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Abstract

This document describes the Micro Transport Protocol (µTP), implemented in Linux version
2.2.10. µTP is a transport layer protocol that implements a simple, reliable, packet stream service
on top of IP datagram service. The objective of this project is to provide the user with another
reliable transport layer protocol and compare µTP’s performance with TCP. Results show that
for certain test cases,  µTP outperforms TCP.
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1 Introduction

The Micro Transport Protocol (µTP) is a connection−oriented end−to−end protocol
implementing a reliable, full−duplex packet−stream service between application processes
residing on different hosts. µTP was designed by Dr. Kenneth Calvert1 in 1995. It is designed to
fit into a layered hierarchy of protocols that support various network applications. 
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      Port          Port Card

  Figure 1: Protocol Layering

When an application process running on top of µTP communicates via the network, it uses
functions provided by the BSD socket layer and µTP−specific system calls. As shown in Figure
1, below this layer is the INET socket layer, which manages the communication end−points for
the IP−based protocols like TCP, UDP and µTP. µTP assumes it can obtain a simple, potentially
unreliable datagram service from the lower−level protocols. µTP fits into the layered protocol
architecture just above the Internet Protocol (IP), which provides a way for µTP to send and
receive variable−length segments of information enclosed in IP datagrams. The IP datagram
provides a means for addressing source and destination hosts in different networks. The internet
protocol also performs fragmentation and reassembly of IP datagrams to transport through
multiple networks. 

Application processes residing on different hosts can use µTP to establish connections and
exchange sequences of packets. Similar to TCP, µTP establishes connection using three−way
handshake communication. A µTP connection is always established between an active end that
initiates the connection and a passive end that waits for the connection requests to arrive from the
network. 

As long as the connection remains open, the protocol delivers packets in the order they are sent,

1 Faculty member in the College of Computing at Georgia Tech from 1991 to 1998 and now Assistant Professor at
University of Kentucky.

2 some APIs (or system calls) are specific to µTP and cannot be used for TCP or UDP.
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without modifying or discarding them. But µTP does not provide an orderly c l ose( ) function;
all data transfer stops abruptly as soon as either end requests that the connection be terminated.
Loss of data is possible during connection termination.

Like TCP, a pair of endpoints identifies a µTP connection. An endpoint is defined as a tuple { IP
addr, port number} . But unlike TCP, only the connection−establishment messages carry the
originating and destination port numbers. At connect time, each endpoint chooses a reference
number for the new connection and informs the other endpoint. After the initial connection−
establishment phase, the connection is identified with that reference number, that is, each
message has a destination reference number (a single port can have several reference numbers
and hence can be involved in different connections). The idea is that the recipient uses the
reference number to quickly locate the state information associated with the connection and to
reduce the header size.

The receiver uses sequence numbers to detect loss, duplication, and disordering of data packets.
The dynamic sliding−window mechanism uses sequence numbers for efficient transmission and
flow control. A µTP acknowledgment specifies the sequence number of the next data message
that the receiver expects to receive. It also contains the receiver’s window size. Acknowledgment
information can be piggybacked on data traveling in the opposite direction.

When congestion occurs, delays increase, causing µTP to retransmit PDUs (Protocol Data Units).
In the worst case, retransmissions increase congestion and produce an effect known as congestion
collapse. Like TCP, µTP uses a slow start multiplicative decrease technique to avoid congestion
collapse. 
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2 µTP State Machine (Connection Management)

Figure 2 shows the state transitions of a connection endpoint during the lifetime of a connection.
The following representation is used:

: State of a connection CR : Connect Request  
CA : Connect Ack

 +X : Receiving Message X CC : Connect Confirm
 −Y : Sending Message Y  D  : Data

  XX : Disconnect
µTPOpen( Passi ve)

  
   µTPOpen( Act i ve)

           −CR
         µTPOpen( Passi ve)    LSTNG

          returns

 AOPNG
    µTPOpen( Act i ve)  µTPUser Req( ACCEPT)   +CR
               returns  returns                −CA
+CA

            −CC or D
  +CC or +D

         +XX or timeout    OPEN 3 POPNG 4

          −XX

      µTPcl ose( )         +XX or timeout

             +(not XX)       +XX
         PCLSNG   − XX            −XX

      +XX or timeout
    

+(not XX)
    CLOSED      −XX

                        µTPOpen( ) ,  µTPCl ose( ) ,  µTPUser Req( )  r et ur ns

        FROZEN    
    (2−MPL Time)

Figure 2: µTP State Machine 

3 Data PDUs may be send or received.
4 Data PDUs may be received.
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2.1 Establishing a Connection

This section describes the states of the endpoints as they establish a connection. Let us consider
two hosts A (running µTP server) and B (running µTP client). The server on host A invokes
µTPOpen( ) on a local port, say X, with the active/passive flag set to PASSIVE. A connection
endpoint is associated with port X and is placed in the LSTNG (Listening) state. The µTP client
on host B invokes µTPOpen( ACTI VE) with destination host A and destination port X. The
client sends a Connect Request PDU and enters the AOPNG (Active Opening) state. It remains
in that state, retransmitting Connect Request periodically, until a reply (either Connect Ack or
Disconnect) is received, at which point it enters the OPEN state and sends either Connect
Confirm or a Data PDU. When the server in the LSTNG state receives a Connect Request PDU,
it sends Connect Ack in reply and enters the POPNG (Passive Opening) state. It remains in that
state, retransmitting Connect Ack periodically, until receiving a reply (Connection Confirm or
Data), at which point it enters the OPEN state. Figure 3 shows the messages exchanged during
connection establishment.

