
An Adaptive Admission Control Policy for Geographically
Distributed Web Systems

Novella Bartolini, Giancarlo Bongiovanni, Simone Silvestri
Department of Computer Science - University of Rome "La Sapienza", Italy

{bartolini, bongiovanni, simone.silvestri}@di.uniroma1.it

ABSTRACT
This paper deals with the problem of admission control for
geographically distributed web servers in presence of several
access routers.

The main contribution of this paper is the proposal of a
scalable admission control scheme with the purpose to ac-
cept as many new sessions as possible within the constraints
on response time imposed by service level agreements. The
proposed policy autonomously configures and periodically
adapts its component level parameters to the time-varying
traffic situations.

Extensive simulations of our policy show that our algo-
rithm always guarantees the adherence to SLAs under dif-
ferent traffic scenarios. The proposed method shows a stable
behavior during overload by smoothing flash crowd effects.
It also improves the successful session termination probabil-
ity and the utilization of system resources when compared
to other traditional admission control schemes.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distributed
Systems; C.4 [Performance of Systems]: Performance
Attributes, Measurement techniques

General Terms
Experimentation, Performance, Measurements

Keywords
Adaptive admission control, self-configuration, autonomic
computing, quality of service

1. INTRODUCTION
The past decade was characterized by the growing phe-

nomenon of web based applications and to the contextual
diffusion of geographically distributed service architectures,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Infoscale 2007Suzhou, China
Copyright 2007 ACM 978-1-59593-757-5/07/0006... ...$5.00.

such as grid computing facilities, peer-to-peer networks, con-
tent distribution architectures, shared resource pools, just to
name a few.

This paper studies the problem of admission control for
geographically replicated servers in presence of many access
routers (ARs), for typical web services demanding for guar-
anteed quality. In such a scenario several ARs concurrently
adopt Quality of Service (QoS) policies based on local infor-
mation. This scenario is typical of active networks, based
on application layer anycast, but the proposed methodol-
ogy can be applied also to many of the architectures listed
above. The ARs are not informed about the QoS policies
adopted by other ARs and every decision they make will
likely interfere with other AR decisions, possibly generating
unpredictable and unwanted effects.

The main contribution of this paper is the proposal of
a probabilistic admission control policy that self-configures
its initial parameter setting and adapts it to time-varying
workload and external traffic. The proposed policy does not
require any prior knowledge of the incoming traffic and is
not based on any assumption on request interarrival and
service time distribution.

The application of this policy does not require any modifi-
cation of client and server software, as it can be implemented
in ARs, be them access routers or dispatchers. Throughout
this paper we assume ARs operate at level 7 of the ISO/OSI
stack and have some application level knowledge, such as the
capability to associate incoming requests to ongoing service
sessions. Although this assumption is at the basis of the
performance evaluation presented in this paper, the same
policy can be adopted for services that are not based on the
concept of session, or to scenarios where the ARs do not
have any session information, for example when request ad-
mission and dispatching procedures are operated at proxy
level.

According to our proposal, each AR needs to perform a
measurement activity to gather information regarding the
behavior of other ARs and to keep into account the time-
varying status of non-dedicated network links. Measures
are taken with passive techniques, by simply observing the
response time of intercepted requests.

Purpose of the proposed policy is to accept as many new
sessions as possible within the performance limits on re-
sponse time imposed by the service level agreements (SLA).

In order to evaluate the proposed technique we designed
a synthetic traffic generator, whose sizing is compliant with
the assumptions of industrial standard benchmarks. The
think time and session interarrival time are the same of the

Rice TPC-W workload generator [12, 22], while the session
model is the same of SPECWEB2005 [21]. We tested our
policy and two preexisting ones on a simulator based on the
OPNET modeler software [20].

The experiments reveal that thanks to an adaptive prob-
abilistic admission control our policy always meets the SLA
requirements under different traffic scenarios, while the other
policies either violate the agreements or under-utilize the
system resources.

Unlike other policies, our proposal is independent of pa-
rameters such as the inter-decision period, that would re-
quire manual tuning. Our algorithm is based on an au-
tonomous initial self-configuration that quickly converges to
the component level parameter setting that enables the re-
spect of the SLA constraints with the maximum rate of ad-
mitted sessions. The measurement based adaptation of the
acceptance probability also permits a rapid reconfiguration
of the policy to follow workload variations at runtime.

The paper is organized as follows. In Section 2 we in-
troduce the state of the art of admission control in geo-
graphically distributed web systems. In Section 3 we give
some details on the reference scenario of a geographically
distributed web system with multiple access routers, with
service level agreements specifying strict requirements on
user perceived quality. In Section 4 we introduce an original
admission control policy as well as other well known policies
to be implemented on ARs. In Section 5 we describe the
experimental setup, while in Section 6 we present a compar-
ative performance study of the proposed policies in different
traffic scenarios. Section 7 concludes the paper.

