
Distributed Server Selection and Admission Control in Replicated Web Systems

N. Bartolini, G. Bongiovanni, S. Silvestri
Department of Computer Science, University of Rome “La Sapienza” - Italy

{bartolini,bongiovanni,simone.silvestri }@di.uniroma1.it

Abstract

This paper addresses the problems of admission con-
trol and server selection in a system consisting of several
geographically replicated web servers and several access
points. We propose a fully distributed solution in which ev-
ery access point continuously monitors the availability of
all server side resources, using a mixture of active and pas-
sive measurements. Based on those measures, each access
point autonomously applies its decisions to the requests it
receives. Admission control is performed prioritizing re-
quests belonging to already admitted sessions, in order to
maximize the chance of successfully terminating ongoing
sessions. Furthermore, session information is taken into
account when performing a probabilistic request redirec-
tion and server choice, in order to improve load balanc-
ing and mitigate flash crowd effects. Extensive simulations,
performed in compliance with industry standards, show that
our method exhibits a stable behavior during overloads and
improves service quality in terms of both reduced response
time and higher successful session termination.

1 Introduction
Internet based applications typically demand high qual-

ity of service (QoS), possibly with some guarantees. In or-
der to ensure that the promised QoS is indeed met, these ar-
chitectures must implement some form of control (defined
by specific policies) on the client requests, to avoid exces-
sive application load with consequent degradation of the
QoS. The policies are enforced by means of special devices,
which we call Access Points (APs). An AP is a special type
of router or dispatcher that continuously monitors the state
of the server facilities and bases its decisions on such a state.
Each request issued by any client does not reach directly a
server, but is intercepted by one of the APs. The AP eval-
uates if, and how, the client request may be forwarded to
the server side. A first decision that the AP must make is
pertaining to admission control: in the context of this paper,
performing access control means deciding either to forward
the client request, or to drop it. A second decision is about

server selection: if a client request will indeed be forwarded
by the AP and there are more than one server that may han-
dle it, the AP must choose the server to which forward the
request. We assume full replication of application code and
database at each server, although not all servers are required
to hold the same content.

This paper studies the problem of admission control and
server selection for systems consisting of several geograph-
ically replicated web servers and several APs. The web ap-
plications we consider offer to users a typical session based
service, as is the case of e-commerce sites. In such cases
it is usually highly desirable to avoid dropping a session
which is near to its successful termination, since in that
phase the user will likely buy something, or anyway con-
firm a final operation giving some revenue to the provider.
To this extent, in our proposal we handle differently re-
quests which initiate a session and requests belonging to
an already ongoing session. Both the admission and the
request redirection policy take into account this differenti-
ation. APs must be able to concurrently adopt QoS poli-
cies on the basis of local information only. This scenario is
typical of active networks, based on application layer any-
cast, but our proposals can be applied also to many of the
architectures listed above. In such an environment an AP
is not aware of the QoS decisions adopted by other APs.
This has an important consequence: every decision made
by an AP will likely interfere with other AP decisions, pos-
sibly generating undesirable effects. As an example, con-
sider this situation: at a given time, several APs identify a
server (let’s call it A) as the less loaded server of the pool.
Consequently, all these AP will forward to A the next re-
quests they receive, thus rapidly overloading A and caus-
ing QoS degradation. To alleviate this problem, we adopt a
probabilistic method for server selection. Each AP needs to
carry on a measurement activity to somehow gather infor-
mation regarding the behavior of other APs. Measures are
also necessary to gather information regarding the so called
bystander traffic [4], i.e. traffic that doesn’t belong to the
web application themselves, but shares common links with
the network path going from the APs to the servers. Ac-
tive or passive measures may be used: the former tend to

Sixth International Symposium on Parallel and Distributed Computing (ISPDC'07)
0-7695-2936-4/07 $20.00 © 2007

increase the overall traffic, the latter may give incomplete
knowledge to APs (since an AP has no information about a
server to which it is not currently forwarding requests). We
adopt a dynamically changing mixture of the two types of
measures.
These are the main ideas of our contribution:
• adoption of a mixture of active and passive measure-

ments, dynamically driven by application load. Unlike
other work, where measurements are based either on
active or on passive techniques, our mixture permits
to APs to gather enough local information to perform
effective decisions, avoiding extra load common in ac-
tive measure techniques;

• introduction of a probabilistic approach to server selec-
tion: purpose of this approach is to alleviate the effect
of conflicting AP decisions, improving load balancing
and overall response time;

• management of stateful sessions, whose requests are
directed to the same server for the entire session: this
too contributes to smooth the effects of conflicting AP
decisions;

• introduction of session based admission control: we
privilege ongoing sessions over new session requests,
making existing sessions survive longer and with lower
response time. This is obviously of benefit for many
types of services, especially for e-commerce and trans-
actional services, because low response time implies
low abandon probability while longer sessions are the
ones that more likely terminate with a purchase or a
transaction.

