

XForms
An Interactive Forms Design Tool

Abstract
For this project, I designed and implemented XForms, a
versatile, Mac OS X forms design tool that automatically
generates forms in multiple media formats from a single
design source. XForms can generate both traditional
paper-based forms and web-based HTML forms. In
addition, a form design can be output as an XML or PDF
document.

I wrote XForms in Objective-C using Apple’s Cocoa
framework as a proof-of-concept application designed to
be easily extendable to support any number of form output
formats.

December 1, 2005

Faculty Advisor
Dr. Raphael Finkel

Masters Candidate
Nolan W. Whitaker

2 of 17

Table of Contents

Summary ... 3

Introduction... 3

My Background .. 3

Paper Forms .. 4

Electronic Forms... 4

Legacy Forms.. 4

Data Storage and Retrieval ... 5

Routing and Processing... 6

Signatures & Authentication... 6

XForms ... 7

Usage... 8

Implementation ... 9

Model View Controller Design Pattern .. 10

Model .. 11

View.. 12

Controller .. 13

MVC Class Interactions.. 14

Form Output Options .. 15

Future Extensions and Modifications ... 15

Appendix: Detailed Class Diagrams... 16

3 of 17

Summary
For this project, I designed and implemented XForms, a versatile, Mac OS X forms
design tool that automatically generates forms in multiple media formats from a single
design source. XForms can generate both traditional paper-based forms and web-based
HTML forms. In addition, a form design can be output as an XML or PDF document.

I wrote XForms in Objective-C using Apple’s Cocoa framework as a proof-of-concept
application designed to be easily extendable to support any number of form output
formats.

Introduction
When personal computers (PCs) first began to appear on office desks, a plethora of
articles by information technology professionals predicted a dire future for paper books
and forms. Despite those promises of a paperless office over the past two decades, paper-
based forms comprise an even larger part of every major commercial and public sector
enterprise in existence today, even though low cost computing hardware is found in most
every office1. In fact, I believe this increase in the quantity of paper-based forms is due
to the personal computer.

My Background
I am a computer science masters candidate at the University of Kentucky with nearly
seven years of experience with the second-largest information-technology integration and
consulting company in the world, EDS. While there I helped design, develop and
integrate a number of software packages for the U.S. Army Recruiting Command
(USAREC), some of which were deployed to over 14,000 users nationwide. Chief
among these products is an application to automate collecting, entering, storing, and
routing over 100 enlistment forms; this application significantly increased Army
recruiters’ productivity, cutting the time needed to collect information and fill out
enlistment forms from recruits. 2 After fielding the application, the Army met its
recruiting goal for the first time in many years.

1 Sellen , Abigail J. and Harper, Richard H. R., The Myth of the Paperless Office, MIT Press, 2001.
2 “Army Recruiting Information Support System, Improved Readiness Through Enhanced Recruiting.”
EDS sales promotional literature. Copyright 1999, EDS. http://www.usarec.army.mil/ariss

4 of 17

Paper Forms
In my observation of industry and government, rather than eliminating paper-based
forms, the PC has become a catalyst for the proliferation of forms used by enterprises
today. Word processors in the 1970s, desktop publishing in the 1980s, and specialized
forms-development software in the 1990s each made it easier for the average office
bureaucrat to create a unique set of forms, giving rise to a myriad of problems caused by
nonstandard and poorly designed forms.

Before the advent of the personal computer, forms had to be sent out to be typeset and
then printed by a professional printing organization. With the advent of the word
processor, businesses could generate their own forms. Many did just that. In 1984, the
Macintosh computer opened up the world of the professional publisher to everyday office
users, allowing everyone to create nearly professional, typeset-quality documents and
forms.

In the 1990s, specialized forms design products entered the marketplace. At first, these
products were essentially page-layout products not much unlike the desktop publishing
software that came out in the 1980s, except that they were specifically designed to make
forms layout, design and management easier. As these packages matured, they began to
provide support for electronic-based forms, creating the first opportunity for a business to
truly become paperless—at least in theory.

Electronic Forms
The American Heritage Dictionary of the English Language defines a form as “a
document with blanks for the insertion of details or information.3” An electronic form, or
e-form, is document in a computer-readable format that allows a user to enter
information. The e-form may encapsulate user data within the form itself, or the data
may be stored independently.

