
A Rigid-Body Simulator

Chris Van Horn

– p.

What’s a Rigid-Body Simulator?

A rigid-body simulator calculates the positions and
orientations of a group of rigid bodies that may collide
with each other, over a given time span [4].

A rigid body is an object, in this case a sphere, that
experiences no deformations and no changes in size.

– p.

Demonstrations

Bouncing Sphere

Rolling Sphere/Sliding Sphere

Collisions

– p.

My Simulator Design

Based on the concept of a film projector

Each thread represents a major component of a film
projector.
Simulation Thread filmstrip generation
Rendering Thread light source and lens
Input Thread projector control

– p.

Simulation Thread

Steps taken by simulation thread:

1. Set initial state

2. Initialize materials

3. Initialize rigid bodies

4. Run simulation step

5. Write frame to reel

6. Check if simulation complete

– p.

Simulation Thread Flowchart

– p.

Set Initial State

Given its initial settings by the input thread
Number of time steps
Length of each time step
Gravity vector
Whether gravity is expressed as a force or an
acceleration
If the simulation should pause on object collision
Location of the materials file and the rigid-body file

The length of the simulation is determined by the
number of time steps.

– p.

Initialize Materials

Materials determine the friction of two objects when they
collide.

materials.txt contains the definitions of all materials.

The materials are organized in a table.

Example Materials Table

Material 1 Material 2 Static Kinetic

Rubber Rubber 1.5 1.0
Rubber Concrete 1.0 0.5
Rubber Steel 0.5 0.25

– p.

Initialize Rigid Bodies

objects.txt defines the rigid bodies in the simulation.

The following elements define a rigid body:
Type (sphere or plane)
Physical appearance (color and texture)
Initial position
Initial orientation
Type dependent attributes
Material composition
Center of mass
Initial force on the object

– p.

Run Simulation Loop

Heart of the simulator

Performs the following tasks for each iteration of the
loop:
1. Update simulation time
2. Update each rigid body’s location and orientation
3. Check for and classify collisions
4. Resolve collisions

– p. 10

Simulation Loop Flowchart

– p. 11

Update Locations and Orientations

Derive initial-value problems using Newton’s second law
[3]

Use F = ma to derive an initial-value problem for
updated velocity (v) and position (s)

vt+∆t = vt + F
m∆t, vt=0 = v0

st+∆t = st + vt+∆t∆t, st=0 = s0

Use M = Iω to derive an initial-value problem for
updated angular velocity (ω) and orientation (Ω)

ωt+∆t = ωt + M
I ∆t, ωt=0 = ω0

Ωt+∆t = Ωt + ωt+∆t∆t, Ωt=0 = Ω0

– p. 12

Check for Collisions

Use the geometric properties of the objects to test for
collisions

Sphere - Sphere collision
1. Compute distance (d) between the spheres
2. Compare d to the sum of the spheres’ radii (sr)

if sr > d, the spheres are overlapping
if sr = d, the spheres are touching
if sr < d, the spheres are not touching

– p. 13

Check for Collisions, Continued

Sphere - Plane collision

1. Verify that the sphere is above the plane, using the plane
normal

2. Compute the height of the sphere above the plane

3. Determine if the sphere and plane are
touching
not touching
overlapping

– p. 14

Check for Collisions, Continued

Assume rigid-body a and rigid-body b are touching

The relative velocity between rigid-body a and rigid-body
b is vr.

The normal from rigid-body a to rigid-body b is N .

We can classify the collision as follows [4]:
vr · N < 0, colliding contact
vr · N = 0, resting contact
vr · N > 0, separating contact

– p. 15

Resolve Collisions

Use the definition of an impulse force (J) and the
coefficient of restitution (R) to resolve the collisions [3]

J = m(v+ − v−)

R = −(va+−vb+)
va−−vb−

Rigid bodies involved experience an impulse force

Rigid-body a receives a positive impulse,
J = ma(va+ − va−).

Rigid-body b receives a negative impulse,
−J = mb(vb+ − vb−).