The implementation of our proposals requires only minor
modifications of the server software, and none on client
side. In order to evaluate the proposed techniques, we de-
signed a synthetic traffic generator, whose sizing is compli-
ant with the assumptions of industrial standard benchmarks.
The think time and session interarrival time are the same of
the Rice TPC-W workload generator [17], [11], while the
session model is the same as in SPECWEB2005 [16]. We
tested the proposed policies on a simulator based on the OP-
NET modeler software [15]. The experiments show that:
• if concurrent APs apply deterministic techniques for

server selection, then conflicting decisions arise that
make several APs concurrently redirect traffic to the
same servers, causing load imbalances and even flash
crowds;

• the introduction of our probabilistic approach to server
selection greatly alleviates this effect, improving load
balancing and overall response time;

• the management of stateful sessions also contributes to
smooth the effects of conflicting decisions;

• session based admission control is indeed effective in
permitting to existing sessions to survive longer and
with lower response time.

The paper is organized as follows. In Section 2 we introduce
the state of the art of admission control and server selection
in geographically distributed web systems. In Section 3 we
give some details on the measuring framework. In Section 4
we introduce our QoS policies, to be implemented on APs.
In Section 5 we describe the experimental setup, while in
Section 6 we present an experimental evaluation of the pro-
posed policies in different scenarios. Section 7 concludes
the paper with some final remarks.

2 Related Work

The problem of admission control and request redirec-
tion for Web servers has been extensively studied in the re-
cent literature. Most of the studies have been conducted
on locally distributed architectures [1] with single access
points while few works analyze these problems in a geo-
graphically distributed scenario, with many servers, several
access points, and non dedicated links from request dis-
patching points to servers, possibly subject to non negligible
delays due to bystander traffic. An exhaustive survey of re-
lated work is out of the scope of this paper and due to space
limitations we just mention the most recent proposals and
results.

Many works consider the admission control problem in
single server architectures. Both [2] and [5] show how con-
sidering the admission of whole sessions rather than indi-
vidual requests can improve service quality in some circum-
stances. Both these papers locate the admission control pol-
icy at the server level, for this reason the proposed method-
ology cannot scale to a geographically distributed systems,
with replicated content. The authors of [14] analyze the
problem of parameter oscillation when performing on/off
admission control to web servers. Differently from our pro-
posal, this scheme only considers single web servers, and
single access points, which means that the suggested admis-
sion control policy may not scale to the scenario considered
in this paper. In [12] the authors introduce the problem of
QoS policies in a distributed environment with only one AP.
A prediction of the service time requirements of an incom-
ing request is considered while making the admission con-
trol decision with the purpose of maximizing the provider’s
income. Requests are scheduled on the basis of an estimate
of the service time. The authors of [6] study a multi-tier
cluster architecture and propose the use of a proxy server
to transparently intercept database requests. Such a proxy
maintains several measurement-based estimates on the to-
tal capacity of the database, the current database load and
the work generated by each query type. On the basis of
these measures the proxy performs adaptive admission con-
trol and request redirection, achieving overload control and
improving response time. In [8] a delay prediction and con-
trol scheme based on feedback and feed-forward strategies
is evaluated. In [10] the authors present a control-theoretic

Sixth International Symposium on Parallel and Distributed Computing (ISPDC'07)
0-7695-2936-4/07 $20.00 © 2007

approach to provide guaranteed absolute or relative delays
between different service classes of a single web server.
Unlike our work, the cited proposals [6, 8, 10, 12] cannot
be applied to a geographically distributed environment with
many replicated servers and several access points.