DR: Destination Reference   LP: Local Port            CR: Connect Request     W: Window size
OR:Originating Reference    DP: Destination Port  CA: Connect Ack         
RR: Responding Reference     C3: Connect Confirm 

    XX: Disconnect
Host B Host A

Open(LP = X,
Open(dest=A, DP= X,                       PASSIVE)

LP= Y, ACTIVE)           CR: DR=0, OR=1 DP=X, LP =Y, W=8
             CA: DR=1, RR=2, LP=X, DP=Y, W=8                        UsrReq(ACC)

     C3: DR=2

     
Figure 3: Connection Establishment

It is possible for the PASSIVE end to receive Disconnect in response to Connect Ack when it is
in the POPNG state. This situation can happen as follows: The ACTIVE end receives Connect
Ack, sends a Connect Confirm PDU that is lost by the network, and enters the OPEN state,
whereupon the µTP client immediately calls µTPCl ose( ) . In this case, the PASSIVE end
sends Disconnect and enters the FROZEN state. 

2.2 Closing a Connection

Host B Host A
  UsrReq(RCV)

close() XX: DR=2
XX: DR=1             returns 

                                                                                                                                             
ERR_NODATA

Figure 4: Connection Termination.
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The connection can be closed at any time by either endpoint, as shown in Figure 2. When a
application process calls µTPCl ose( ) , the µTP client or server sends a Disconnect PDU, and
periodically retransmits it until Disconnect is received or a timer expires. If a Disconnect PDU is
received, the close is “clean”, otherwise it is “dirty”. Both connection endpoints may call
µTPCl ose( ) , causing Disconnect PDUs to cross the network, which results in a “clean” close
at both ends. When an endpoint has either received Disconnect or sent Disconnect several times
without receiving a reply, it enters the FROZEN state. Closing is preemptive: As soon as one end
closes, all data transfer stops, any in−transit data are lost, and both ends are frozen for a time
period equal to twice the Maximum Packet Lifetime (MPL) of the underlying network service.
This algorithm ensures that all messages from the connection have drained from the network
before the reference number is reused, and is referred to as “2−MPL timeout”. Figure 4 shows
the messages exchanged during “clean” connection termination.
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3 Data Transfer

As the state diagram shows, data transfer occurs only in certain states. An endpoint can send data
when it is in the OPEN state and receive data only in the OPEN or POPNG state. This section
contains a description of procedures and state variables for transfer in one direction from the
sender to receiver. However, each end can act simultaneously as sender and receiver. µTP
maintains one−to−one correspondence between Service Data Units (SDUs) and Data PDUs. An
SDU is a group of bytes submitted by the application. A Data PDU is a data packet transmitted
over the network. Each data carrying a PDU contains exactly one SDU. This requirement
simplifies the implementation of the protocol, but it limits the size of SDU to
MAX_µTP_DATA.

3.1 State Var iables

The sender maintains the following state variables per connection for the implementation of the
dynamic sliding−window algorithm.

� send_unack : least sequence number such that an Ack PDU containing that sequence
number has not been received. 

� send_next : least sequence number that has not been transmitted in a Data PDU. 
� send_l i m: sum of send_unack  and current send window size. 
� send_acc : total number of SDUs accepted from the application process. 
� send_ack_subseq: subsequence number of the Ack message from which send_l i m

was most recently set. 

All of the above variables, except send_l i m, are initialized to zero during connection
establishment. Send_l i m is initialized to the value in the initial window field of the received
Connect Ack or Connect Request PDU. 

The receiver maintains the following state variables per connection: 

� r cv_next : least sequence number such that a Data PDU with that sequence number has not
been received. 

� r cv_wi n: number of PDUs for which buffer space is currently available (includes buffers
currently in use to hold PDUs with sequence numbers in the window but greater than
r cv_next ). 

� r cv_ack_cnt : number of times the current value of r cv_next has been transmitted in an
Ack PDU. 

These variables, except r cv_wi n, are initialized to zero. The value of r cv_wi n is a
parameter of µTP.  

3.2 Getting the data from process A to process B

Similar to specifying SOCK_DGRAM for UDP and SOCK_STREAM for TCP, both endpoints
specify SOCK_µTP_STREAM for µTP as the parameter for socket ( ) . We assume that both
the processes have already created sockets and are connected to each other via µTPOpen( ) .
We restrict our description to one µTP connection. The µTP calls (API) used in this section are
explained later in Section 5. The protocol control block (PCB) contains the data structures used
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for each connection. The data structures includes a reference number, a pointer to a socket, all the
state variables, the state of the connection, and various pointers to buffers. Consider that data is
to be sent from process A to process B. Process A contains the following fragment of code: 

µTP_User Req ( r ef _no,  SEND,  dat a,  l engt h)

This code calls the kernel function sys_µTP_User Req( ) , which tests for a number of
conditions including length of data and read−access rights to the memory area referred to by the
data. It also transfers the data from user space to the kernel space using copy_f r om_user ( ) .
It calls inet _sendmsg( ) , which tests for validity of destination address and calls µTP’s send
operation µTP_send( ) . µTP_send( ) builds the µTP header and calls the function
i p_queue_xmi t ( ) . I p_queue_xmi t ( ) builds the protocol header, slots the packet into
the wait queue of packets ready to be transferred, and calls dev_queue_xmi t ( ) . If we
assume that the device is an Ethernet card, dev_queue_xmi t ( ) calls ei _st ar t _xmi t ( ) ,
passes the data to the network adapter, and sends it to the Ethernet.