2. RELATED WORK
The problem of admission control for Web servers has

been extensively studied in the recent literature but the ma-
jority of the works only consider locally distributed architec-
tures with single access routers such as those described in [4].
Little effort has been spent on the problem of autonomous
tuning of QoS policies for web systems. Most policies often
rely on laborious parameter tuning, that are seldom known
a priori.

Many works consider the admission control problem in
single server architectures. Both [5] and [7] show how consid-
ering the admission of whole sessions rather than individual
requests can improve service quality in some circumstances.
Both these papers locate the admission control policy at
the server level, for this reason the proposed methodology
cannot scale to a geographically distributed systems, with
replicated content.

The authors of [19] analyze the problem of parameter os-
cillation when performing on/off admission control to web
servers. Differently from our proposal, this scheme only con-
siders single web servers, and single access routers, which
means that the suggested admission control policy may not
scale to the scenario considered in this paper.

The authors of [17] introduce the problem of QoS poli-
cies in a distributed architecture with only one dispatching
point. A prediction of the incoming workload is considered
while making admission control decisions with the purpose
of maximizing the provider’s income. Requests are sched-
uled on the basis of an estimate of the service time.

The authors of [8] study a multi-tier cluster architecture
and propose the use of a proxy server to transparently in-
tercept database requests. Such a proxy maintains several

measurement-based estimates on the total capacity of the
database, the current database load and the workload gener-
ated by each query type. On the basis of these measures the
proxy performs adaptive admission control and request redi-
rection, achieving overload control and improving response
time.

The authors of [9] propose and evaluate a delay predic-
tion and control scheme based on feedback and feed-forward
strategies. In [11] the authors present a control-theoretic ap-
proach to provide guaranteed absolute or relative delays be-
tween different service classes of a single web server. Unlike
our work, the cited schemes [8,9,11,17] cannot be applied to
a geographically distributed environment with many repli-
cated servers and several access routers.

In [6] a single server architecture is considered, in pres-
ence of the so called bystander traffic, that is, non applica-
tion specific traffic on the non-dedicated links between the
clients and the server. An application level mechanism is
introduced to mitigate flash crowds. Unlike our work, the
authors of [6] do not take into account session information
when performing admission control. They only address in-
formational services, typically composed by static contents.

In [10] the problem of anycast flow admission control is
discussed. The authors propose three algorithms for ad-
mission control and propose the adoption of a probabilis-
tic redirection mechanism. This work does not analyze the
problem of session based traffic and does not study the scal-
ability problems imposed by the presence of several access
routers and for this reason it is not directly comparable to
ours.

The problem of designing adaptive component-level thresh-
old is analyzed in [3] for a general context of autonomic
computing. The mechanism proposed in the paper consists
in monitoring the policy threshold values in use by keeping
track of false positive and false negative alarms with respect
to possible violations of service level agreements. Unlike this
paper, our algorithm employs a very simple linear rule to cal-
culate the new session admission probability as a function
of the measured response time. Of this paper we criticize
the usual threshold approach and underline how the most
common threshold policies cause on/off behaviors that often
result in unacceptable performance especially in large scale
architectures. Our proposal is instead based on a probabilis-
tic approach that smoothes oscillations and performs better
overload control.

3. REFERENCE SCENARIO
The reference architecture of this paper consists of a set of

geographically distributed servers, accessed through several
ARs. This scenario models several typical replication strate-
gies [16] for web applications such as ACDN [14], shared
server pools [15] and other multi-broker architectures. SLAs
for internet based applications usually specify constraints on
user perceived performance levels. The most common spec-
ification is in terms of an upper bound on the X%−ile of
request response time (with X usually set to 90 or 95) and
a lower bound on the number of concurrent client sessions
(if the new session request rate is sufficiently high) [13]. Al-
though our work may be applied to different formulations of
SLA, including the most typical one cited above, we argue
that a more detailed SLA should be in place when clus-
ters based on multiple heterogeneous tiers are considered.
A common cluster architecture for web services, requiring