In [4] a single server architecture is considered, where
the possible presence of bystander traffic on the links be-
tween the clients and the server is also taken into account
by the admission control policy. An application level mech-
anism is introduced to mitigate flash crowds. Unlike our
work, the authors of [4] do not take into account session in-
formation when performing admission control. They only
addressed informational services, typically composed by
static contents. Also, they do not afford the problem of
server selection and request redirection as they consider
only one target server. The authors of [3] study the prob-
lem of request redirection in a geographically distributed
architecture with replicated server groups. Their work is
based on a simple service model and active probing meth-
ods to gather information on the load status of the available
servers. A similar problem has been addressed by the au-
thors of [7]. They studied the performance of some redi-
rection mechanisms on the basis of single measurements of
the round trip time. In [9] the problem of anycast flow ad-
mission control is discussed. The authors present three al-
gorithms for admission control and propose the adoption
of a probabilistic redirection mechanism. The cited works
[3, 7, 9] do not analyze the problem of session based traf-
fic nor study the possibility of having conflicting decisions
among several access points, for this reason their work is
not directly comparable to ours.

3 Measuring Framework

APs enable QoS policies to improve the provider’s rev-
enue and the user perceived quality, by increasing the proba-
bility of successful session termination (of interest for both
providers and users) and imposing a constraint on the re-
quest round trip time (of interest for the users). They op-
erate admission control and server selection on the basis of
locally available information on the quality of service that
can be perceived by clients. A measurement activity con-
sisting in a suitable alternation of active and passive tech-
niques is at the basis of these policies. When the incoming
traffic provides a sufficient message rate, the access points
perform a periodic evaluation of the 95%-ile of the response
time. This calculation is executed in a sliding time window
of T seconds. If the number of samples obtained in a time
window with such a passive method is not sufficient to en-
sure an acceptable confidence level on the estimate of the
response time, the active measurement phase is started. In
fact, in absence of such information, the access point cannot
make any assumption on either link or server load. The ac-
tive measurement phase stops as soon as a sufficient number

of samples is newly available, giving a reliable estimate of
the response time. During the passive measurement phase,
the access points periodically evaluate the 95%-ile of each
server response time, which from now on will be indicated
as RTT95(·). During the active measurement phase, each
AP periodically sends active probing messages in the form
of status query (SQ) messages. The probes are sent to all the
servers for which the AP does not have a sufficiently dense
sample of response time in a recent fraction of the last time
window (we use the last T/2 seconds in our experimental
setup). This way, if the frequency of application messages is
too low to guarantee a sufficiently dense set of passive mea-
sures, the probing activity is started in advance with respect
to the instant of evaluation of the server status. This is moti-
vated by the necessity to ensure continuous data availability,
in order to always have a reliable estimate of the response
time. We assume that SQ processing time is negligible, so
the time elapsed between sending the SQ and receiving the
response can be used as a measure of the network delay.
These measures constitute a sample space adopted by the
APs for the evaluation of 95%-ile of the network delay, to
which we will refer with ND95. The application servers
also take part in the active measurement phase, periodically
evaluating the 95%-ile of the request service times observed
in the last T seconds. From now on we will indicate this
metric with the variable ST95. The servers reply to SQ re-
quests with a message containing the last calculated value
of ST95. In the active measurement phase the frequency
of probing messages from an AP to an application server
is tuned on the basis of the necessary number of samples to
have a reliable estimate of ST95 and ND95. In order to have
a unique function to describe the estimated response time,
in both the active and passive phases of measurements, we
define resp time(·) as follows:

resp time(s) =
{

RTT95(s), passive phase
ST95(s) + ND95(s), active ph. (1)

where s ∈ S is a server in the set of available servers S.
The function resp time(s) represents the 95%-ile of the
user perceived latency with sufficient approximation if we
assume that the latency from user to AP is negligible if com-
pared to the latency observed in the links between access
points and servers. Purely active measuring mechanisms
are not scalable because servers receive a number of prob-
ing messages proportional to the number of APs. For large
topologies, with an high number of APs, it is easy to see that
the processing time of probing messages may be not negli-
gible and may cause performance degradation during over-
load. With our adaptive method, instead, each AP queries
only servers whose response time was not sampled recently
enough (in the AP time window).

4 QoS policies
In the considered architecture, the AP intercepts the re-

quests directed to the application servers and perform dis-

Sixth International Symposium on Parallel and Distributed Computing (ISPDC'07)
0-7695-2936-4/07 $20.00 © 2007

tributed QoS policies on the basis of locally available in-
formation pertaining to the load of application servers and
network links.

