . . , |L|.

7

Notice that, adjunct-snapped sensors are not con-
sidered in the network state as they are not considered
by the push activity.

Definition 2 A state s =< s1, . . . , s|L| > is stable, if
the Moving Condition is false for each couple of snapped
sensors in L located in radio proximity to each other.

Theorem 1 Algorithm δ-Push&Pull terminates in a
finite time.

Proof As long as new sensors are being snapped, the
covered area keeps on growing. This process eventually
ends either because the AoI has been completely cov-
ered or because the sensors have reached a stable state.
In order to prove the theorem, it suffices to prove that,
once the algorithm has reached the maximum coverage
for the current execution (i.e. no more snap actions are
performed), the network reaches a stable configuration
in a finite time. Therefore we can consider the set of
snapped sensors L as fixed. The value of the order func-
tion related to each snapped sensor, id(�i), is set during
the unfolding of the algorithm, it can be modified only
temporarily by the pull activity a finite number of times
and remains steady onward. Let us define f : N

|L| → N
2

as follows:

f(s) =

⎛
⎝ |L|∑

i=1

s2
i ,

|L|∑
i=1

si · id(�i)

⎞
⎠ (5)

We say that f(s)
 f(s′) if f(s) and f(s′) are in lex-
icographic order. Observe that the function f is lower
bounded by the pair (|L|, ∑|L|

i=1 id(�i)), in fact 1 ≤ si ≤
|V |. Therefore, if we prove that the value of f decreases
at every state change, we also prove that no infinite
sequence of state changes is possible.

To this purpose, let us show that every state change
from s to s′ causes f(s)
 f(s′). Let us consider a
generic state change which involves the snapped sen-
sors x and y, with x sending a slave sensor to Hex(y).
We denote with as(y) the number of adjunct-snapped
sensors currently located in Hex(y). Two cases may oc-
cur:

(1) as(y) <

⌈
δ(Py)

3
√

3
2

r2
s

⌉

The snapped sensor y still needs some sensors to meet
the density requirement.

(2) as(y) =

⌈
δ(Py)

3
√

3
2

r2
s

⌉

The snapped sensor y has already fulfilled the den-
sity requirements, i.e. there is a sufficient number of
adjunct-snapped sensor in Hex(y).

Notice that, it is not possible that as(y) > nδ(Py),
as the algorithm provides that the status of all exceed-
ing sensors with respect to nδ(Py) is set to slave. In the
following we prove separately that f(s)
 f(s′) in both
cases.
Case (1): the pushed sensor will be an adjunct-snapped
of the snapped sensor y. We have that s′i = si ∀i �=
x, y, s′x = sx − 1 and s′y = sy. Thus, f(s)
 f(s′) be-
cause

∑L
i=0 s′i <

∑L
i=0 si.

Case (2): the pushed sensor will be a slave of the
snapped sensor y. We have that si = s′i ∀i �= x, y,
and s′x = sx − 1 and s′y = sy + 1. As the transfer
of the slave has been done according to the Moving
Condition (Equation 4), two cases are possible: either
sx > sy + 1, or (sx = sy + 1) ∧ (id(x) > id(y)). In
the first case, the inequality sx > sy + 1 implies that∑|L|

i=1 s2
i >

∑|L|
i=1 s′2i . In the second case, since sx =

sy + 1 and id(x) > id(y), lead to
∑|L|

i=1 s2
i =

∑|L|
i=1 s′2i

and
∑|L|

i=1 si · id(�i) >
∑|L|

i=1 id(�i)s′i. Therefore in both
cases f(s)
 f(s′).

The function f is lower bounded and always de-
creasing by discrete quantities (integer values) at any
state change. Thus, after a finite number of steps, it is
impossible to perform a further state change, i.e. the
network will be in a stable state in a finite time.

6 Joint solution to sensor deployment, selective
activation, self-healing and dynamic relocation

6.1 Selective activation

Our approach relies on the availability of a sufficient
number of sensors to cover each hexagonal tile at the re-
quired density, namely with a given number of adjunct-
snapped sensors. If the necessary number of sensors is
available, the algorithm achieves a complete coverage,
with a regular pattern that permits the use of topology
control algorithms [22] and allows a selective sensor ac-
tivation which saves energy during the operative phase
of the network. As already highlighted, each snapped
sensor will place its adjunct-snapped in fixed positions
according to a predefined oriented pattern inside each
hexagonal tile.

The deployment of the adjunct-snapped sensors ac-
cording to the same pattern in each tile with the same
density requirements, allows us to define a selective ac-
tivation pattern. The selective activation of the sensors
in a pattern guarantees the continuity and complete-
ness of the coverage of the tiles that belong to the same
circular crown.