the use of a database, is based on the differentiation of re-
quests in three categories involving different tiers: pure http
requests involve the http server tier, servlet requests involve
the application tier while database requests reach the third
tier requiring the execution of a query to the database. Re-
quest processing at different tiers happens with significantly
different service time distribution, and the average process-
ing times of the three request types differ of one to three
orders of magnitude. Web services are normally based on
the concept of session. A session is a sequence of temporally
and logically related requests issued by the same client. Ser-
vice sessions can be modelled as a sequence of service phases
alternated to think phases. The sequence of phases traversed
by the session during its lifetime strictly depends on the par-
ticular application, while all service sessions normally start
with the same request (typically an http request to the in-
dex page of the site hosting the application). The typical
session life-cycle can be modeled with a state diagram repre-
senting all possible phase transitions involving different tiers
such the one utilized in the specification of the benchmark
SPECWEB2005 [21]. The probability that a session reaches
a state after many phase transitions is strictly dependent
on the workload being served. In fact as the system utiliza-
tion increases, there is a higher chance that longer sessions
are interrupted before reaching their natural end. Therefore
the probability that a session reaches high order states (i.e.
states that can only be reached after several interactions of
the end user with the system) decreases with increasing sys-
tem utilization. For this reason, under varying traffic load,
with or without admission control, the average duration time
of sessions also varies, leading to a variable request mix be-
ing served by different tiers. The percentage of requests
involving the bottleneck tier, in this case the database tier,
decreases with increasing session rate. Since the response
time of these requests is significantly higher than the re-
sponse time of the other types of requests, the monotonicity
of the response time as a function of the incoming session
rate cannot be stated a priori, because long processing re-
quests become less frequent due to session dropping in case
of high load. If this is the case, a single SLA threshold on the
response time of the overall request mix cannot be used. In
fact, the same value of the statistic parameter representing
the response time can be related to two very different sit-
uations, i.e. normal load with acceptable performance and
very high load where the majority of sessions get dropped at
the bottleneck tier, thus traversing the bottleneck no more
than once in the lifetime of each session and causing the
session abrupt interruption. For this reason we consider an
SLA agreement on the 95%−ile of the database response
time. This assumption is without loss of generality since it
causes a more conservative evaluation of the system perfor-
mance, as the 95%−ile of request response time calculated
on the whole set of requests is always lower than considering
database requests only.

4. ADMISSION CONTROL POLICIES
ARs operate admission control and server selection on the

basis of locally available information on the quality of service
that can be perceived by clients located in proximity.

In this section we describe our policy in deeper details. We
give it the name of Adaptive Probabilistic Admission Con-
trol (APAC). We also introduce other preexisting policies
as benchmarks for comparisons. In particular, we introduce

the Threshold Based Admission Control policy (TBAC, an
adaptation of the policy proposed in [7] to the scenario de-
scribed in section 4) and the Probabilistic Admission Con-
trol (PAC, an adaptation of the policy proposed in [19]). We
assume the ARs intercept requests and use a probabilistic
redirection scheme to select the best suited server from the
shared pool. Any time a new requests arrive to an AR, a
server is selected with a higher probability among the servers
that showed lower response times as described in [2]. In or-
der to have fair comparisons, the same redirection scheme is
used for all the admission control policies.

4.1 Adaptive Probabilistic Admission Control
(APAC) policy

The aim of this policy is to accept as many new incom-
ing sessions as possible within the constraints imposed by
the SLA. As detailed in section 3, we restrict the evaluation
of SLA fulfillment only at the bottleneck tier, that is the
database. During the passive measurement phase, the ac-
cess routers periodically evaluate the 95%-ile of database re-
sponse time, which from now on will be indicated as RTTDB.
This represents the 95%-ile of the user perceived latency of
database requests with sufficient approximation if we assume
that the user to AR latency is negligible if compared to the
latency observed in the links between AR and servers. The
algorithm is iterated every tAPACobs seconds on each AR. ARs
are not synchronized with each other.

During the n-th time slot the i-th AR accepts new ses-
sions with probability pi(n), (with pi(1) = 1). To estimate
the value of pi(n + 1) the policy assumes that the new ses-
sion arrival rate does not change between two consecutive
intervals. Possible errors of this estimate are corrected in
subsequent iterations. At the beginning of the n-th time
slot the i-th AR acts as follows:

1. Evaluates the 95%-ile response time of the database
requests received during the last interval : RTT i

DB(n−1)

2. If
{(RTT i

DB(n− 1) > RTTSLA)∧ (RTT i
DB(n− 1) < RTTSLA(1−α))}

the session admission probability must be updated (go
to step 3), otherwise pi(n) = pi(n − 1) and go to the
next iteration (go to step 1). The factor α introduces
an hysteresis cycle to avoid too frequent policy recon-
figurations and possible oscillations. We use α = 10%.
The value RTTSLA is the upper bound on the 95%−ile
of response time, as specified in the SLA.

3. Policy update:

• Let γi(n − 1) = RTTSLA

RTT i
DB(n−1)

be the ratio between

the upper limit on the 95%−ile of response time
specified in the SLA and 95%−ile of database re-
quest response time observed during the previous
time interval.

• The session admission probability is updated as
follow:

pi(n) ,

{
1 if n = 1
min{pi(n− 1) γi(n− 1), 1} otherwise

This method assumes that the relationship between the
new session admission probability and the user perceived
round trip time (RTT) can be linearly approximated. Since

the actual relationship is obviously more complex, this method
results in a coarse approximation during the first steps of the
algorithm, that will be improved by subsequent iterations.

Because of the slow impact of session based decisions on
the effective user perceived RTT, the decision period tAPACobs ,
must be large enough to guarantee proper consideration of
the effects of the last decisions in terms of database request
response time. As we will show in section 6 our policy has
a stable behavior and meets the SLA in all the considered
traffic situations provided tobs is sufficiently large.