4.1 Server selection
In geographically distributed web systems, when an AP

intercepts a request, it selects a suitable server. The standard
approach to server selection adopted in content delivery net-
works consists in a deterministic selection of the best replica
in the pool, i.e. the server that minimizes/maximizes a given
metric. We show that this method is not suitable for mul-
tiple AP environments, and propose a probabilistic method
whose performance is scarcely influenced by the number
of APs in the topology. In the present section we detail
both the cited techniques and we assume that no admission
control policy is in place. With both the server selection
policies, the APs make periodic evaluation of the system
status, and update the policy decision every Tobs sec (inter-
observation period).

4.1.1 Deterministic server selection

The deterministic selection policy is commonly used in
shared server architectures with only one access point and
in content delivery networks. For this reason we use this
policy as a benchmark for comparisons with our proposed
approach. According to this policy, each AP uses the locally
available information to select the best server in the pool.
The APs forward all incoming requests to the reputed best
server until the server status changes and another replica be-
comes the best choice. By using the measuring framework
described in section 3, each AP chooses the server s∗ with
the lowest value of resp time(·), that is

s∗ = arg min resp time(s), s ∈ S, (2)

where resp time(·) is the function defined in equation 1. If
more than one server satisfies equation 2, the AP performs
a random selection among the servers with minimum value
of the function resp time(·).

4.1.2 Probabilistic server selection

Purpose of this mechanism is to balance the load among
servers in a way that, if the same policy is adopted by sev-
eral APs, conflicting decisions are reduced in comparison
with the deterministic approach. The deterministic selec-
tion policy introduced in subsection 4.1.1 has two main
drawbacks. A first drawback is that if there is more than
one unloaded server in the system only the least loaded
is selected with consequent scarce resource utilization. A
second drawback is that in a multiple AP environment, if
servers are shared among different APs, the determinis-
tic selection increases the number of conflicting decisions.
A conflicting decision happens when more APs select the
same server as best replica, generating an overload and pos-
sibly even a flash crowd effect on the chosen server. To

avoid conflicting decisions we allow the APs to select a set,
S∗ ⊆ S, of “reasonably” unloaded servers. Incoming re-
quests are then redirected to a server in S∗ with a probabil-
ity which decreases as the server load increases. Notice that
the server selection mechanism is separate from the admis-
sion control policy, therefore we want to be able to select
the subset of suited servers in a way that the presence of
at least one server for redirection is always guaranteed. To
this extent we set a threshold TSS on the estimated 95%-
ile of the response time. Since it is impossible to set an
arbitrary value of TSS that guarantees the selection of a non
empty subset of servers, we adopted the following heuristics
that adapts the response time threshold value to the present
server status. Be R = {r1, r2, . . . , rn} the set of the es-
timated 95%-iles of the response times of the n available
servers, and be r̃ , minR, the minimum value of R. Be
TSS an arbitrary threshold on the response time, possibly
lower or equal to the user timeout, i.e. the average time the
user waits until he abandons the site due to impatience. We
define the adaptive threshold θ as follows: θ , k · TSS,
where k =

⌈
r̃

TSS

⌉
. This way we can define S∗ as the sub-

set of servers with estimated 95%-ile of the response time
under the threshold θ, that is

S∗ , {s ∈ S|resp time(s) ≤ θ}.

Obviously the set S∗ is not empty since at least s̃ exists
such that s̃ ∈ S and resp time(s̃) = r̃. The threshold-
based probabilistic server selection mechanism avoids the
common drawbacks of the deterministic selection method.
Instead of selecting one server, it selects all servers whose
estimated response time is under the adaptive threshold θ.
Incoming requests are probabilistically distributed among
the servers of the set S∗ on the basis of a weight assignment
that keeps into account the status of the server load. To
distribute incoming user requests among servers in S∗, APs
follow a weighted probability function pθ(s):

pθ(s) , [θ − resp time(s)]/L ∀s ∈ S∗

where L =
∑

s∈S∗(θ − resp time(s)). Other weighted
probability functions have been proposed in previous
works, such as in [3, 7] , for a single access point scenario.
A comparison with other weighted probability functions is
out of the scope of this paper. We just mention that our
formulation generates probabilities that are less oriented to
the least loaded servers if compared to the formulation pro-
posed in [3, 7]. If there is more than one server in S∗ it will
receive a fraction of incoming requests proportional to its
available capacity. By probabilistically selecting a server in
a subset, the server selection policy relieves the effects of
conflicting decisions among several APs. In fact even if the
same servers were selected by different APs, each of them
would receive only a fraction of the incoming traffic of each
AP.