Once an organization decides to migrate toward integration of e-forms into its business
processes, the organization needs to consider a number of issues. I outline several below
and then show how XForms fits into the overall picture.

Legacy Forms
One of the issues facing any organization contemplating the switch to e-forms is the
presence of legacy paper forms. There are essentially four approaches to the move to a
paperless office.

The first and most easily adopted solution is to move all future forms to an electronic
version, leaving all legacy forms non-automated and handled in the current fashion. The

3 The American Heritage® Dictionary of the English Language, Fourth Edition.

5 of 17

advantage of this solution is that it is least costly. However, it makes data search and
retrieval very time consuming because one must check two locations for all customer
documents, the electronic and paper archives.

A second solution is to scan all legacy documents, storing all printed documents in a
large image database. The advantage of this solution is that imaged documents can be
linked to current database records and retrieved electronically. However, this solution
poses a number of problems. Often these forms have deteriorated due to time, handling
by office workers, shuffling from one storage location to another, and physical damage
from exposure to the elements. Scanning the documents and getting a usable image can
be difficult. Often this solution falls far short of user expectations in that, although the
documents are in a database, document contents are generally not searchable because
they consist only of images. Thus, unless the associated database record is known (for
instance, the customer record), finding related images is next to impossible. However,
the same problem exists with paper-based documents, since they can only be located
based upon their filing index.

A third solution is a modification of the previous solution. Again, in this solution, one
scans legacy documents store them in an image database, but in addition, one stores text-
searchable versions of each document as well. Obviously, this solution is far more
resource intensive and requires substantial data entry, with significant risk of
transcription error due not only to the normal error rate associated with data entry tasks
but also due to poor readability of older documents.

A fourth solution is to use a hybrid of the above techniques to ease transition to a
paperless office. This is the solution we created for the US Army Recruiting Command.
This type of solution moves the organization to a paperless office with the ability to
create paper-based copies of each form when forms used by the office must be forwarded
to outside groups not participating or compatible with electronic solutions. For outside
enterprises willing to use electronic versions of the organization’s forms, there are
various schemes in the marketplace to allow organizational partners to share electronic
access.4

Data Storage and Retrieval
Once it has selected a broad electronic-forms strategy, a company must address the issue
of data storage and retrieval, in particular, how to efficiently store documents. Forms are
generally composed of several elements. These elements may include blocks of boiler-
plate text, images, line-art and data-collection areas.

One option is to store form elements and form data together. However, this approach is
rather inefficient because the data contained on a form generally requires only a small

4 I am under a non-disclosure agreement and cannot discuss specifics of the EDS Army solution. EDS
created a marketing piece describing the solution referenced in note 2 above and demonstrated part of the
laptop-based forms automation software and video presentation at a University of Kentucky recruiting fair.
I can provide a copy of the EDS marketing piece to anyone desiring a copy.

6 of 17

percentage of the storage space needed to store the form elements.5 The obvious solution
is to split data from form elements and store each separately. However, this approach
presents a number of problems.

The chief problem encountered when separating form elements from form data is form
versioning. Invariably, a single form will undergo numerous revisions in its lifetime.
Electronic forms design tools encourage this behavior because they enable staff to make
and distribute changes electronically. It’s imperative that each form version be archived
and provision made at the start to relate entity data with the form version with which it is
associated. Failure to do so can be disastrous.

Routing and Processing
Creating and storing forms in electronic format are only two of the challenges of going
paperless. Often one individual creates a document that a number of individuals must
read and agree on before the organization can accept it. This process and collection of
approvers is known as an approval chain.

Approval chains are rule-based and range from very simple, linear rule sets with one or
more approvers to rule sets comprised of a complex graph of rules, approvers, forms, and
approval levels. With more complex rule sets, a forms-routing solution must move the
document to one or more approvers based upon the response or non-response of an
approver within a specified criterion (e.g.: time period) or collection of criteria.
Document routing, in and of itself, is a rather complex process and is often ignored by
many organizations resulting in a mess— printing paper copies of documents and routing
them using legacy business practices and processes, leaving the organization
disappointed with its automated solution.