4.2 Threshold Based Admission Control (TBAC)
This policy uses a threshold value T TBAC

AC to make deci-
sions whether new sessions should be accepted for service.
It consists in the evaluation of the current 95%−ile of the
database tier response time and acceptance of new sessions
only if this value does not exceed the threshold T TBAC

AC . Be-
cause of the on/off nature of this policy, it has an inherent
oscillatory behavior, that can be smoothed by choosing short
inter-decision periods tTBACobs .

Since the number of response time samples gathered in
short inter-decision periods may not be sufficient to give
an accurate estimate of the 95%−ile, we assume the ARs
gather samples for longer sliding time windows of width
tTBACW . Therefore, every tTBACobs seconds each AR calculates the
value of RTTDB, that is the 95%−ile of database response
time, given a set of samples gathered during the previous
tTBACW seconds. If RTTDB exceeds the threshold T TBAC

AC all new
session requests are rejected during the subsequent interval,
otherwise new session requests are served as well as requests
belonging to already ongoing sessions.

As we show in section 6, simulation results reveal that
this policy contributes to lowering the 95%-ile of the request
round trip time. We also show that this policy cannot guar-
antee the fulfillment of SLA agreements even if T TBAC

AC is set
to RTTSLA. The behavior of this policy is in fact strictly de-
pendent on a proper parameter tuning, specifically in terms
of admission threshold T TBAC

AC and inter-decision period tTBACobs ,
which directly affect the rate of requests actually reaching
the servers. Proper parameter tuning of this policy cannot
be done manually and offline for an architecture based on
multiple ARs, since it is dependent on the amount of work-
load being sent to the application servers as we will show in
section 6.

4.3 Probabilistic Admission Control (PAC)
The probabilistic control is at the basis of control theory

when oscillations should be avoided. The policy we intro-
duce in this section was proposed for internet services in [19],
while a similar version was introduced in [1]. According to
this policy, a new session is admitted with a certain proba-
bility, which value depends on the measured server response
time. The system accepts all new session requests as long
as the server load is very low (i.e. the measured response
time is under the threshold T PAC

low) and it gradually reduces
the acceptance probability as load grows, zeroing it when
response time exceeds a threshold T PAC

high. In the general case
the acceptance probability is a piece-wise linear function of
the server response time measured in the previous time in-
terval RTTDB(n) (based on a time window of length tPACw) and
has the following form:

p(n) ,


1 if RTTDB(n− 1) ≤ T PAC

low or n = 0
RTTDB(n−1)−T PAC

high

T PAC
high−T PAC

low
if T PAC

low < RTTDB(n− 1) ≤ T PAC
high

0 if RTTDB(n− 1) > T PAC
high

(1)

As the performance comparisons of section 6 will show,
although this policy reduces the problem of oscillations of
round trip time and number of ongoing sessions, it cannot be
used in presence of service level agreements requiring guar-
anteed quality. In fact, the two threshold values T PAC

high and
T PAC
low that characterize this policy are arbitrarily set offline

independently of the observed incoming session rate and of
the inter-observation period tPACw (the time between two sub-
sequent policy decisions). This way the adherence of this
policy to the SLA limits cannot be guaranteed, since it is
highly dependent on the parameters cited above, as will be
clear from the experiments detailed in section 6.

5. SIMULATION ENVIRONMENT
We developed a simulator on the basis of the OPNET

modeler software [20] to comparatively study the perfor-
mance of the QoS policies introduced in section 4. The main
entities of the simulation environment are clients, ARs and
application servers. We assume that clients are partitioned
into geographic areas, and for each area there is a single AR.
In this way all clients of the same area send their requests to
the same AR, and latency on the links between clients and
the AR can be ignored. In the experimental setup we do not
introduce bystander traffic because we want to focus on the
effects of the policies in presence of several ARs adopting
concurrent admission control decisions.

5.1 Client model and traffic generation
According to our model, each client issues a user session,

in the shape of a series of correlated requests.
We assume that the interarrival time of new sessions, for

each AR, follows a negative exponential distribution with
average 1/λ, while the interarrival time of requests belong-
ing to the same session is more complex. After the first
request, each client issues subsequent requests waiting for
the corresponding response (response time), and spending
some time analyzing the content of the received response
(think time).

In order to have a realistic traffic generator, we use the
phase model of an industrial standard benchmark:
SPECWEB2005 [21]. It takes into account the most relevant
types of dynamic content (php and jsp included) and models
an e-commerce web site selling personal computers, with
typical requests such as browse, login, search, customization
of selection, add to cart, buy and logout functionalities. We
refer to [21] for a detailed description of the state model and
of the functionalities of each phase.

Client sessions start from the home page and follow the
state model according to its transition probabilities, possibly
ending in any state if the user voluntary abandons the site
before completing the whole session life-cycle, or reaching
the last state of the model where an item can be purchased
or not. Upon reception of a response, the next request is
sent after a certain amount of time, called User Think Time
(UTT), that represents the time the user spends analyzing
the received web page. Our model of UTT is based on TPC-
W [22] and on other works in the area of web traffic analysis

that justify the assumption of heavy tailed distributions of
the user think time [18]. As in the TPC-W model, we assume
a logarithmic distribution of think times and a lower bound
of 1 sec. Therefore UTT = max{−log(r)µ, 1}, where r is
uniformly distributed in the interval [0,1] and µ = 20sec.