Sixth International Symposium on Parallel and Distributed Computing (ISPDC'07)
0-7695-2936-4/07 $20.00 © 2007

4.2 Admission control

The proposed Admission Control (AC) mechanism is
based on the measuring activity described in section 3. Ev-
ery Tobs seconds, each AP updates its status information on
the basis of the samples gathered in the most recent time
window. We use a threshold policy on the estimate of the
95%-ile of the response time. We introduce the threshold
TAC so that if the estimated 95%-ile of the response time
(calculated with respect to the whole server pool) is over the
threshold TAC, the AP rejects new session requests and only
accepts requests belonging to already ongoing sessions. On
the contrary, if the AP obtains a value of the 95%-ile of the
response time that is lower than TAC, new session requests
will be accepted. As we show in section 6, simulation re-
sults reveal that this policy contributes to lowering the av-
erage and the 95%-ile of the request round trip time and to
increasing the average session duration thanks to a lower
abandon rate.

4.3 Request redirection

Modern web applications often need some state informa-
tion regarding user sessions. Because of the stateless nature
of the HTTP protocol, there must be an application specific
management of this information. Many techniques can be
adopted to this purpose. Among these, some directly in-
volve the role of clients, such as cookies or hidden input
types in forms. Other techniques are preferred for efficiency
and security reasons, requiring the creation of objects with
session scope on the server application tier. The implemen-
tation of such objects depends on the server technology in
use. If J2EE is in use they may be objects implementing the
HttpSession interface or beans with a session scope.
For simplicity we refer to these objects with the name of
session objects. Session for which session objects are han-
dled will be called stateful sessions, and stateless session
otherwise. When a session object is created, for a given
user session, all future requests pertaining to that session
must be locked to the same server, otherwise an error will
occur unless context transfer management is in place, which
is not the case in our reference architecture.

5 Simulation environment
We developed a simulator on the basis of the OPNET

modeler software [15] to study the performance of our QoS
policies. The main entities of the simulation environment
are clients, APs and application servers. We assume that
clients are partitioned into geographic areas, and for each
area there is a single AP. In this way all clients of the same
area send their requests to the same AP, and latency on the
links between clients and the AP can be ignored. In the ex-
perimental setup we do not introduce bystander traffic be-
cause we want to focus on the effects of the policies in pres-
ence of several APs adopting concurrent admission control
decisions and server selections.

5.1 Client model and traffic generation

According to our model, each client issues a user session,
in the shape of a series of correlated requests. We assume
that the interarrival time of new sessions, for each AP, fol-
lows a negative exponential distribution with average 1/λ,
while the interarrival time of requests belonging to the same
session is more complex. After the first request, each client
issues subsequent requests waiting for the corresponding re-
sponse (response time), and spending some time analyzing
the content of the received response (think time). In order
to have a realistic traffic generator, we use the phase model
of an industrial standard benchmark: SPECWEB2005 [16].
Unlike its preceding releases, SPECWEB2005 takes into
account for the most relevant types of dynamic content (php
and jsp included). It models an e-commerce web site selling
personal computers, with typical requests such as browse,
login, search, customization of selection, add to cart, buy
and logout functionalities. Refer to [16] for a detailed de-
scription of the state model and of the functionalities of each
phase. Client sessions start from the home page and fol-
low the state model according to its transition probabilities,
possibly ending in any state if the user voluntary abandons
the site before completing the whole session life-cycle, or
reaching the last state of the model where an item can be
purchased or not. Upon reception of a response, the next
request is sent after a certain amount of time, called User
Think Time (UTT), that represents the time the user spends
analyzing the received web page. Our model of UTT is
based on TPC-W [17] and on other works in the area of web
traffic analysis that justify the assumption of heavy tailed
distributions of the user think time [13]. As in the TPC-
W model, we assumed a logarithmic distribution of think
times. We also assume a lower bound of 1 sec to the think
time. Therefore UTT = max{−log(r)µ, 1}, where r is
uniformly distributed in the interval [0,1] and µ = 20sec.
To model a realistic user behavior, we also introduce a time-
out on the maximum time the user can wait for a response
(client timeout). The interaction of a client with the web
application may end for three possible reasons: a) session
block: the AP denies service to the client’s first request (no
navigation session is started); b) session drop: no response
is received within the client timeout and the ongoing ses-
sion is interrupted; c) successful session termination: all
responses are received in time and the user voluntary termi-
nates the session.