After receiving the Ethernet packet, the network card triggers an interrupt that is handled by
ei _i nt er r upt ( ) . If the transfer completes without error, ei _i nt er r upt ( ) calls
ei _r ecei ve( ) with a reference to a network device. Ei _r ecei ve( ) writes the packet to a
newly set−up buffer using wd_bl ock_i nput ( ) . Then ei _r ecei ve( ) calls
net i f _r x( ) , which adds the packet to the backlog list. There is only one list in the entire
system that contains all the packets received by the system. All the functions described so far for
receiving packets are executed within the interrupt context. The net i f _r x( ) function then
marks the network implementation’s bottom−half routine in the bottom−half mask bh_mask .
Net _bh( ) calls i p_r cv( ) , which checks the header for correctness. If necessary,
i p_r cv( ) executes the handling routines for the IP options. Since µTP is specified in the
protocol field of the IP header, i p_r cv( ) calls µTP_r cv( ) . µTP_r cv( ) calls
µTP_l ookup( ) to determine, by reference to the sender and destination addresses and the
sender and destination port numbers, the INET socket to which the µTP segment is addressed. It
then calls µTP_i nput ( ) , which enters the buffer in the list of data received for the packet and
sends an acknowledgment if the sequence number of this packet is equal to the next expected
sequence number (positive acknowledgment).

If process B wishes to receive the data sent by A, it executes a receive operation:

µTP_User Req( r ef _no,  RECV,  dat a,  l engt h)

µTP_User Req calls sys_µTP_User Req, tests for various conditions, gets the data from
buffer and transfers the data to user space.

3.3 µTP Sender Procedure

The sender maintains two linked lists: sent _l i s t and unsent _l i s t . The sender accepts
the SDU from the application process. The sender constructs a PDU from the SDU by adding a
header and computing the checksum. The sender assigns the value send_acc as the PDU’s
sequence number and increments send_acc . If the send window is not closed, the sender
transmits the PDU, keeping a copy of each transmitted PDU in sent _l i s t until acknowledged
by the receiver. The send window is the segment of sequence numbers beginning at
send_unack and extending up to, but not including, send_l i m. The send window is the
sender’s view of the receive window, based on the information received in Ack PDUs. The
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sender closes send window when send_unack equals send_l i m and keeps a copy of each
PDU that is not transmitted in unsent _l i s t . Whenever the send window opens, the sender
moves PDUs from unsent _l i s t to sent _l i s t and transmits the PDUs. Buffer space to
hold PDUs may occasionally become scarce, and the sender may have to stop or delay accepting
new PDUs from the application process for transmission. 

After receiving an Ack PDU from the receiver, the sender first determines whether it contains
new information. An Ack PDU contains new information if it satisfies either of the following
conditions: 

� The value in its Ack sequence number field is greater than send_unack , or
� Its Ack sequence number is equal to send_unack , and the value in its Ack subsequence

number field is greater than send_ack_subseq. 

Receiving an Ack that contains new information, the sender updates the following state variables:

� send_unack  to the value of the Ack sequence number field,
� send_ack_subseq to the value of the Ack subsequence number field, and 
� send_l i mto the sum of send_una (the new value) and the value in the window size field

of the Ack PDU. 

After updating its state variables, the sender deletes all PDUs in sent _l i s t that are no longer
pending. A data PDU is pending if its sequence number is greater than or equal to
send_unack. If a PDU remains pending for longer than a retransmit timeout period, the
sender retransmits it. Round−trip time calculation decides the time to wait for retransmission.
Whenever there are pending PDUs and the window is closed, the sender periodically probes the
receiver by sending a probe PDU, which elicits an immediate Ack PDU in reply. Probing ensures
that the sender receives an updated flow control window information.

3.4 µTP Receiver  Procedure

The receive window is a contiguous set of r cv_wi n sequence numbers beginning with
r cv_next . The receiver buffers any data PDU it receives with a sequence number within the
receive window. The receiver drops all the PDUs with sequence numbers not in the window. The
receiver delivers a buffered PDU to the application process only after receiving and delivering all
lower numbered PDUs. The number of buffers available for incoming PDUs may vary with time
according to how fast the application process accepts data PDUs. The state variable r cv_wi n
reflects the amount of buffering available; in particular, r cv_wi n is zero when the receiver has
no buffers available for incoming PDUs. The receiver modifies the values of r cv_next and
r cv_wi n in response to two events: receipt of new data PDUs and change of availability of
buffers (if data from some buffered PDU has been delivered to the application process). The
receiver maintains two lists: del i ver abl e_l i s t and undel i ver abl e_l i s t . When the
receiver receives the PDU with sequence number equal to r cv_next , it does the following:

� Check for a valid checksum (includes both data and header),
� Set r cv_next to the lowest sequence number such that a data PDU with that number is not

currently buffered,
� Decrease r cv_wi n to account for the buffers occupied by the recently received PDU plus

any PDUs that were received (out of order) before it,
� Insert the PDU in del i ver abl e_l i s t  ,
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� Transmit an Ack, and
� Check any PDU that can be moved from undel i ver abl e_l i s t to

del i ver abl e_l i s t .