Signatures & Authentication
While a document is in route, electronic forms software may need to allow a form’s data
to be altered or changed. Sometimes alteration invalidates the document; other times,
supporting alteration is a requirement of the forms-routing solution. In any event, for a
document (whether it be a contract, credit application, health form, or other document) to
be enforceable in court, there must be a way to show that it has not been materially
altered since the person with whom it is to be enforced against signed off on its contents6.
If a document is materially altered, then any prior signoffs must be invalidated if the
document is to be enforced against that person. However, there are instances when a
document will never be enforced in court or where information is to be added by one or
more person at some point in the approval chain. For example, a medical insurance
analyst may be required to add comments to a document justifying a test before an
expense is approved; this type of document modification occurs after it is signed by both
the patient and the primary-care physician but should not invalidate the signature of

5 This claim is based upon personal, professional experience and observation.
6See the Millienum Digital Commerce Act of 2000, Public Law No: 106-229.

7 of 17

either patient or physician. The approval chain rule set must address each of these
possibilities and many more for every form.

With paper documents, holographic signatures are used to signify that a party agrees to
the information contained on the document. Documents with holographic signatures
suffer from three serious problems: signer authentication, document integrity, and
repudiation. Authentication refers to issues surrounding the identification of the parties
with whom a form is related. Integrity relates to the issue of whether a document has
been materially altered between the time it was signed and some date in the future.
Repudiation refers to the problem of a person denying signing the document.

Despite these problems, holographic signatures are used on most every legal instrument
in existence today. In some cases, a trusted third party, a Notary Public, is employed to
mitigate the authentication and repudiation problems.

e-forms are no different from paper forms in that regard; they have the same three
potential problems: authentication, integrity, and repudiation. There are a number of
ways beyond the scope of this paper to address each problem using a digital signature.
A digital signature is an assurance, using cryptography, of authentication, integrity, and
non-repudiation.7 It may or may not include an image of a person’s holographic
signature.

Essentially, there must be a way to digitally sign each document, a change log showing
any document alterations, and a set of rules to determine what constitutes material
alteration and to invalidated selected form elements when material alteration occurs.
This is a very complex subject and is not addressed by XForms.

XForms
I designed XForms, a Macintosh OS X application, to address only a small portion of the
electronic-forms automation problem domain. In particular, my work is restricted to the
design and creation of web and paper-based forms. I do not address legacy forms, data
storage and retrieval, routing and processing, or signature and authentication issues.

In undertaking this project, I had four objectives: learn objective-C, learn the Cocoa
development framework, create a pure implementation of the model-view-controller
design pattern as presented in the text Design Patterns8, and create a useful application
that generates both paper and web forms from a single design source.

7 Mel, H.X. and Baker, Doris, Cryptography Decrypted, Second Printing March 2001, p. 115.
8 Eric Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns Elements of Reusable
Object-Oriented Software, 30th printing, September 2004.

8 of 17

Usage
To start XForms, double click its icon. Once the application launches, you see a blank
form, a pallet of form elements and a properties panel similar to that pictured below.

Figure 1: Form design startup

To add an element to a form page, drag it from the Tools pallet onto the page. Once you
do that, the properties panel dynamically generates a list of properties that you can
change for the selected element.

Figure 2: Properties panel

The properties panel allows you to control placement, size, and properties specific to
each form element. For example, an image element allows you to specifiy a graphic
image filename; whereas a checkbox element does not. XForms maintains property lists

9 of 17

that a form designer can change and dynamically generates the property panel view based
upon the list corresponding to the selected element on the page view. XForms outlines
selected elements in blue in the page-design view. If you change a property, XForms
propagates it to the element in the form view immediately.

Once you have designed a form, XForms can be print or save it in one of four formats: a
proprietary binary format, XML, HTML, or PDF. Choosing either XML or HTML
allows you to manipulate the form design in a third-party utility—a web design tool or a
forms viewer, for example. Binary and PDF formats encapsulate all images in the form.
XForms’ PDF format is read-only and does not support Adobe’s form fill-in features. To
output a paper form, select the option to print from the main menu.

Figure 3: Print Output

Implementation
I wrote XForms in Objective-C using the Cocoa framework, a version of the OpenStep
framework created by the engineers at NeXT Computer in the late 1980s and mid 1990s9

9 Garfinkel, “Steve Jobs and the History of Cocoa, Part One,” O’Reilly Mac Dev Central,
http://www.macdevcenter.com/pub/a/mac/2002/05/03/cocoa_history_one.html.