5.2 Access point model

APs are the key entities of our model since all QoS poli-
cies are enforced by them. They adopt a two-way dispatch-
ing policy, so APs receive client requests and dispatch them
to the servers. They also receive server responses and for-
ward them to the clients. APs enable the adoption of QoS
policies for admission control, server selection and request
redirection, as extensively detailed in section 4.

Sixth International Symposium on Parallel and Distributed Computing (ISPDC'07)
0-7695-2936-4/07 $20.00 © 2007

Figure 1. Successful
Termination Probabiliy

Figure 2. Average Re-
quest RTT

Figure 3. 95%-ile of Re-
quest RTT

5.3 Server model

Servers communicate with the clients via the APs. For
each received request a thread is created and added to the
tail of the waiting queue. Servers use a time sharing, round
robin scheduling. Thread processing time depends on the
type of request being served. As it is widely accepted, we
consider three categories of requests depending on which
tiers are involved in the request processing: pure http re-
quests involve the http server tier, servlet requests involve
the application tier while database requests reach the third
tier for the execution of a query to the database. We give an
approximate estimate of the average processing times of the
different categories on the basis of the experiments detailed
in [6]. In our simulations we assume each session phase re-
quires an exponentially distributed execution time. Execu-
tion times are set as follows (waiting time due to preemptive
processor scheduling is not considered in these measures):
average execution time for pure http requests is 0.001sec,
while for servlet request is 0.01sec and for database requests
is 1sec.

6 Simulation results
In this section we present two sets of simulations. The

first set, detailed in subsection 6.1, shows the performance
of the two server selection mechanisms, deterministic and
probabilistic, in absence of admission control. This set of
simulations points out how the probabilistic method solves
the problems of conflicting decisions that characterize the
deterministic method. The second set of simulations, de-
tailed in subsection 6.2, studies the effects of the admission
control policy, showing that it can be used to improve both
the user perceived quality and the provider interests. In our
simulations we consider both stateful and stateless naviga-
tion sessions, For stateful sessions the session object is cre-
ated as soon as the user issues a customization request.

6.1 Server selection mechanisms

Concerning the performance of the two selection mech-
anisms described in 6.1, we show how, augmenting the size
of the topology, the classic deterministic selection exhibits
decreasing performance while the probabilistic method is
not adversely influenced. Before we introduce the simu-
lation results, a short analysis of the simulation scenario
must be done. We want to show the benefits of the prob-

abilistic method over the deterministic choice as the num-
ber of APs grows. To make a fair comparison among re-
sults obtained with an increasing number of APs we must
have an invariable load level on servers. To this extent,
we have two choices: a) to decrease the traffic rate flow-
ing through each access point, so that the load that insists
on each server does not change with varying the number
of APs, or b) to increase the number of servers in order
to make it grow proportionally to the number of APs and
maintain a constant load on each server. The first solution
makes comparisons unfair because by reducing the amount
of traffic coming from each AP we also reduce the amount
of traffic reaching the target server of a conflicting decision.
For this reason we let the number of APs and the number
of servers grow proportionally, keeping a constant rate of
traffic from each AP. In our experiments we set a num-
ber of servers three times higher than the number of APs
and scale the topology size increasing the number of APs
from 1 to 15, and consequently the number of servers from
3 to 45, while the traffic coming from each AP has a rate
of λ sessions/sec. This way, the total load divided by the
number of servers remains invariant. Here is a list of the
other important simulation parameters used in the simula-
tions: session arrival rate λ = 3 sessions/sec, client timeout
tout= 8 sec, probabilistic server selection threshold TSS=
8 sec. The measuring activity works with the following
time slots: sliding time window of 60 sec, inter-observation
period of 5 sec. With this set of experiments, the perfor-
mances of the four combinations (stateless and stateful ses-
sions, each with deterministic and probabilistic server se-
lection) are evaluated in terms of probability of successful
session termination (PSST, figure 1) and RTT (figures 2 and
3). Figure 1 shows that both probabilistic server selection
and management of stateful sessions are beneficial in terms
of reducing the negative effects of load inbalance due to
conflicting decisions made by APs. In fact, stateless ses-
sions with deterministic server selection exhibit the poorest
behavior: as the number of APs increases, PSST steadily
decreases. Stateless sessions with probabilistic server se-
lection show a better behavior, but cannot avoid a progres-
sive decrease in PSST. On the contrary, probabilistic server
selection for both stateless and stateful sessions proves to
be immune from decrease in PSST as the number of APs
grows, indicating that this technique is indeed effective in