If the sequence number of the PDU is not equal to r cv_next but is within the limits of the
receive window, the receiver inserts that PDU in undel i ver abl e_l i s t . The receiver frees
the buffers by delivery of data to the application process and increases r cv_wi n. The receiver
modifies the value of r cv_ack_cnt whenever it transmits an Ack PDU or r cv_next
changes. The receiver increments r cv_ack_cnt each time it sends an Ack PDU for the same
r cv_next . When the value of r cv_next changes, r cv_ack_cnt is set to 0. Thus among
Ack PDUs with the same Ack sequence field, the one with the highest Ack subsequence number
contains the most recent window information. The sender uses this fact to determine whether an
incoming Ack PDU contains new window information. The receiver transmits an Ack in the
following cases:

� The arriving PDU’s sequence number is equal to r cv_next  .
� The receiver gets a Probe PDU. 
� The window size increases from zero (the window reopens).

3.5 Example Exchanges
Some sample exchanges are shown in this section. 
DR: Destination Reference   OP: Originating Port   AK: Ack Sequence  SN: Sequence Number
OR:Originating Reference    DP: Destination Port   AS: Ack Subsequence  W: Window size
RR: Responding Reference

Host X Host Y
Open(Dest =0,
         PASSIVE)

Open(dest=Y, ACTIVE)     CR: DR=0, OR=1 DP=3000, OP =5000, IW=8
             CA: DR=1, RR=2, OP=5000, DP=3000, IW=8              UsrReq(ACC)

C3: DR=2

     UsrReq(SEND) D: DR=2, SN=0
A: DR=1, AK=1, AS=0, W=7            

  UsrReq(RCV)
     UsrReq(RCV)

D: DR=1, SN=0   UsrReq(SEND)
     UsrReq(SEND) AD: DR=2, SN=1, AK=1, AS=0, W=8

A: DR=1, AK=2, AS=0, W=8
  UsrReq(RCV)

      UsrReq(RCV)
D: DR=1, SN=1   UsrReq(SEND)
A: DR=2, AK=2, AS=0, W=8

  UsrReq(RCV)
close() XX: DR=2

XX: DR=1             returns 
                                                                                                                                             
ERR_NODATA

Figure 5: Normal connection lifecycle
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Host X Host Y

A: DR=10, AK=200, AS=0, W=3
  UsrReq(RCV)  

      UsrReq(SEND) D: DR=20, SN=200
      UsrReq(SEND) D: DR=20, SN=201   UsrReq(RCV)
      UsrReq(SEND) D: DR=20, SN=202

A: DR=10, AK=203, AS=0, W=2
  UsrReq(RCV)

      UsrReq(SEND) D: DR=20, SN=203

      UsrReq(SEND) D: DR=20, SN=204
(timeout)

     D: DR=20, SN=203
A: DR=10, AK=205, AS=0, W=1

      UsrReq(SEND) D: DR=20, SN=204
A: DR=10, AK=205, AS=0, W=0

PB: DR=20
A: DR=10, AK=205, AS=1, W=0

PB: DR=20   UsrReq(RCV)
 A: DR=10, AK=205, AS=2,W=1

      UsrReq(SEND) D: DR=20, SN=205
 A: DR=10,AK=206, AS=0, W=0

  UsrReq(RCV)
 A: DR=10, AK=206, AS=1, W=1

Figure 6: Error recovery and window flow control  
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4 Inter faces to µTP

This section describes the interface to the application layer (system calls) and to the lower layer
(IP calls). It explains the parameters and return values of the interfaces.

4.1 Upper Inter face

The Upper Interface to µTP consists of three system calls:
µTP_Open( ) : first call for connection establishment.
µTP_Cl ose( ) : call for terminating the connection. 
µTP_User Req( ) : call for send, receive, accept and other requests. 

4.1.1 The Open Function

To request connection−establishment, the application process first calls µTPOpen( ) .
µTPOpen( ) r eturns the connection reference number or error value (if negative). Its prototype
is: 

i nt  µTPOpen( i nt  µTPSocket ,       /*  socket fd associated with the connection * /
       Addr _t  * dest host ,         /*  destination host address * / 
       µTPPor t s_t  por t s ,         /*  local and destination µTP port number * /
       i nt  apf l ag)                 /*  ACTIVE/PASSIVE flag * /

µTPOpen( )  does the following: 

� Allocates a new protocol control block (PCB) for the connection.
� Checks for one of the following conditions: 

� If the active/passive parameter is ACTIVE, both destination address and destination
port should be nonzero.