When in an AoI there are crowns with different den-
sity requirements, temporary holes can appear along

8

(a) (b)

Fig. 2 Coverage holes at the borders of the circular crowns during the execution of the alternate activation of the adjunct-snapped
sensors.

the boundary of these zones since sensors in different
positions of the hexagons are activated in neighboring
areas. This situation is described in Figure 2. Observe
that the coverage discontinuity of Figure 2(b) is only in-
termittent, and many real applications may not suffer
from it. Indeed, for some applications a continuous sens-
ing of the AoI is not required, for example in the case of
monitoring systems for the detection of pollutant levels,
temperature or humidity conditions. In these cases, the
monitoring activity can rely on the sole interpolation of
local measurements taken at discrete points in the AoI.

By contrast, other more critical applications require
that every point in the target area be accurately mon-
itored, for example when the sensors are deployed to
monitor the presence of human-life threats such as ra-
dioactive or chemical plumes or a forest fire. In these
cases, coverage discontinuities can be eliminated by po-
sitioning the adjunct-snapped sensors in the wiggle re-
gion of the snapped sensor. Indeed, the wiggle region
has been defined in [20] as the region comprising all
those points in which a sensor could be repositioned
such that full coverage is maintained. Of course, the
adoption of the wiggle region requires a slight shrinking
of the hexagonal lattice. In particular, if w is the radius
of the circle inscribed in the wiggle region, then the
grid size must be set to

√
3(rs −w), instead of

√
3rs. It

follows that in order to create a wiggle region that is suf-
ficiently large to accommodate all the adjunct-snapped
sensors, it is necessary to deploy a larger number of
sensors.

Notice that only a loose clock synchronization is ac-
tually necessary to perform the described selective ac-
tivation scheme.

6.2 Self-healing and dynamic relocation

The proposed algorithm ensures that, when a sufficient
number of sensors are available, the density require-
ments defined in correspondence to the center of each

tile, will be fulfilled. Nevertheless, the algorithm does
not give any indication on where to place redundant
slave sensors, which instead are uniformly spread over
the network as a consequence of the push activity. The
redundant slave sensors will thus be available to recover
possible failures. More in detail, as soon as a cover-
age hole is detected by the sensors located in proximity
(for example, the detection may happen thanks to a
periodic polling scheme or signalled by a failing sen-
sor whose battery is almost exhausted), the detecting
sensors can restart the algorithm with the consequence
that the hole is immediately covered or a pull activity is
executed to attract the closest slave sensors. The redun-
dant slave sensors can thus be dynamically relocated to
respond to pull invitations issued by the sensors located
nearby failed devices. This process endows the network
with self-healing and self-adapting capabilities that are
not present in previous solutions.

In addition, a sensor network application may re-
quire sensor relocation capabilities (see [12,21]) also to
respond to dynamically occurring events when the de-
ployment of new sensors is not possible, and the only
choice is to re-use and move the available ones. In conse-
quence of a dynamically occurred event, each snapped
sensor may declare a new density requirement, which
better reflects the required position dependent accu-
racy.

This way the new set of redundant slave sensors be-
come available to respond to new pull invitations nec-
essary to reactivate the algorithm execution and fulfill
the new density requirements.

7 On the use of the virtual force approach for
variable density deployment

In order to evaluate the performance of the δ-Push&Pull
algorithm proposed in this paper, we compare it with
an algorithm based on virtual forces called Parallel and

9

Distributed Network Dynamics (PDND), proposed in
[23]. In PDND the force exerted by the sensor si on
the sensor sj is modelled as a piecewise linear function.
It is repulsive when the distance between si and sj is
lower than an arbitrarily tuned parameter r∗; it is at-
tractive when the distance is larger, until it vanishes
at another arbitrarily set distance. In order to ensure
the convergence of PDND, the formulation of this force
must respect the condition of Lipschitz continuity. In
this case, the single sensor movement is limited by an
upper bound that guarantees that the potential energy
is always decreasing, hence avoiding oscillations.

PDND works under the assumption that density re-
quirements are uniform over the AoI. The algorithm
PDND addresses the problem arising when a sensor
that approaches the boundary of the AoI calculates a
target position outside the sensing field. Since sensors
have a prior knowledge of the shape of the boundary,
in this case the sensor calculates the point that is clos-
est to the target position inside the AoI and moves to
that point following the optimal path. This point is ob-
tained by decomposing the part of the movement vector
outside the AoI in its orthogonal components (using the
boundary line as an axis) and using the sole component
which is parallel to the boundary line.