Sixth International Symposium on Parallel and Distributed Computing (ISPDC'07)
0-7695-2936-4/07 $20.00 © 2007

Figure 4. Session Termination Probability Figure 5. Session Blocking Probability

Figure 6. 95%-ile of Re-
quest RTT

Figure 7. Average Re-
quest RTT

Figure 8. Average Ses-
sion Duration

avoiding load inbalances. The best performance is obtained
by using probabilistic server selection along with stateful
sessions: in this case the PSST exhibits the highest values.
Figure 1 shows another interesting phenomenon. The ben-
eficial effects of probabilistic server selection sum up with
those of stateful sessions. This is reasonable, since the two
techniques act in different and independent ways: the for-
mer helps by distributing the load on a set of servers rather
than on a single server, the latter contributes by avoiding
redirection of locked sessions. Figures 2 and 3 show that
a similar behavior is confirmed by looking at the values of
RTT. Again, stateless sessions with deterministic server se-
lection exhibit the worst behavior and produce the highest
RTTs, while stateful sessions with probabilistic server se-
lection show the best performance with the lowest values of
RTT. In particular, figure 3 shows that deterministic server
selection (for both stateless and stateful sessions) causes a
progressive increase in the 95%-ile of RTT, while proba-
bilistic server selection (again, for both stateless and state-
ful sessions) does not. Figure 3 indicates that the beneficial
effects of the two techniques sum up together in terms of
RTT too: for both deterministic and probabilistic server se-
lection methods, stateful sessions produce lower RTTs than
stateless sessions.

6.2 Admission Control
Whatever server selection method is in use, performance

can degrade unacceptably in case of overload. To ensure
probabilistic guarantees on the user perceived quality and
to increase performance parameters of interest to the ser-
vice provider, we introduce an admission control mecha-
nism. In all these test we use the same topology size and
adopt the probabilistic server selection method. We vary
the average arrival rate from each AP and study the impact

of the admission control policy with stateful and stateless
session. The simulation parameters setting are as follows:
8 access points, 24 application servers, admission control
threshold TAC=4 sec, client timeout tout=8 sec, probabilis-
tic server selection threshold TSS=8 sec. The measuring
activity works with the following time slots: sliding time
window of 60 sec and inter-observation period of 5 sec.
Let us consider the case without session objects. Figure
4 shows the probability of successful termination of the
admitted sessions. Without admission control (NoAC sce-
nario) all incoming sessions are admitted to the system. By
raising the session arrival rate, too many sessions arrive and
the probability of a client timeout increases, with a conse-
quently increased number of interrupted sessions. With the
admission control mechanism (AC scenario), instead, the
probability of successful termination is consistently higher.
As we show in figures 6 and 7, without admission control,
both the 95%-ile and the average of the request RTT signif-
icantly increase with the session arrival rate, worsening the
quality of service perceived by the users. In presence of the
admission control, instead, the overload effect is smoothed
the average and 95%-ile values of the request RTT are much
lower. A similar situation is obtained for stateful sessions,
with figures that are better than their stateless counterparts.
This behavior shows that the beneficial effects of admission
control and those of stateful sessions sum up together. In
commercial web sites another important aspect is the dura-
tion of completed sessions, because longer sessions are the
ones that most likely result in purchases. During overload,
without an AC mechanism, longer sessions are penalized
because they are composed by many requests, so the proba-
bility that a request processing incurs in a client timeout in-
creases. Figure 8 shows the average duration of the success-

Sixth International Symposium on Parallel and Distributed Computing (ISPDC'07)
0-7695-2936-4/07 $20.00 © 2007

fully completed sessions for stateful and statlsess sessions
with and without AC. Note how, going from the smallest
to the largest value of λ, without AC, the average duration
drops as musch as 60% for stateful sessions and 70% for
stateless session. In a commercial web sites this behavior
is strongly undesirable because it can cause profit losses.
With the AC mechanism, instead, the session duration is
much more stable and the degradation due to overload with
or without the creation of persistent session objects is only
12% and 20% respectively.