10 of 17

to support a Rapid Application Development (RAD) paradigm. OpenStep was one of the
first reasonably successful commercial ventures offering a RAD platform that consists of
an integrated development environment with editor, visual user interface designer known
as Interface Builder, and code framework. With Apple’s extensions, Cocoa has become a
very complex, feature-rich, application-development framework. There are few books
documenting the framework. Consequently, it is very difficult to learn in a short span of
time. There is an open-source implementation of OpenStep known as GNUStep10.

Objective-C is an object-oriented extension to the C programming language that remains
fully compliant with the ANSI standard for C. Objective-C is not officially documented
by a world standards body. Apple’s version of the Gnu compiler, GCC, is used to
compile Cocoa applications and is somewhat lenient by default. It allows a number of
constructs that are not specifically allowed by either the ANSI C specification or
documented in Apple’s Objective-C reference guide. I avoided using any non-standard
features in XForms code.

Model View Controller Design Pattern
Design patterns are “simple and elegant solutions to specific problems in object oriented
software design.11” There are dozens of design patterns in existence. The
Model/View/Controller (MVC) design pattern is a proven method of designing software
that makes use of a graphical user interface. MVC is characterized by three or more
classes that separate the application’s data model, user interface, and control structure.
This design approach was used in Smalltalk-8012 and Apple encourages its use since the
Cocoa framework provides significant support for applications implementing the MVC
design pattern.

The chief argument for using MVC is that it supports code reuse. When the user
interface and data model are decoupled from an application’s control structures,
proponents of MVC argue that both the data model and GUI classes become better
candidates for reuse either as is or with little modification.13

10 See http://www.gnustep.org. The web site was down when I performed a cite check, but a cached
version is available from Google. Installation packages are available for some versions of linux; I
attempted installing GNUStep on Gentoo Linux using Gentoo’s portage utility, emerge, but I was
unsuccessful.
11 Gamma, et al, p.4.
12 Ibid referencing and quoting: Glenn E. Krasner and Stephen T. Pope. A Cookbook for Using the Model-
View-Controller User Interface Paradigm in Smalltalk-80. Journal of Object Oriented Programming,
1(3):26-49, August/September 1988.
13 Gamma, Design Patterns Elements of Reusable Object-Oriented Software.

11 of 17

Figure 4: XForms Model Classes

Model
Model classes represent application data independent of the format or mechanism by
which the application displays that information. The XForms model classes are:

1. XFElement – represents a form element and its related metadata.

2. XFPage – consists of meta-data related to a page, including its size and the

number of XFElement objects on the page.

3. XFForm – consists of metadata related to the entire form, including its file name,

version, number of pages, and a list of each XFPage object instance comprising
the form.

All XFForm model classes inherit from NSObject, Cocoa’s base class.

12 of 17

Figure 5: XForms View Classes

View
View classes represent the user interface to data. Any data displayed by a view class is
an ephemeral snapshot, lasting only as long as the view is available. If data in either the
view or the model changes, synchronization methods update the other component if one
wants to retain the data update. The XForms view classes are:

1. XFToolView – displays a tool pallet of form elements, such as images and
buttons, that may be added to a form.

2. XFElementView – displays a single element on a page. The display consists of

a border and an element from the tool pallet. The border helps the designer align
elements and is not part of XForm output. XFElementView inherits from
Cocoa’s NSView class.

3. XFPageView – displays a form page. Each instance holds a collection of

XFElementView objects. This class is a subclass of Cocoa’s NSScrollView
class. NSScrollView provides facilities for managing a view that exceeds the
bounds of a window.

13 of 17

Figure 6: XForms Controller Classes

Controller
Controller classes coordinate activities between view and model classes. In XForms, the
controller classes are:

1. XFDocument– maintains a reference to all view and model class instances. It
creates each XFElement and XFElementView instance. In addition,
XFDocument provides functionality related to printing, loading, saving, and
web-form generation. XFDocument is a subclass of NSDocument.