– p. 16

Resolve Collisions, Continued

Use the impulse equations and the coefficient of
restitution equation to calculate the results of the
collision

Solving for our three unknowns we have,

J = −vr(R+1)
1/ma+1/mb

va+ = va− + Jn
ma

vb+ = vb− + −Jn
mb

– p. 17

Resolve Collisions, Continued

Taking angular velocity and friction into account we have,

J = −vr(R+1)

1/ma+1/mb+(n·(ra×n

Ia
×ra))+(n·(

rb×n

Ib
×rb))

va+ = va− + Jn+µJt
m1

vb+ = vb− + −Jn+µJt
m2

ωa+ = ωa− + (ra × (Jn + µJt))/Ia

ωb+ = ωb− + (rb × (−Jn + µJt))/Ib

t = (n × vr) × n

Where n is the normal between the rigid bodies, I is the
moment of inertia, µ is the coefficient of friction, and t is
the unit vector tangent to the collision.

– p. 18

Resolve Collisions, Continued

Under resting contact we need to cancel out any forces
along the normal between the rigid bodies

This is to prevent rigid bodies from overlapping

– p. 19

Rollback

If we find two rigid bodies overlapping we have to
rollback to the beginning of the time step.

Compute a smaller time step value

∆tnew = ∆t/2

Restart the iteration of the simulation loop

– p. 20

Write Frame

After each iteration of the simulation loop, we write a
frame to the reel.

Only the physical representation of each object is written
to the frame.

– p. 21

Check for Completion

Performed after each iteration of the simulation loop

The simulation thread stops when:
1. It has completed the specified number of time steps
2. The user has requested that the program stop

– p. 22

Renderer Thread

Displays frames generated by the simulation thread

It performs the following steps:
1. Set initial state
2. Create rendering windows
3. Retrieve frame
4. Render all objects in the frame
5. Maintain timing
6. Check for completion

– p. 23

Renderer Thread Flowchart

– p. 24

Set Initial State and Create Windows

Initial settings given by the input thread
Number of renderers
Viewing frustum of each renderer
Camera position of each renderer
Type of each renderer

There can be a maximum of four renderers

Create a new window for each renderer

– p. 25

Retrieve a Frame

Retrieve the next frame from the reel

Information contained in the frame:
Length of time the frame should be rendered for,
targetT ime

Last frame flag
Pause flag
List of objects to render

– p. 26

Render All Rigid Bodies

Render each rigid body in each renderer

If the pause flag is set, the rendering thread pauses

Time how long it takes to render each frame renderT ime.

If renderT ime >= targetT ime, start rendering the next
frame

If renderT ime < targetT ime, sleep for
(targetT ime − renderT ime)ms

– p. 27

Check for Completion

Closes if the user has requested that the simulator stop

Pauses if the last frame flag has been set

When in pause state the thread sleeps for each iteration
of the loop

– p. 28

Input Thread

Retrieves and parses user input

It performs the following steps:
Launch subordinate threads
Launch GUI threads
Read and parse input
Carry out commands
Check for completion

– p. 29

Input Thread Flowchart

– p. 30

Launch Subordinate Threads

Read config.txt to get the required settings for the
other threads

Launch the simulation thread

Launch the renderer thread

Set the initial simulation state

– p. 31

Launch GUI Threads

Each GUI type inherits from GraphicalInterface

GraphicalInterface is an empty window

The subtypes are responsible for adding elements to the
empty window

Each subtypes operates in its own thread

– p. 32

Read, Parse, and Execute Input

The command-line interface and each GUI interface
listens input

The input value is looked up in a command map

Command Map

Input Command

quit SimulationState.setFinished()

help CommandLineInterface.help()

The matching command is called

– p. 33

Check for Completion

The input thread stops when the user requests that it
stop

When the user requests the simulator shutdown, the
simulation state is updated

Before completely shutting down, the GUI windows are
closed

– p. 34

New Technologies Learned

I learned some new technologies during the development of
the simulator.

OpenGL

Ant

Design Patterns

Java Generics

– p. 35

OpenGL

Used to present output of the simulation

The simulator uses JOGL [2].