� If the active/passive parameter is PASSIVE, the local port should be nonzero. 
� Copies the destination address and port parameters into the PCB. 

The rest of the µTPOpen processing depends on the value of the A/P flag:

If the A/P parameter is ACTIVE, µTPOpen( ) sets the state to AOPNG, sends the initial
Connect Request PDU, starts the retransmission timer, and blocks until the state becomes OPEN
or FROZEN. If the connection state becomes OPEN, it returns an identifier to be used as a
parameter in subsequent calls to interface routines. This connection identifier uniquely identifies
the protocol control block.

If the A/P parameter is PASSIVE, µTP_Open( ) sets the state to LSTNG and returns the
connection identifier. The PCB allocated in response to a PASSIVE Open request is not
associated with any particular connection. The application process can subsequently obtain new
connections using this PCB. After a PASSIVE Open, the application process calls
Usr Req( ACCEPT)  to obtain the connection identifiers associated with particular connection. 

4.1.2 The Close Function
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The application process calls µTPCl ose( )  to abruptly terminate a connection. Its prototype is: 
i nt  µTPCl ose( i nt  connect i on_i d)  /*  connection identifier * / 

A call to close an OPEN connection changes the state to PCLSNG and causes a Disconnect PDU
to be sent and repeatedly retransmitted. The process blocks until endpoint receives a Disconnect
PDU or transmits a Disconnect PDU number of times (equal to MAX_RETRY) with no
response. The return value of µTP_Open( ) indicates whether the termination is “clean” (the
endpoint receives a Disconnect PDU in response to the one sent). If the endpoint receives no
Disconnect reply, the termination is dirty and  µTPCl ose( )  returns an error value.

4.1.3 The UserReq Function

This function handles requests from the application process to send and receive data, to inquire
about the status of a connection and to accept new connections after a PASSIVE Open. Its
prototype is: 

i nt  User Req( i nt  connect i on_i d,   /*  connection identifier * / 
         i nt  command,               /*  identifies the type of request * / 
                voi d * dat a,          /*  pointer to data or status buffer * / 
               i nt  * dl en)          /*  size of data sent/received * / 

The connection identifier is obtained from the earlier µTPOpen call. Command is an integer
identifying the operation to be performed on behalf of the application process. Possible values
are: 

ACCEPT /*  accept connection (may block) * / 
NBACCEPT /*  non blocking accept * / 
SEND /*  send data (may block) * / 
RCV /*  receive data (may block) * / 
NBRCV /*  non blocking receive * / 
STAT /*  status inquiry * / 

The meanings of pointer to data (* dat a) and pointer to length (* dl en) parameters vary with
the command. The input and output semantics of dat a and dl en for each command are
summarized in the following table: 

*data *dlen

Command Input output Input output

ACCEPT,
NBACCEPT

(ignored) (undef) (ignored) New conn id

SEND Data to send = Input # bytes # sent

RCV, NBRCV Input buffer = Input Buffer size # recd

STAT µTP_stat_struct = Input Size of struct Size of struct

Table 1: Input and Output parameters of User Req( )

The ACCEPT command causes dl en to point to a new connection id that identifies a remotely
initiated connection to the local port. If no such connection is pending, the call blocks until a
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connection reaches the OPEN state. 

The NBACCEPT command similarly returns a connection identifier via dl en. If no connection
has reached the OPEN state, the call returns ERR_NODATA rather than blocking. 

The SEND command requests that an SDU be delivered to the remote application process.
User Req( ) blocks or delays if several PDUs sent are not yet accepted by the remote
application process. The number of bytes in the request is limited to maximum data size in the
PDU. It returns the number of bytes actually transmitted via dl en. 

The RCV command places data sent by the remote application process in the dat a buffer. The
buffer supplied should be large enough (as indicated by dl en on input) to pass the data to the
application process. The command may block if no data is currently deliverable. It returns the
number of bytes actually received via dl en.
 
The NBRCV command similarly places data sent by the remote application process in a single
SEND request in the indicated buffer. However, if no PDU is deliverable at the time of the call,
User Req returns ERR_NODATA instead of blocking. 

The STAT command provides the application process with a snapshot of the state of the
connection, filling in a structure with information about sequence number and state variables.
The µTP_st at  structure is defined as follows: 

st r uct  µTP_st at  {  
i nt  µTP_st ,  /*  connection state * / 
i nt  µTP_sacc,  /*  value of send acc * / 
unsi gned shor t  µTP_snxt ,  /*  value of send next * / 
unsi gned shor t  µTP_suna,  /*  value of send una * / 
unsi gned shor t  µTP_sndl i m, /*  value of send lim * / 
unsi gned shor t  µTP_r nxt ,  /*  value of rcv next * / 

}

4.2 Lower Inter face

The interface between µTP and the internet protocol (IP) is defined in terms of two functions:

 voi d i p_queue_xmi t  ( s t r uct  skbuf f  * skbuf f ) ;
i nt  i p_r cv( st r uct  sk_buf f  * skb,  s t r uct  dev i ce * dev,  

s t r uct  packet _t ype * pt ) ;

I p_queue_xmi t ( ) is an output function used for transmitting data. After adding µTP header
to the data, µTP_send( ) invokes i p_queue_xmi t ( ) which builds the IP header and
calculates checksum. It queues the packet to be sent and transmits if necessary.