To model a realistic user behavior, we also introduce a
timeout on the maximum time the user can wait for a re-
sponse before abandoning the site. The interaction of a
client with the web application may end for three possi-
ble reasons: a) session block: the AR denies service to the
client’s first request (no navigation session is started); b) ses-
sion drop: no response is received within the client timeout
and the ongoing session is interrupted; c) successful session
termination: all responses are received in time and the user
voluntary terminates the session.

5.2 Access router model
ARs are the key entities of our model since all QoS policies

are enforced by them. They adopt a two-way dispatching
policy, so ARs receive client requests and dispatch them to
the servers. They also receive server responses and forward
them to the clients. ARs enable the adoption of QoS policies
for admission control and request redirection. In section 6
we analyze the performance of the AR policies.

5.3 Server model
Servers communicate with the clients via the ARs. Each

server creates a new thread upon reception of a client request
and adds it to the waiting queue. Servers use a time shar-
ing, round robin scheduling. The thread processing time
depends on the type of request being served. We assume
each phase of the session state model can be mapped onto
a specific tier of the typical three tier organization of in-
ternet applications. Thus we consider three categories of
requests depending on which tiers are involved in the re-
quest processing: pure http, servlet and database requests.
We gave an approximate estimate of the average processing
times of the different categories on the basis of the exper-
iments detailed in [8]. In our simulations we assume each
session phase requires an exponentially distributed execu-
tion time. Execution times are set as follows (waiting time
due to preemptive processor scheduling are not considered
in these measures): average execution time for pure http
requests is 0.001sec, while for servlet request is 0.01sec and
for database requests is 1sec.

6. SIMULATION RESULTS
This section is dedicated to a comparative analysis of the

performance of the APAC, TBAC and PAC policies.
To this extent we introduce three sets of simulations. In

the first set we analyze how the performance is affected by
the session arrival rate, while in the second set we study the
behavior of the cited policies under different SLAs. A third
set of experiments studies the dependence of these policies
on manually tuned parameters.

In the first two sets of experiments we use the follow-
ing simulation parameter setting: 5 access routers, 15 ap-
plication servers, client timeout 8 sec. The only manu-
ally tuned parameter for the APAC policy is the length of
the inter-decision period tAPACobs that has been set to 250sec.
The following parameters define the behavior of the TBAC
policy: inter-decision period tTBACobs = 10sec, time window
tTBACTW = 60sec and threshold T TBAC

AC = RTTSLA on the 95%−ile

of the response time. The parameters of the PAC policy are
defined as follows: inter-decision period tPACobs = 10sec, time
window tPACTW = 20sec and thresholds on the 95%−ile of the
response time T PAC

low = 3sec and T PAC
high = RTTSLA. Notice that

the choice of the same value of tobs for all the policies would
lead to unfair comparisons since long inter-observation pe-
riods constitute an advantage for the APAC policy while
TBAC and PAC are privileged by short periods. Notice
also that manual tuning of the TBAC and PAC policy is a
complex task as the proper parameter setting is dependent
on the particular traffic situations as will be shown in fig-
ure 1. In fact, whatever threshold values are chosen, they
can only work for a specific session arrival rate. In order to
have fair comparisons we let TBAC and PAC have the same
upper threshold on RTT: T TBAC

AC = T PAC
high = RTTSLA.

Purpose of the first result set is to show how the behavior
of our APAC policy, differently from TBAC and PAC, is not
dependent on the system load. It adapts itself to different
workload situations, and admits as many new sessions as
possible within the SLA limits.

In the following experiments we set the SLA threshold to
5sec.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.5 1 1.5 2 2.5
95

%
-il

e
R

T
T

 (
se

c)

Average Session Arrival Rate (session/sec)

APAC
TBAC

PAC
RTTSLA

Figure 1: 95%-ile of database response time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5

S
es

si
on

 A
dm

is
si

on
 P

ro
ba

bi
lit

y

Average Session Arrival Rate (session/sec)

APAC
TBAC

PAC

Figure 2: New session admission probability

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss
fu

l S
es

si
on

 T
er

m
in

at
io

n

Average Session Arrival Rate (session/sec)

APAC
TBAC

PAC

Figure 3: Successful termination probability of ad-
mitted sessions

Figure 1 shows the 95%−ile of database response time
with varying session arrival rate. This figure points out how
the APAC policy meets the SLA requirements independently
of the AR session arrival rate. The TBAC policy shows an

increasing response time with growing session arrival rate,
causing either a system under-utilization or the violation of
the agreements on quality. Similarly, the PAC policy shows
an even more evident system under-utilization for low arrival
rates while it also exceeds the SLA limits for more intense
workloads. This figure reveals the possible difficulties in the
choice of the proper parameter setting for the TBAC and
PAC policies, since a value that may work for a particular
traffic scenario (e.g. thresholds T TBAC

AC = 5sec when λ = 0.6
sessions/sec or T PAC

high = 5sec when λ = 0.9 sessions/sec) may
cause SLA violations or system under-utilization in other
cases.