JOGL is a binding layer between Java and OpenGL

– p. 36

OpenGL - Rendering a Square

GL gl = drawable.getGL();
gl.glBegin(gl.GL QUADS);
gl.glColor3f(1.0f, 0.0f, 0.0f);
gl.glVertex3f(-1.0f, 1.0f, 0.0f);
gl.glVertex3f(-1.0f, -1.0f, 0.0f);
gl.glVertex3f(1.0f, -1.0f, 0.0f);
gl.glVertex3f(1.0f, 1.0f, 0.0f);
gl.glEnd();

– p. 37

Ant

Build tool written in Java [1]

Uses XML for build files

Originally developed for the Tomcat project

– p. 38

Ant Example

<?xml version="1.0"?>

<project default="default" name="Rigid Body Simulator">

<description>

Build file for my rigid body simulator.

</description>

<property name="srcDir" location="src"/>

<property name="libDir" location="lib"/>

<target name="default" depends="rbs"/>

<target name="rbs_wall">

<mkdir dir="${libDir}"/>

<javac srcDir="${srcDir}" classpath="${libDir}" destDir="${libDir}">

<compilerarg value="-Xlint"/>

</javac>

</target>

<target name="rbs">

<mkdir dir="${libDir}"/>

<javac srcDir="${srcDir}" classpath="${libDir}" destDir="${libDir}"/>

</target>

</project>

– p. 39

Design Patterns

General solutions to common software problems [5]

Following design patterns were used:
Decorator Pattern
Factory Pattern
Singleton Pattern

– p. 40

Decorator Pattern

Allows the program to dynamically modify the behavior of an
object

– p. 41

Singleton Pattern

Ensures that only one instance of a class can be created
for the life of the program

SimulationState is a singleton

– p. 42

Factory Pattern

Allows the program to create an object without knowing
its exact class, until runtime

Simulator uses a factory to create different renderer
types

The exact type is not known until the file config.txt
has been read

– p. 43

Java Generics

Constitute an extension to the Java programming
language

Introduced in JDK version 1.5

Commonly used to specify the types of objects a
container can contain

Ensures compile-time type safety

– p. 44

Future Improvements

Organize rigid-body file

Selective rollback

Add different object types

Mount the camera to objects

Add a free-roaming camera

Fully simulate gravity

– p. 45

References
[1] Apache Ant Freqently Asked Questions, 2008. http://ant.apache.org/faq.html.

[2] The JOGL API Project, 2008. https://jogl.dev.java.net.

[3] David M. Bourg. Physics for Game Developers. O’Reilly Media Inc., 1005 Gravenstein
Highway North, Sebasopol, CA 95472, 2002.

[4] David H. Eberly. Game Physics. Morgan Kaufmann Publishers, San Francisco, CA 94111,
2004.

[5] Eric Freeman and Elisabeth. Head First Design Patterns. O’Reilly Media Inc., 1005
Gravenstein Highway North, Sebasopol, CA 95472, 2004.

– p. 46

	What's a Rigid-Body Simulator?
	Demonstrations
	My Simulator Design
	Simulation Thread
	Simulation Thread Flowchart
	Set Initial State
	Initialize Materials
	Initialize Rigid Bodies
	Run Simulation Loop
	Simulation Loop Flowchart
	Update Locations and Orientations
	Check for Collisions
	Check for Collisions, Continued
	Check for Collisions, Continued
	Resolve Collisions
	Resolve Collisions, Continued
	Resolve Collisions, Continued
	Resolve Collisions, Continued
	Rollback
	Write Frame
	Check for Completion
	Renderer Thread
	Renderer Thread Flowchart
	Set Initial State and Create Windows
	Retrieve a Frame
	Render All Rigid Bodies
	Check for Completion
	Input Thread
	Input Thread Flowchart
	Launch Subordinate Threads
	Launch GUI Threads
	Read, Parse, and Execute Input
	Check for Completion
	New Technologies Learned
	OpenGL
	OpenGL - Rendering a Square
	Ant
	Ant Example
	Design Patterns
	Decorator Pattern
	Singleton Pattern
	Factory Pattern
	Java Generics
	Future Improvements