When the µTP packet arrives, net _bh( ) invokes i p_r cv( ) . It validates the protocol header
and  determines if the packet is addressed to the local host. It then invokes µTP_r cv( ) .
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5 Retransmission Timers and Round Tr ip Estimation

µTP uses kernel timers for the following purposes :

� To handle retransmission of data PDUs,
� To handle retransmission of Connect Request, Connect Ack or Disconnect PDUs,
� For a 2−MSL delay following the µTpcl ose( ) , and 
� To probe the receiver when the sender is unable to transmit the data. 

The timeout value (in jiffies) and the function to be called when the timer expires characterizes
the kernel timers. The timer handler receives an argument, which is stored in the data structure,
together with a pointer to the handler itself.

The data structure of a timer is defined as:

st r uct  t i mer _l i s t  {
s t r uct  t i mer _l i s t  * next ; /*  pointer to next struct * /
st r uct  t i mer _l i s t  * pr ev;  /*  pointer to prev struct * /
unsi gned l ong expi r es; /*  the timeout, in jiffies * /
unsi gned l ong dat a; /*  argument of the handler * /
voi d ( * f unct i on) ( unsi gned l ong) ; /*   timeout handler * /

}

µTP uses the following timer routines:

voi d i ni t _t i mer ( s t r uct  t i mer _l i s t  * t i mer ) ;
This inline function is used to initialize the timer structure.                                          

voi d add_t i mer ( s t r uct  t i mer _l i s t  * t i mer ) ;
This function inserts a timer into the global list of active timers. As an argument for
add_t i mer ( ) , expi r es specifies the timeout value. When the timer expires, the kernel
invokes the handler.

voi d del _t i mer ( s t r uct  t i mer _l i s t  * t i mer ) ;
If a timer needs to be removed from the list before it expires, µTP calls del _t i mer ( ) .

Before transmitting the PDU, the sender puts the PDU in the sent _l i s t and turns on the
retransmission timer. There is only one retransmission timer. If the timer expires, the sender
retransmits the PDU and turns on the timer. But if an acknowledgment arrives before the timer
expires, the sender checks the send_l i s t . If there are pending PDUs in sent _l i s t  awaiting
acknowledgment, the sender turns on the timer. When the timer expires, the sender retransmits
the first PDU from the sent _l i s t . This algorithm reduces the number of timers and
retransmissions.

During normal data transfer, an acknowledgment arrives for each PDU before the retransmission
timer expires. The retransmission timeout for the PDU to be transmitted is equal to the round−
trip time taken by the previous normal data transfer (without any retransmissions). µTP ignores
round−trip measurements of retransmitted PDUs (similar to Karn’s algorithm in TCP). 
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6 Congestion Avoidance and Control

When congestion occurs, delays increase, causing µTP to retransmit PDUs. In the worst case,
retransmissions increase congestion and produce an effect known as congestion collapse. To
avoid adding to congestion, µTP uses a multiplicative decrease technique and uses slow start
during recovery. 

The sender side of µTP maintains a variable known as congest i on_wi ndow to restrict the
amount of data being sent. When transmitting, µTP uses the minimum of the receiver’s window
size and the congest i on_wi ndow to determine how much data to send. 

The sender initializes the congest i on_wi ndow to the receiver’s window size. When
congestion begins (a retransmission timer expires), the sender reduces the
congest i on_wi ndow by half. Each time retransmission occurs, the sender reduces the
congest i on_wi ndow by half until it becomes 1. This technique is known as multiplicative
decrease. 

Slow start is the reverse of multiplicative decrease. If a communication is successful and an
acknowledgment arrives before the retransmission timer expires, the sender increases
congest i on_wi ndow by one until it reaches the threshold set by multiplicative decrease.
Then the sender increases the congest i on_wi ndow by one for every round trip.
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7 Protocol Data Units (PDUs)

PDU NAME CODE CONNECT DATA
TRANSFER

DISCONNECT

Connect Request CR X

Connect Ack CA X

Connect Confirm C3 X

Data bD X X

Ack Ab X

Data+Ack AD X

Probe PB X

Disconnect XX X

Table 2 : µTP−PDUs and their functions

Table 1 lists all the µTP PDUs and the function with which each is associated. Headers in µTP
consist of an eight−byte common part, which has the same format for all PDUs, followed by a
PDU−specific part, whose length and format varies. The format of the PDU−specific part is
determined by the “PDU type” field in the common part. All µTP headers consist of an integral
number of four−byte words, which is useful because the data can be manipulated as a word (four
bytes) at a time, particularly to compute checksums. 

7.1 Common Header Par t of PDU
          0                           7      8                          15   16                             

            Dest Ref #  Version          PDU Type

Checksum

Figure 7: Common Part of PDU Header

The header part common to every µTP PDU is shown in Figure 5. It contains the following four
fields: 
� Destination Reference Number (8 bits) is the reference number associated with the connection

endpoint intended to receive this PDU. It is always nonzero except in the Connect Request
PDU, where it is always zero. 

� Version (8 bits) identifies the version of µTP implemented. According to the specification,
packets for the current implementation must have the value 2 in this field. 

