Design and implement an algorithm that, given a set of dimensioned quantities and units for the desired unknown, determines whether some multiplicative combination of the inputs can achieve the desired dimensions.

Paul Laurence Dunbar High School

Math, Science and Technology Center

Student, Solomon Alkhasov

University of Kentucky

Department of Computer Science

Professor, Raphael Finkel
Table of Contents

Introduction…………………………………………………………….2 - 5

Algorithm………………………………………………………………6 - 9

User Interface………………………………………………………....10 - 11

Acknowledgements…………………………………………………..12 – 13

Works Cited…………………………………………………………..14

I. Introduction

Objective

The primary objective of this research project is to create an algorithm that accepts a physics problem along with input values and computes the solution. After 360 hours spent on research, programming, debugging, and revising, this project has developed software and an associated graphical user interface that accomplishes the project objective.

Humans are impulsive, emotional and intuitional; unlike machines, we can love, hate, cry and laugh. One goal that programmers and software developers face is translating the concepts that humans easily grasp into a representation that can be coupled with a computer’s speed to efficiently solve a problem. The research, performed through the University of Kentucky Department of Computer Science and the Math Science and Technology Center at Paul Laurence Dunbar High School, deals with inventing and manipulating a way to represent elementary physics problems.

Take the following problem as an example:

A rocket is traveling at an initial velocity of 30 meters/second, accelerating 1 meter/second every second. If the rocket travels for 2.5 minutes, how far has it gone?

 To solve this problem by hand one would:

 1. Identify the given quantities:

· initial velocity = 30 m/s

· acceleration = 1 m/s2
· time duration= 2.5 min

 2. Identify the unknown variable:

· Distance = d meters

 3. Select an equation to fit both unknown and given variables,

d = (initial velocity)*(time duration) + .5*(acceleration)*(time duration)2

 4. Solve for the unknown.

In transferring the process humans use to solve physics problems, as in the example from above, into a form that has the capabilities of being both understood and manipulated by a computer, many ideas have to be dissected and reassembled into a more logical fashion. Such ideas include representing and storing the given quantities and unknowns, storing equations, selecting the appropriate equation, applying the equation to the quantities, and presenting the result.

Data Structures

In the following sections a complete algorithm that solves physics problems, like the example above, is presented alongside several versions of a user interface, two of which are graphical. Within these descriptions we often refer to two specific terms, dimensioned floats and dimensioned float groups. For this project, they are defined as follows:

1. A dimensioned float represents a real number along with its dimensions, specified by combinations of integer powers of distance, time and mass. For example, 3.5 meters/second is a dimensioned float (representing a velocity.)

2. A dimensioned float group is collection of dimensioned floats and an associated list of manipulating instructions. For instance, the formula F = ma can be manipulated by the instructions:

Accept a mass.

Accept an acceleration.

Multiply them.

When this list of instructions is associated with the mass 2.9 kg and the acceleration 4.1 m/s2 it forms a dimensioned float group.

Choice of Programming Language

During the early stages of the research project, I had to which programming language to use to code the data and algorithm. I chose Java because it is an object-oriented language. Real-world objects tend to have two fundamental qualities, condition and function. Cars have conditions, like color, shape, number of axles and model as well as functions, like acceleration, deceleration, playing the radio and honking. Java objects are conceptually analogous to real world objects in that they store their conditions in fields, or variables, and represent their functions through methods. The fields and methods are either public, in that methods not pertaining to that object can alter them, or private, in that only the method of an object can alter its fields ("What is an Object?").

There are a number of advantages to using an object-oriented language. First, all objects are reusable in that once the source code has been programmed for that object, then it can be imported and employed in another program. One can import complex, specialized objects into code without spending time and energy reprogramming them. Second, objects can be arranged hierarchically in various ways. For example, a car is an object that has its own fields and methods. A fleet contains cars but it has its own specialized methods that a car doesn’t. Both cars and trucks are specialized types of the more general class of motor vehicles.

II. Algorithm

Data Representation

[image: image1.png]In Java, an object of class dimensionedFloat has two fields, first, the dimension, an array that stores the powers of distance, time and mass, and, second, a floating point number that stores the real quantity (Figure 1). The dimensioned float standardizes all quantities appearing in physics problems. Regardless of whether the given value, say an acceleration, is in the Metric system in the British system, every acceleration is a distance raised to the 1st power and time to -2nd power, and is thus stored with an array of [1, -2, 0]. All objects of class dimensionedFloat are converted upon data-entry into specified internal units of the algorithm. Distances are converted and manipulated through meters, time through seconds, and mass through grams.