As shown in figure 1, the TBAC policy has a higher value
of the 95%-ile of request RTT, with respect to the PAC
policy, in any load scenario. This is due to the particular
threshold setting of the two policies.

The 95%-ile of all the policies is under the SLA thresh-
old, of 5 seconds, for low values of arrival rate (λ ≤ 0.3
sessions/sec), but while the APAC policy accepts almost
all incoming new sessions, the TBAC policy shows a lower
admission probability and a consequent under-utilization of
the system resources, as shown in figure 2. The PAC policy
blocks even more sessions than TBAC due to the particular
parameter settings. Notice that, as previously pointed out,
another tuning of the threshold parameters could have been
beneficial for the TBAC and PAC in low traffic scenarios,
but would have had negative effects on their behavior during
medium and high traffic situations.

These results highlight an important problem of the TBAC
and PAC policies: the dependency of the threshold tuning
on the system load. On one hand if the system load is so
low that the response time only occasionally reaches the im-
posed threshold, these policies cause under-utilization of the
system, blocking more sessions then strictly necessary. On
the other hand, if the system load is high these policies can-
not guarantee the respect of the SLA as they let the system
be overloaded when the decision to accept new sessions is
made.

This behavior of the TBAC policy is due to its on/off na-
ture. Even in a low workload scenario, momentary peaks
of requests can cause the AR to measure high values of the
95%-ile of the response time, possibly detecting a SLA vio-
lation for a short time interval. The TBAC policy reacts to
this situation refusing all new sessions for one or more inter-
vals, likely causing a system under-utilization. In high load
scenarios, the TBAC policy shows performance problems
as well. When the measures reveal that new sessions can
be admitted under the SLA constraints, the TBAC policy
admits all incoming new sessions for the subsequent inter-
observation period, possibly causing an uncontrolled growth
of the system load and oscillations of RTT.

The PAC policy has similar problems due to the way it cal-
culates the new session admission probability for the next in-
terval. Equation 1 assumes a fixed linear dependence of the
measured RTT on the session admission probability. Given
a measured RTT, the PAC policy selects a single value for
the new session admission probability, independently of the
incoming session rate. Such value may not be suitable to dif-
ferent workload scenarios. Furthermore, this policy shows
a high dependence on the tuning of the inter-observation
period. This parameter is of primary importance because
session based admission decisions do not have an immediate
effect on RTT. A wrong tuning of this parameter leads to

an oscillatory policy behavior although with minor intensity
than with the TBAC policy.

Summarizing, the on/off behavior of the TBAC policy
causes system under-utilization in low load situations and
performance oscillations during periods of heavy load. The
PAC policy reduces the oscillations but has the same draw-
backs. They only behave properly under stable scenarios
when the thresholds are correctly tuned.

Figure 3 shows the probability of admitted session suc-
cessful termination with increasing rate of incoming new
session requests. While the TBAC and PAC policy show
a decreasing successful termination probability, due to the
higher rate of incoming new sessions overloading the system,
the APAC policy shows a more stable behavior. Our pol-
icy has the advantage to guarantee a stable, non oscillatory
system behavior in every load scenario, even under variable
traffic conditions.

The aim of the second set of simulations is to test the pol-
icy behavior with different SLAs. We consider three differ-
ent workload situations: low (λ = 0.4 sessions/sec), medium
(λ = 0.7 sessions/sec) and high (λ = 1.9 sessions/sec). We
tested the APAC, TBAC and PAC policies under five differ-
ent values of the SLA threshold RTTSLA, varying from 4 to
8 seconds. We set T TBAC

AC = T PAC
high = RTTSLA.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

4 5 6 7 8

95
%

-il
e

R
T

T
 (

se
c)

RTTSLA (sec)

APAC
TBAC

PAC

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 5 6 7 8

S
es

si
on

 A
dm

is
si

on
 P

ro
ba

bi
lit

y

RTTSLA (sec)

APAC
TBAC

PAC

Figure 4: 95%-ile of database request RTT and Ses-
sion Admission Probability - low load scenario

Figure 4 shows the 95%-ile of database response time in
the low load scenario. This figure points out the main draw-
backs of the TBAC and PAC policies discussed earlier. In
the case with low threshold (4 seconds) the TBAC does not
prevent SLA violations, while for higher values it causes
system under-utilization. This is confirmed by the session
admission probability: too many sessions are accepted or
refused for low and high SLA threshold values respectively.