� PDU Type (16 bits) identifies the type of the PDU. It is formatted as two one-byte subfields,
each containing an ASCII character. 

� Checksum (32 bits) is bitwise sum of all the 32-bit words in the PDU (header + data). 

7.2 Connection−Establishment PDUs 
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During connection establishment, the ACTIVE end (client) transmits a Connect Request (CR)
PDU; the PASSIVE end (server) replies with Connect Ack (CA). The ACTIVE end completes
the three−way handshake by sending either a Connect Confirm (C3) or a Data (bD) PDU. 

7.2.1 Connect Request PDU

The Connect Request PDU format is shown in Figure 6.
          0                           7     8                          15   16       23   24                           31

            Dest Ref #           Version      ‘CR’ (0x4352)

Checksum
       Originating         Destination 
            Port #   Port #            Orig. Ref. #     Initial Window

Figure 8: Connect Request PDU format

� The Destination Reference field of the Connect Request PDU always contains 0. 

� The PDU Type field contains the ASCII codes for the two characters ‘C’  and ‘R’ . 

� Originating Port (8 bits) is the port associated with the process ACTIVEly opening the
connection.

� Destination Port (8 bits) is the port associated with the process at the PASSIVE end. 

� Originating Reference Number (8 bits) is chosen by the ACTIVE end as a local identifier for
this connection. It becomes the Destination Reference Number of all PDUs sent on this
connection by the PASSIVE end. 

� Initial Window Size (8 bits) is used to initialize the window mechanism. It may be zero.

7.2.2 Connect Ack PDU

The PASSIVE end sends the Connect Ack PDU in response to a received Connect Request PDU.
          0                           7     8                          15   16                               31

Dest Ref #         Version       ‘CA’ (0x4341)

Checksum

        Orig  Port #      Dest Port #         Resp. Ref. #     Initial Window
                       Figure 9: Connect Ack PDU format
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� The PASSIVE end sends a Connect Ack PDU in response to a received Connect Request
PDU.

� The Destination Reference Number contains the value of the Originating Reference Number
field from the requesting PDU. 

� The PDU Type field contains the ASCII codes for the two characters ‘C’  and ‘A’ .
 
� Originating Port (8 bits) is the same as in the initiating Connect Request PDU, and so is the

Destination Port. Thus the Originating Port always refers to the port on the ACTIVE end, and
the Destination Port always refers to the PASSIVE end. 

� Responding Reference (8 bits) is a local identifier chosen by the PASSIVE end. It becomes
the Destination Reference Number for all PDUs sent by the ACTIVE end on this connection. 

� Initial Window (8 bits) is used to initialize the window mechanism. It may be zero.
 
7.2.3 Connect Confirm PDU 

         0                            7     8                          15   16                               31

Dest Ref #          Version       ‘C3’ (0x4333)

Checksum

Figure 10: Connect Confirm PDU format 

The ACTIVE end sends Connect Confirm PDU in response to a received Connect Ack PDU. It is
the third message of the three−way handshake. Whenever the ACTIVE end has no user data to
send or the initial flow control window specified (in the Connect Ack PDU) by the PASSIVE
end is zero, it sends this message. The Destination Reference Number is the value from the
Responding Reference Number field of the received Connect Ack PDU. 

7.3 Data Transfer  PDUs

Application data is transferred in PDUs of type Data or Data+Ack. The protocol provides for
independent data flow in each direction. The description of this section refers to a single
direction. Each data carrying PDU has an associated 16-bit sequence number. 

7.3.1 Data PDU

The format of the data PDU is shown in Figure 9. The data contained in a Data PDU is a single
SDU, that is, the amount of data passed by the application process in a single send request.

               0                                7     8                                15   16                                  31
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Dest Ref   Version    ‘bD’ (0x2044)

Checksum
        Sequence #                                 Data Length

   (Data)

Figure 11: Data PDU format 

� The PDU Type field contains the two characters ‘bD’ , i.e. the first byte contains the ASCII
character space. 

� Sequence Number (16 bits) assigned to Data and Data+Ack PDUs come from the same
sequence, e.g. if a Data PDU is sent with sequence number x, and the next PDU is a
Data+Ack PDU, its sequence number is x + 1. The maximum amount of application process
data is that can be carried in single PDU specified by the constant MAX_µTP_DATA.

� The checksum in a Data (or Data+Ack) PDU includes both header and data. 

7.3.2 Ack PDU

The receiver sends the Ack PDU. The Ack PDU contains the sequence number of the next data
carrying PDU expected by the receiver. Its format is shown in Figure 10. 

          0                           7     8                          15   16                             31

Dest Ref #  Version        ‘Ab’ (0x4120)

Checksum

                        Ack Seq #        Ack SubSeq #     Window Size

Figure 12: Ack PDU format

� The PDU Type field contains the ASCII characters ‘Ab’, i.e. the second byte of the field
contains the space character. 

� The Ack Sequence Number carried in the Ack PDU is the number of the next PDU the
receiver expects to receive.  

� The Window Size indicates the number of data carrying PDUs for which the receiver has
buffer space, including the PDU whose number is in the Ack Sequence Number field. This
indication is useful for implementation of the dynamic sliding−window protocol. The sender
adjusts its window size according to the receiver’s window size.