In order to make the algorithm achieve a variable
density deployment, we need to redefine the force that
one sensor exerts on the others. According to the al-
gorithm PDND, this implies the definition of the rest
distance r∗ at which the force exerted by two interact-
ing sensors is null. More specifically, we assign to all
sensors inside a region with the same density require-
ment a position dependent virtual sensing radius. In
particular, given a sensor x located at Px, we set the
virtual sensing radius rvirtual

s (x) to the radius of a reg-
ular hexagonal tessellation that would be obtained by
optimally deploying the sensors at the desired density,
that is:

rvirtual
s (x) =

√
2

3
√

3δ(Px)

We consider a value of r∗ that allows to minimize the
overlaps among sensing disks, obtained as a combina-
tion of the sensing radii of two interacting sensors i and
j, ri and rj , namely r∗ = ri+rj . This value of r∗ models
the interaction between two sensors trying to position
themselves so that their sensing circles are tangential.

It is to notice that the discontinuity of the density
requirements over the AoI implies a discontinuity in
the force function, that no longer respects the Lipschitz
condition. For this reason, the convergence of the algo-
rithm PDND is no longer guaranteed. In this particular
setting, PDND looses its peculiar characteristic of guar-
anteed convergence and behaves as all the other algo-

rithms based on virtual forces that, since the inspiring
model is inherently dynamic, are prone to oscillations.
In order to halt the execution of the PDND algorithm,
we introduce a centralized oscillation control method
as in [6]. By examining the history of movements of
each sensor, we determine if oscillations are going on by
checking if the sensor has moved back and forth around
the same location many times. More formally, we say
that a sensor is in an oscillatory state if in the last m
movements it has not moved away more than εm meters
from the barycenter of such movements. We artificially
terminate the algorithm as all the sensors are in an os-
cillatory state. We highlight that, although impractical,
this oscillation control is of benefit for the performance
of PDND and, for this reason, our comparisons are fair.

8 Simulation results

In this section we compare our proposal with the PDND
algorithm, adapted to our context as described in Sec-
tion 7. To this purpose, we developed an OPNET based
simulator. We use the following parameter setting: rtx =
10 m, rs = 5 m, sensor speed v = 1 m/sec. We consider
a squared AoI of 120 m × 120 m with three concentric
circular crowns, centered at the sink position, located
at the center of the AoI. According to [1], each crown
has a different density requirement increasing geomet-
rically towards the sink as described by Equation 3. In
particular, we set the density requirement of the most
external zone to one sensor per hexagon, and we use
a parameter q = 1.2 for the geometric progression. In
such a setting, the crown density requirements are 1,
2, 4 and 12 sensors per hexagon as we move from the
outer to the inner crown.

We consider a random sensor initial deployment, as
depicted in Figure 3(a). Figure 3(b) also shows an ex-
ample of the initial deployment, highlighting the posi-
tion dependent sensing radii used under PDND. Figure
3(c) and 3(d) show an example of the final deployment
achieved with 950 sensors by δ-Push&Pull and PDND,
respectively. The clusters of nodes of Figure 3(b) are
motivated by the random choice of the positions of the
adjunct-snapped sensors. As it will be explained in the
following, PDND achieves a more uniform deployment
at the cost of a higher energy consumption and deploy-
ment time.

In order to compare the performance of the two al-
gorithms we increase the number of deployed sensors
from 800 to 1100. The results are obtained by averag-
ing over 30 simulation runs.

Figure 4(a) shows the completion time, i.e. the time
required to reach the final deployment. Recall that the
PDND algorithm is artificially halted since it does not

10

(a) (b)

(c) (d)

Fig. 3 Initial configuration with homogeneous (a) and position dependent (b) sensing radii. Final deployment under δ-Push&Pull (b)
and PDND (c).

guarantee the termination. Despite this external inter-
vention to halt the execution of PDND, the termination
time of δ-Push&Pull is two orders of magnitude shorter
than PDND. The slowness of PDND is due to the limi-
tation to the distance each sensor is allowed to traverse
at each round. On the other hand, δ-Push&Pull let sen-
sors traverse entire hexagons at each movement, thus
resulting in a shorter termination time.

Figure 4(b) shows the average traversed distance.
δ-Push&Pull has a decreasing traversed distance as the
number of sensors increases. This is due to the fact that
less sensors have to be pulled in order to achieve the
desired density as the number of deployed sensors in-
creases. The PDND algorithm shows a higher traversed

distance than δ-Push&Pull due to the oscillating move-
ments typical of virtual force based solutions.