In the same scenario the PAC policy shows a more con-
servative behavior, admitting less sessions than the TBAC
policy. It results in a more evident under-utilization of the
system resources except for the lowest value of the SLA
threshold we considered (4 seconds), where it meets the SLA
thanks to the specific combination of parameters. Our pol-
icy, instead, always respects the SLA, guaranteeing a high

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

4 5 6 7 8

95
%

-il
e

R
T

T
 (

se
c)

RTTSLA (sec)

APAC
TBAC

PAC

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 5 6 7 8

S
es

si
on

 A
dm

is
si

on
 P

ro
ba

bi
lit

y

RTTSLA (sec)

APAC
TBAC

PAC

Figure 5: 95%-ile of database request RTT and Ses-
sion Admission Probability - medium load scenario

probability of admitting new sessions without under utiliz-
ing the system in low load scenarios.

Similar results are obtained in the medium load scenario
showed in figure 5. APAC always respects the SLAs while
the TBAC and PAC policies either violate the SLA when
low thresholds are used or under utilize the system when
higher thresholds are considered.

This figure points out the main problem of the PAC pol-
icy: it does not consider the actual session arrival rate to
estimate the admission probability. While in the previous
experiment (with low load) it could meet the SLA with a
threshold of 4 seconds, a small increment of the session ar-
rival rate results in a SLA violation, as reported in figure
5.

Figure 6 shows the results obtained for the high load sce-
nario. In this case the TBAC policy does not respect the
SLA in any of the studied cases. As already stated, the
on/off behavior causes the admission of too many sessions
after an admitting decision, worsening the user perceived
RTT. Similarly, the PAC policy often violates the SLA and
still under-utilizes the system for the highest threshold value
we considered (8 seconds). Thanks to the probabilistic ad-
mission, the PAC policy reduces the entity of SLA viola-
tions with respect to the TBAC, but does not guarantee the
fulfillment of the agreement except in those rare situations
in which parameters are correctly configured for the actual
traffic volume. In this scenario our policy guarantees the
fulfillment of the SLAs in all the studied cases.

In addition to the good behavior in terms of performance,
our policy has the advantage of self-tuning the admission
control probability without the need of prior knowledge about
traffic workload intensity and user behavior. Our policy
starts accepting all new incoming sessions and rapidly adapts
its acceptance probability to the time-varying workload sit-
uations. A complete analysis of the time to converge to the
final parameter settings is in progress. The only policy pa-
rameter that requires manual tuning for APAC is the length
of the inter-observation period.

The last simulation results of this section show that the

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

4 5 6 7 8

95
%

-il
e

R
T

T
 (

se
c)

RTTSLA (sec)

APAC
TBAC

PAC

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 5 6 7 8

S
es

si
on

 A
dm

is
si

on
 P

ro
ba

bi
lit

y

RTTSLA (sec)

APAC
TBAC

PAC

Figure 6: 95%-ile of database request RTT and Ses-
sion Admission Probability - high load scenario

behavior of the APAC policy is only marginally influenced
by the setting of this parameter. The only constraint on
the length of the inter-observation period comes from the
necessity that the last computed probability value be given
enough time to manifest itself (in terms of impact on the
RTT) before the calculation of the next probability value.

We now focus on the impact of the length of the inter-
observation period on the performance of the APAC, TBAC
and PAC policy. In this experiment we use the following sim-
ulation parameter settings: 5 access routers, 15 application
servers, client timeout of 8 sec, RTTSLA = 5sec, λ = 0.7 ses-
sions/sec. In these experiments we use the same value tobs
of the inter-observation period for all the policies, therefore
tobs = tAPACobs = tTBACobs = tPACobs

Figure 7 shows the 95%-ile of database request RTT under
varying values of tobs. This figure reveals that the APAC
policy needs relatively long periods to be able to meet the
SLA, but is not adversely influenced by even longer periods.

On the contrary the use of long values for tTBACobs and tPACobs

worsen the performance of the TBAC and PAC policy be-
cause they induce more intense oscillations in case of high
load and cause scarce utilization in low load situations.

Figure 7 shows how the PAC policy behaves similarly
to the TBAC policy with growing inter-observation period.
With long values of tobs, in fact, the PAC policy oscillates
between periods with high admission probability, where the
SLA is likely to be violated, followed by periods with low
admission probability, where the system is under-utilized.

Once again both the TBAC and PAC policy show a high
dependence on their parameter tuning. On the contrary, the
APAC policy has no need of precise and laborious parameter
tuning. The APAC parameter tAPACobs can be set so that ARs
do not have to check the system status too often, avoiding
the risk to become a system bottleneck during overload.