� The Ack Subsequence Number is used in the flow control function. Its purpose is to enable
the sender to distinguish between the flow control parameters contained in different Ack or
Data+Ack PDUs that acknowledge the same Data PDU. 

7.3.3 Data+Ack PDU
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The Data+Ack PDU allows acknowledgments to be piggybacked with data flowing in the
opposite direction. The header of the Data+Ack PDU contains the fields of both the Ack and
Data PDUs, as shown in Figure 11. 

                 0                                 7     8                                15   16                                   31

            Dest Ref #    Version       ‘AD’ (0x4144)

             Checksum

Ack Seq #           Ack SubSeq #    Window Size
             Sequence #   Data Length

                                        (Data)

Figure 13: Data+Ack PDU format 

7.3.4 Probe PDU

The Probe PDU can be used to elicit an Ack from the receiver. In particular, it is transmitted by a
sender when one or more data PDUs are pending, the window is closed, and no Ack PDU has
been received for some time. The format of the Probe PDU is shown in Figure 12. 

               0                         7     8                                15   16                                   31

          Dest Ref #    Version        ‘PB’ (0x5042)

Checksum

Figure 14: Probe PDU format

The receiver replies to Probe immediately by sending Ack. 

7.4 Disconnect PDU 
               0                                7     8                                15   16                                    31

         Dest Ref #   Version       ‘XX’ (0x5858)

             Checksum

Figure 15: Disconnect PDU format
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The Disconnect PDU (Figure 10) causes all communication on a connection to cease,
immediately. Whenever an endpoint receives Disconnect PDU on an OPEN connection, it
transmits a Disconnect in reply, and the connection enters the FROZEN state. All subsequent
requests return an error condition, and all incoming PDUs bearing the destination reference
number are discarded. In addition, a Disconnect may be sent under the following conditions: 

� In response to a Connect Request PDU when it is not possible to establish the requested
connection (if no process is listening on the specified port, or if no reference numbers are
available at the host for new connections). 

� In response to a Connect Ack PDU when no Connect Request has been sent. 

� In response to any PDU (other than Disconnect) whose Destination Reference field refers to a
connection in the FROZEN state. The Disconnect PDU must not be sent in reply to a
Disconnect received in the FROZEN state, because this behavior, coupled with loss of a
Disconnect PDU, can cause the two ends to shoot Disconnects at each other for the entire 2
MPL time. 
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8 Performance Measurement and Compar ison

8.1 Test

The performance measurement tests measure the throughput between two hosts running µTP on
Linux 2.2.10. I implemented TµTP (Test µTP), an application program similar to TTCP (Test
TCP), for measuring and comparing the performance. The performance tests measure the
throughput for data ranging from 100 KB to 10 MB for window size of 8 and 16. The packet
size is constant (4000 bytes).  The graphs are plotted to compare the throughput of µTP with TCP
and UDP. The performance tests measure the throughput 3 times for each combination of
parameters and takes average of the results. To make a valid comparison, the tests adjust the
TCP’s window size according to µTP’s window size. The window size of TCP is 32120 bytes
when µTP’s window size is 8 (8*4000 = 32000 bytes). It is double that (64240 bytes) when the
window size is 16 for µTP (16*4000 = 64000 bytes). Both hosts are on a directly connected
network (the connection doesn’ t pass through a gateway). The clock speed of the transmitter is
133 MHz and that of the receiver is 450 MHz. The following graphs display the performance of
µTP, TCP and UDP, plotting throughput (Bytes/Sec) on the Y−axis versus data size (Bytes) on
the X−axis.

8.2 Discussion of results

Graph 1 and 2 display the receiver’s and transmitter’s performance of transport layer protocols
for window size 8. Similarly, Graphs 3 and 4 display the performance for window size 16. The
graphs show that unreliable UDP’s throughput is more than TCP or µTP for window size 8 and
16. For window size 8 (Graphs 1 and 2), µTP outperforms TCP. But for window size of 16
(Graphs 3 and 4), the throughput of TCP is similar to that of µTP. If the hosts are not directly
connected on the same network, these results may be different. I expect µTP to outperform TCP
if the traffic is not too congested, since µTP minimizes the number of retransmissions and the
header size is small. But if there is congestion, TCP might outperform µTP, since it uses
exponential backoff and Karn’s algorithm to compute round−trip time. Karn and Partridge
[August 1997] describe Karn’s algorithm and estimation of round−trip times.
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Graph 1: Transmitter (Window Size = 8)

Graph 2: Receiver (Window Size = 8)
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Graph 3: Transmitter (Window Size =16)

Graph 4: Receiver (Window Size = 16)
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9 Conclusion

I successfully implemented µTP in Linux 2.2.10. µTP provides reliable stream delivery. It
provides full−duplex connection between two hosts, allowing them to exchange large volumes of
data efficiently. µTP makes efficient use of the network by using a dynamic sliding window
protocol and flow control. It uses adaptive round−trip time calculation for retransmission timers.
It also uses slow start and multiplicative decrease to avoid congestion collapse. Measurements
show that the throughput of µTP is higher if it transmits larger blocks. They also show that µTP
performs well at window size 8, where it has higher throughput than TCP on the same network.
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