The average number of starting/stopping actions is
shown in Figure 4(c). This is an important metric for
mobile sensor deployment algorithms, because start and
stop actions consume high energy [13]. PDND shows an
average number of starting/stopping two orders of mag-
nitude higher than δ-Push&Pull. As for the deployment
time, this is due to the short distance each sensor can
traverse at each round. δ-Push&Pull, instead, moves
the sensors precisely and without oscillations, resulting
in a lower number of movements.

We now consider the average energy consumption
of a sensor under the two algorithms. A sensor con-

11

 1

 10

 100

 1000

 10000

 750 800 850 900 950 1000 1050 1100 1150

T
im

e
(s

ec
)

Number of sensors

δ-Push&Pull
PDND

 0

 5

 10

 15

 20

 25

 30

 35

 40

 750 800 850 900 950 1000 1050 1100 1150

M
ov

in
g

di
st

an
ce

 (
m

)

Number of sensors

δ-Push&Pull
PDND

(a) (b)

 1

 10

 100

 1000

 10000

 750 800 850 900 950 1000 1050 1100 1150

A
vg

 S
ta

rt
in

g/
st

op
pi

ng

Number of sensors

δ-Push&Pull
PDND

 1

 10

 100

 1000

 10000

 100000

 1e+006

 750 800 850 900 950 1000 1050 1100 1150

C
on

su
m

ed
 e

ne
rg

y
(u

ni
ts

)

Number of sensors

PDND - Tot.

PDND - Com.

δ-PushPull - Tot.

δ-PushPull - Com.

δ-Push&Pull - Total
PDND - Total

δ-Push&Pull - Communications
PDND - Communications

(c) (d)

Fig. 4 Performance comparisons between δ-Push&Pull and PDND.

sumes energy due to communications (sending and re-
ceiving messages) and movements (travelling and start-
ing/stopping movements). We consider two cumulative
energy consumption metrics, namely the average energy
spent in communication and the average total energy
consumed by sensors. Such metrics are expressed in en-
ergy units: the reception of a message corresponds to
one energy unit, a single transmission costs the same
as 1.125 receptions [24], a 1 meter movement costs the
same as 300 transmissions [13] and a starting/stopping
action costs the same as 1 meter movement [13].

Figure 4(d) shows the energy spent in communica-
tions and the total energy consumption. As expected,
PDND has worse performance under both metrics. On
the one hand, the energy spent in communications is
higher because of the high number of rounds required
by PDND to terminate. Indeed, under PDND, each
sensor advertises its position to the neighborhood at
each round. δ-Push&Pull, instead, has no round based
communications, and messages are only exchanged to
perform the algorithm activities. On the other hand,
the higher number of starting/stopping actions as well
as the higher traversed distance, result in a major to-

tal energy consumption of PDND with respect to δ-
Push&Pull.

We finally evaluate the two algorithms considering
the quality of the achieved deployments. We compared
the percentage of AoI not meeting the desired density
at the end of the algorithm execution. The results are
shown in Figure 5. The regularity of the deployment
achieved by PDND results in a better fulfilment of the
requirements. However, such regularity is achieved at
the cost of a higher energy consumption and a longer
deployment time. δ-Push&Pull consumes two orders of
magnitude less energy with respect to PDND, and is
able to achieve a final stable deployment in a much
shorter time. It shows a small gap in the percentage of
area not meeting the desired density, that decreases as
the number of sensors increases. This gap corresponds
to the boundaries between adjacent circular crowns. In-
deed, the density requirement of a tile is advertised ac-
cording to the position of its snapped sensor. Neverthe-
less, when a tile is crossed by the boundary line of a
circular crown, one of the two sections lies on a crown
where the density requirement is different from the one
declared by the snapped sensor.

12

 0

 2

 4

 6

 8

 10

 750 800 850 900 950 1000 1050 1100 1150

C
ov

er
ag

e

Number of sensors

δ-Push&Pull
PDND

Fig. 5 Percentage of area not meeting the density requirements.

9 Conclusions

We proposed an original algorithm for mobile sensor self
deployment, according to which sensors autonomously
coordinate their movements to achieve a complete cov-
erage with variable density. The sensor density varies
so as to uniform the energy depletion due to communi-
cations towards the sink. The final deployment consists
in a hexagonal tiling with a variable number of sen-
sors deployed in each tile. We formally prove the ter-
mination of our algorithm. Simulations show that our
algorithm performs better than previous approaches in
terms of several performance parameters. Furthermore,
we discussed some of the benefits related to the regular-
ity of the obtained deployment. In particular we show
how the regularity of the sensor distribution can be ex-
ploited to implement energy saving techniques and to
achieve fault tolerance and self-healing capabilities.