 0

 1

 2

 3

 4

 5

 6

 7

 0 100 200 300 400 500

95
%

-il
e

R
T

T
 (

se
c)

tobs (sec)

APAC
TBAC

PAC
RTTSLA

Figure 7: 95%-ile of database request RTT

7. CONCLUSIONS
This paper addresses the problem of distributed admis-

sion control in a geographically replicated server environ-
ment with several access routers. The reference architecture
models several service paradigms such as active content de-
livery networks, edge computing, anycast based services and
other multi-broker services as well. In such an environment
every policy decision made by each AR will likely inter-
fere with other AR decisions. According to our proposal,
each AR can keep into account the behavior of other ARs
by means of passive measures of the user perceived perfor-
mance. We propose a novel admission control scheme that
autonomously configures and periodically adapts its compo-
nent level parameters to the time-varying traffic situations.
As the simulation results show, the proposed policy out-
performs other previously proposed approaches, in terms of
both acceptance probability of new session requests and ful-
fillment of service level agreements on response times. Our
policy also shows a stable behavior during overloads and
better resource utilization without prior knowledge of traf-
fic characteristics, without the need of manual parameter
tuning. The proposed policy, in fact, self-configures the ini-
tial parameter settings of its component level thresholds and
shows good adaptivity to time varying traffic situations.

8. REFERENCES
[1] J. Aweya, M. Ouelette, D. Y. Montuno, B. Doray, and

K. Felske. An adaptive load balancing scheme for web
servers. International Journal of Network
Management, 12:3–39, 2002.

[2] N. Bartolini, G. Bongiovanni, and S. Silvestri.
Distributed server selection and admission control in
replicated web systems. Proceedings of the IEEE
International Symposium on Parallel and Distributed
Computing (ISPDC), 2007.

[3] D. Breitgand, E. Henis, and O. Shehory. Automated
and adaptive threshold setting: enabling technology
for autonomy and self-management. Proceedings of the
International Conference on Autonomic Computing
(ICAC), 2005.

[4] V. Cardellini, E. Casalicchio, and M. Colajanni. The
state of the art in locally distributed web server
systems. ACM Computing Surveys, 34(2):263–311,
2002.

[5] J. Carlstrom and R. Rom. Application aware
admission control and scheduling in web servers. Proc.
of the IEEE Conf. on Computer Communications
(INFOCOM), 2002.

[6] X. Chen and J. Heidemann. Flash crowd mitigation
via adaptive admission control based on

application-level observation. ACM Trans. on Internet
Technology, 5(3):532–569, 2005.

[7] L. Cherkasova and P. Phaal. Session based admission
control: a mechanism for peak load management of
commercial web sites. IEEE Trans. on Computers,
51(6), 2002.

[8] S. Elnikety, E. Nahum, J. Tracey, and W. Zwaenepoel.
A method for transparent admission control and
request scheduling in e-commerce web sites. Proc. of
the ACM World Wide Web Conference(WWW), May
2004.

[9] D. Henriksson, Y. Lu, and T. Abdelzaher. Improved
prediction for web server delay control. Proc. of the
IEEE Euromicro Conf. on Real-time systems
(ECRTS), 2004.

[10] W. Jia, D. Xuan, W. Tu, L. Lin, and W. Zhao.
Distributed admission control for anycast flows. IEEE
Trans. on Parallel and Distributed Systems, 15(8),
August 2004.

[11] C. Lu, Y. Lu, T. F. Abdelzaher, J. A. Stankovic, and
S. H. Son. Feedback control architecture and design
methodology for service delay guarantees in web
servers. IEEE Trans. on Parallel and Distributed
Systems, 17(9):1014–1027, 2006.

[12] D. Menasce. Tpc-w: A benchmark for e-commerce.
IEEE Internet Computing, May/June 2002.

[13] J. Philippe, N. D. Palma, S. Bouchenak, F. Boyer, and
D. Hagimont. A black-box approach for web
application sla. Proc. of ACM Symposium on Applied
Computing (SAC), 2006.

[14] M. Rabinovich, Z. Xiao, and A. Aggarwal. Computing
on the edge: A platform for replicating internet
applications. Proc. of the Int. Workshop on Web
Content Caching and Distribution (IWCW), 2004.

[15] J. Rolia, L. Cherkasova, M. Arlitt, and V. Machiraju.
Supporting application quality of service in shared
resource pools. Communications of the ACM, 49(3),
March 2006.

[16] S. Sivasubramanian, G. Pierre, M. van Steen, and
G. Alonso. Analysis of caching and replication
strategies for web applications. Internet computing, to
appear 2007.

[17] A. Verma and S. Ghosal. On admission control for
profit maximization of networked service providers.
Proceedings of ACM World Wide Web (WWW), 2003.

[18] H. Weinreich, H. Obendorf, E. Herder, and M. Mayer.
Off the beaten tracks: Exploring three aspects of web
navigation. Proc. of ACM World Wide Web (WWW),
2006.

[19] Z. Xu and G. v. Bochmann. A probabilistic approach
for admission control to web servers. Proc. of the Int.
Symp. on Performance Evaluation of Computer and
Telecommuinication Systems (SPECTS), July 2004.

[20] Opnet technologies inc. http://www.opnet.com.

[21] Specweb2005. http://www.spec.org/.

[22] The transaction processing council (tpc). tpc-w.
http://www.tpc.org/tpcw.