7 Conclusions

This paper addresses the problem of adopting distributed
policies in a geographically distributed server environment
with several access points. The reference architecture mod-
els several service paradigms such as active content delivery
networks, edge computing, anycast based services and other
multi-broker services as well. In such an environment every
policy decision made by each AP will likely interfere with
other AP decisions. According to our proposal each AP can
keep into account the behavior of other APs, by means of
a measuring framework that alternates active and passive
measurements techniques adapting to the application load.
We introduce a probabilistic method for server selection, a
session aware request redirection technique and a session
based admission control. By means of simulations we show
that our probabilistic method for server selection, based on
estimates of the request round trip time, leads to a better
load balancing among servers by reducing the probability
of conflicting decisions among different access points that
could cause load imbalances and flash crowds. This results
in a higher successful termination probability and in a re-
duced user perceived response times. We also show that ad-
ditional improvements are achieved by performing session
aware request redirection, i.e. redirecting requests belong-
ing to the same session towards the same server. Simula-
tion results also point out that with session based admission
control, a reduced number of sessions gain access to the
system, but with improved successful termination probabil-
ity. We show that the expected lifetime of successfully ter-
minated sessions is increased. This last result is of primary
importance for web applications implementing e-commerce
capabilities.

References

[1] V. Cardellini, E. Casalicchio, and M. Colajanni. The
state of the art in locally distributed web server sys-
tems. ACM Computing Surveys, 34(2):263–311, 2002.

[2] J. Carlstrom and R. Rom. Application aware admis-
sion control and scheduling in web servers. Proc. of
the IEEE Conf. on Computer Communications (INFO-
COM), 2002.

[3] H. Chang, W. Jia, and L. Zhang. Distributed server
selection with imprecise state for replicated server
group. Proc. of the IEEE Int. Symp. on Parallel Ar-
chitectures, Algorithms and Networks (ISPAN), 2004.

[4] X. Chen and J. Heidemann. Flash crowd mitigation
via adaptive admission control based on application-
level observation. ACM Trans. on Internet Technology,
5(3):532–569, 2005.

[5] L. Cherkasova and P. Phaal. Session based admission
control: a mechanism for peak load management of
commercial web sites. IEEE Trans. on Computers,
51(6), 2002.

[6] S. Elnikety, E. Nahum, J. Tracey, and W. Zwaenepoel.
A method for transparent admission control and re-
quest scheduling in e-commerce web sites. Proc. of
the ACM World Wide Web Conference(WWW), May
2004.

[7] H. B. Hashim and J. A. Manan. An active anycast rtt-
based server selection technique. Proc. of the IEEE
Int. Conf. on Networks (ICON), 2005.

[8] D. Henriksson, Y. Lu, and T. Abdelzaher. Improved
prediction for web server delay control. Proc. of the
IEEE Euromicro Conf. on Real-time systems (ECRTS),
2004.

[9] W. Jia, D. Xuan, W. Tu, L. Lin, and W. Zhao. Dis-
tributed admission control for anycast flows. IEEE
Trans. on Parallel and Distributed Systems, 15(8), Au-
gust 2004.

[10] C. Lu, Y. Lu, T. F. Abdelzaher, J. A. Stankovic, and
S. H. Son. Feedback control architecture and de-
sign methodology for service delay guarantees in web
servers. IEEE Trans. on Parallel and Distributed Sys-
tems, 17(9):1014–1027, 2006.

[11] D. Menasce. Tpc-w: A benchmark for e-commerce.
IEEE Internet Computing, May/June 2002.

[12] A. Verma and S. Ghosal. On admission control for
profit maximization of networked service providers.
Proceedings of ACM World Wide Web (WWW), 2003.

[13] H. Weinreich, H. Obendorf, E. Herder, and M. Mayer.
Off the beaten tracks: Exploring three aspects of web
navigation. Proc. of ACM World Wide Web (WWW),
2006.

[14] Z. Xu and G. v. Bochmann. A probabilistic approach
for admission control to web servers. Proc. of the Int.
Symp. on Performance Evaluation of Computer and
Telecommuinication Systems (SPECTS), July 2004.

[15] Opnet technologies inc. http://www.opnet.com.

[16] Specweb2005. http://www.spec.org/.

[17] The transaction processing council (tpc). tpc-w.
http://www.tpc.org/tpcw.

Sixth International Symposium on Parallel and Distributed Computing (ISPDC'07)
0-7695-2936-4/07 $20.00 © 2007