As part of its mission to coordinate the model and view classes, XFDocument
acts as a delegate for the window in focus and for the application’s menu. A
Cocoa delegate is a helper object that is used to extend the functionality of a
framework class. When a delegate for a Cocoa class instance is set, the delegate
object agrees to implement a mandatory set of methods for the primary object
with which it registered and has the option of implementing others as needed.
These methods may provide information to the primary object or may act as a
notification to the delegate object of an event handled in the primary object. For
example, after a window loads and is displayed in Cocoa, the message
windowDidLoadFromNib: is sent to the window’s delegate, assuming that an
object registered itself with the window.

A delegate receives a selected set of the messages sent to the primary object and a
handle to any objects needed by the delegate to alter the parent object’s behavior.
When a user selects a menu item or performs selected actions within the key
window, XFDocument receives a message. In response, XFDocument often
dispatches a message to one or more model and view classes.

14 of 17

2. XFPropertyController– handles views, displaying XFFormView and
XFElementView properties that can be altered by a user. These properties
include page size, element name, size, and location.

MVC Class Interactions
XFDocument maintains a handle to the primary model (XFForm) and view
(XFPageView) class instances. XFDocument may therefore dispatch messages
directly to either instance by calling a public method in the destination class. However,
the model and view classes do not have a handle to each other and cannot directly
communicate in the same manner as XFDocument.

Cocoa provides an intra-application messaging system implemented primarily through
the NSNotification and NSNotificationCenter classes. Each Cocoa
application has a default notification center that allows any object to send a message,
known as a notification, to a default notification queue. A notification consists of a
name, a handle to the object sending the notification, and, optionally, a dictionary object
containing additional information. Any object may register with the default notification
center to receive messages by specifying the notification name, a reference to the object
sending the notification, or a combination of both parameters.

XForms uses this notification mechanism to communicate from model instances to
objects on the properties panel. Whenever the underlying data model related to a selected
element’s property is changed, a message is sent notifying the property panel view of the
change. This mechanism allows the model to be completely de-coupled from the view.
The model, view, and controller classes do not need a handle to each other. Each
message is dispatched to the NSApplication’s default message center.

To propagate changes from the views to the model, I chose to give each controller class a
handle to the model and related views. The controller instances each pass a handle to
themselves to the model and view classes. Any changes to the model and view are
dispatched directly using these handles. I made this implementation choice in order to
compare the speed and implementation issues with both techniques. In hindsight, I
would have used Cocoa’s notification system and completely disconnected the model,
view, and controller classes by implementing Cocoa’s
NSKeyValueBindingCreation category in XForms’ model classes.

Cocoa bindings work by registering one object as a key-value observer of another
object’s data. Anytime that data is changed, the observer object is sent a message
containing a handle to the object whose data changed, and optionally, a container object
with the changed data. This implementation would have been inefficient in the case of
XForms’ properties panel since the element properties view content is created and
destroyed every time the selected form element on a page changes. Using bindings here

15 of 17

would mean sending bind and unbind messages to a model class for each form
element attribute on the view. Even so, I would have used Cocoa bindings in hindsight
for two reasons. First, using bindings completely decouples model and view classes
since neither need a handle to the other. With bindings, model and view objects
communicate with an intermediary—the application’s default message center.
Decoupling makes it very easy to reuse code without any changes. Second, there is no
real penalty for using bindings. Although total message count goes up and there is some
delay due to messages passing through an intermediary, all of this happens in a fraction
of a second on my 800MHz iBook G4. In each case after a property change, XForms
transitions to a state waiting for user input with nothing to do until the user triggers an
event message.

Form Output Options

At present, XForms provides two output formats: paper and HTML. In addition, the
form design can be saved in two different formats. One is a binary representation created
using Cocoa’s NSCoding protocol that serializes data output; the other is XML.

Future Extensions and Modifications
In order to raise XForms to a production st6atus capable of real-world office automation,
a great deal of work remains. In particular, the following features are needed:

• Database support to capture form output
• Additional design tools (lines, boxes, tables, applets)
• Enhanced form file format support

o Support for Adobe’s “fill-in” format
o Support for competing products formats

 JetForms
 FormFlow
 Adobe InDesign

• Finer grain control over property values
o Font selection & properties (color, size, kerning, etc)
o Element alignment and containment

• Support for more complex, multi-page forms
• Support for user preferences
• User interface enhancement

o Snap to grid functionality
o Additional form elements

16 of 17

 Appendix: Detailed Class Diagrams

Controller Classes

Model Classes

17 of 17

View Classes