References

1. Wu, X., Chen, G., Das, S.K.: On the energy hole problem
of nonuniform node distribution in wireless sensor networks.
IEEE Transactions on Parallel and Distributed System 19(5)
(2008) 710–720

2. Li, J., Mohapatra, P.: Analytical modeling and mitigation
techniques for the energy hole problem in sensor networks.
Pervasive and Mobile Computing (3) (2007) 233–254

3. Olariu, S., Stojmenovic, I.: Design guidelines for maximizing
lifetime and avoiding energy holes in sensor networks with
uniform distribution and uniform reporting. Proc. of INFO-
COM (2006)

4. Bartolini, N., Calamoneri, T., Fusco, E., Massini, A., Sil-
vestri, S.: Push & pull: autonomous deployment of mobile
sensors for a complete coverage. ACM/Springer Wireless
Networks (2009)

5. Zou, Y., Chakrabarty, K.: Sensor deployment and target
localization based on virtual forces. Proc. IEEE INFOCOM
(2003)

6. Heo, N., Varshney, P.: Energy-efficient deployment of intelli-
gent mobile sensor networks. IEEE Transactions on Systems,
Man and Cybernetics 35 (2005)

7. Chen, J., Li, S., Sun, Y.: Novel deployment schemes for
mobile sensor networks. Sensors 7 (2007)

8. Poduri, S., Sukhatme, G.S.: Constrained coverage for mobile

sensor networks. Proc. of IEEE ICRA (2004)
9. Pac, M.R., Erkmen, A.M., Erkmen, I.: Scalable self-

deployment of mobile sensor networks; a fluid dynamics ap-
proach. Proc. of IEEE IROS (2006)

10. Kerr, W., Spears, D., Spears, W., Thayer, D.: Two formal
fluid models for multi-agent sweeping and obstacle avoidance.
Proc. of the Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS) (2004)

11. Howard, A., Mataric, M.J., Sukhatme, G.S.: Mobile sen-
sor network deployment using potential fields: A distributed,
scalable solution to the area coverage problem. Proc. of
DARS (2002)

12. Garetto, M., Gribaudo, M., Chiasserini, C.F., Leonardi, E.: A
distributed sensor relocation scheme for environmental con-
trol. The ACM/IEEE Proc. of MASS (2007)

13. Wang, G., Cao, G., Porta, T.L.: Movement-assisted sen-
sor deployment. IEEE Transaction on Mobile Computing
6 (2006)

14. Ma, M., Yang, Y.: Adaptive triangular deployment algorithm
for unattended mobile sensor networks. IEEE Transactions
on Computers 56 (2007)

15. Wu, X., Chen, G., Das, S.K.: On the energy hole problem
of nonuniform node distribution in wireless sensor networks.
Proc. of IEEE MASS (2006) 180–187

16. Cardei, M., Yang, Y., Wu, J.: Non-uniform sensor deploy-
ment in mobile wireless sensor networks. Proc. of WoWMoM
(2008) 1–8

17. Yang, Y., Cardei, M.: Movement-assisted sensor redeploy-
ment scheme for network lifetime increase. In: Proc. of the
ACM Symposium on Modeling, analysis, and simulation of
wireless and mobile systems (MASS). (2007) 13–20

18. Wu, C., Verma, D.: A sensor placement algorithm for re-
dundant covering based on riesz energy minimization. Proc.
ISCAS (2007)

19. Wang, Y.C., Tseng, Y.C.: Distributed deployment schemes
for mobile wireless sensor networks to ensure multilevel cov-
erage. IEEE Transactions on Parallel and Distributed System
19 (2008)

20. Johnson, M., Sarioz, D., Bar-Noy, A., Brown, T., Verma, D.,
Wu, C.: More is more: the benefits of denser sensor deploy-
ment. Proc. INFOCOM (2009)

21. Wang, G., Cao, G., Porta, T.L., Zhang, W.: Sensor relocation
in mobile sensor networks. Proc. of IEEE INFOCOM (2005)

22. Pattem, S., Poduri, S., Krishnamachari, B.: Energy-quality
tradeoffs for target tracking in wireless sensor networks.
Proc. of ACM International Conference on Information Pro-

cessing in Sensor Networks (IPSN), Springer Lecture Notes
in Computer Science 2634 (2003)

23. Ma, K., Zhang, Y., Trappe, W.: Managing the mobility of a
mobile sensor network using network dynamics. IEEE Trans-
action on Parallel and Distributed Systems 19(1) (2008) 106–
120

24. Anastasi, G., Conti, M., Falchi, A., Gregori, E., Passarella,
A.: Performance measurements of mote sensor networks.
(Proc. of ACM MSWiM 2004)