Dimensioned floats provide methods for manipulation, including multiplication, division, addition, subtraction, squaring and extracting the square root. Addition and subtraction with dimensioned floats requires that the dimensions of the two dimensioned floats are identical. A mass, [0, 0, 1], cannot be added to a distance, [1, 0, 0]. On the other hand, all other methods of dimensioned float manipulation require no specific dimensions of the two dimensioned floats. Thus:

1. (30 [1, -1, 0]) 2 = 900 [2, -2, 0]

2. (30 [1, -1, 0]) * (2 [2, -1, 1]) = 60 [3, -2, 1]

3. (30 [1, -1, 0]) + (60 [1, -1, 0]) = 90 [1, -1, 0]

4. (60 [3, -2, 1]) - (60 [1, -1, 0]) = ERROR

In Java, an object of class dimensionedFloatGroup has three fields: the dimension of the desired result, stored as a dimensionedFloat with known dimensions but unknown quantity; a collection of dimensioned floats, stored as a vector; and a set of instructions, stored as a string how to manipulate the known value to calculate the desired result. The string is in Polish postfix notation.

[image: image2.png]Polish- post- fix is reasonable for arithmetic algorithms because it employs a data structure called a stack. A stack is a last in, first out, data structure. As a Polish postfix string is read left to right, it places operands at the top of the stack and performs operations on the values at the top of the string, replacing them with results. An example of Polish- Post- Fix can be found in figure 2 (Shmitt, 2005). The algorithm tokenizes the string and recognized operand as strings. Dimensioned floats are referenced by a “$” symbol followed by the location of the dimensioned float in the array.

Two kinematics equations and the ideal gas law are hard coded into the algorithm as dimensioned float groups representing equations. A path of future research would be to expand the collection of known equations.

Dimensioned float groups provide certain methods for them in preparation for the final computation phase. These methods are responsible for adding and eliminating dimensioned floats, numerically arranging the dimensioned floats, comparing the dimensioned float group to known equations, executing computation through Polish postfix, and executing computation through recursion.

Data-Entry Phase

During the initial data-entry phase, the user may select from a wide variety of units are available; however, prior to implication of the algorithm, immediately upon data entry, the program converts all units into standard internal units: meters, seconds, and grams. After the algorithm has determined the solution in the internal units, the program converts it and presents it in the units the user prefers.

Continuing the example of the traveling rocket, data-entry algorithm would create the following dimensioned floats:

1. 30 [1, -1, 0]
{velocity of 30 meters/second}

2. 1 [1, -2, 0]
{acceleration of 1 meter/second2}

3. 150 [0, 1, 0]
{time of 2.5 minutes}

Computation Phase

Once the data-entry phase is complete, all information the user has presented is represented in a dimensioned float group, although without a manipulating formula. The algorithm then enters the computation phase. The dimensioned float group sorts the dimensioned floats first by the power of distance, next by the power of time and, last by the power of mass. It then attempts two methods of computation: by a known equation and by recursion.

Solving by known equation works by comparing the sorted list dimensioned floats, ignoring the quantities, to a list of known equations. If there is a known equation that employs quantities of the same dimensions and computes a result of the desired dimension, then its set of instructions, represented by a Polish postfix string, is placed in the dimensioned float group. This string is then executed with the given quantities, producing a result. Before presenting the result, the program converts it back into the units desired by the user.

The second method of computation uses an algorithmic technique called recursion that uses a function that calls itself, until an exit condition is reached, in order to accomplish a task. In my algorithm, recursion is used to raise every given dimensioned float to every power between -3 and 3 and multiply these values until the result matches the dimensions of the unknown. If a result is attainable, this method always arrives at one, but the answer is not always correct because it does not induce any constants.

III. User Interface

[image: image3.png]
In earlier stages of this program, I implemented a text-base interface to input the physics problem. After I completed the algorithm, I was convinced that the text-based input was neither understandable nor appropriate. A while loop ran until the user had no additional dimensioned floats, at which time the unknown is entered. The text-base interface prompts the user on results from solving by known equation and solving by recursion.
I implemented the first version of the graphical user interface using the Swing library. The user was expected to type powers of distance, time and mass into a form; text fields displayed the known equations, given data and results.

The current graphical user interface, shown bellow, incorporates drop down menus to lead the user through a process specifying inputs and the dimensions of the desired results along with the units. First, the user selects the system of units, either British or Metric. Next the user selects shorthands for the dimensions, such as, acceleration, velocity, time, distance, or mass. Further improvement to this interface includes populating the shorthands for dimensions like energy, force, work, current and heat. Then the user types in the quantity.

[image: image4.emf]
Works Cited

Schmitt, Stephen R. . "Using Reverse Polish (Postfix) Notation."

Reverse Polish Notation. 2005. 12 Mar 2007 <http:/

/home.att.net/~srschmitt/reversepolish.html>.

"What is an Object?" The Java Tutorials. 2006. Sun Microsystems

Inc. 9 Mar 2007 <http://java.sun.com/docs/books/

tutorial/java/concepts/object.html>.

� EMBED PBrush ���

� EMBED Word.Picture.8 ���

PAGE
1

[image: image5.png][image: image6.png]_1236582394

_1236582578.doc
[image: image1.png]

