Pseudo Distributed File System (PDFS)

Masters Project by

Rukmangathhan Balakrishnan

rukku@cs.uky.edu
Advisor: Dr. Raphael Finkel,

Department of Computer Science

University of Kentucky
TABLE of CONTENTS

2INTRODUCTION

Objective
2
Tools used
2
Background
2
Filesystem Overview
3
File Handle
3
Mount protocol
4
Replication policy
4
Consistency protocol
4
Update protocol
4
Communication Model
5
Design
6
Storage Site
6
File-handle cache
6
Service Requests
6
Flow Chart for Storage Site
10

11

12
Synchronization site
13
Registry Maintenance
13
Storage Site list
13
Access Requests
14
Flow chart for Synchronization Site
15
User Site
18
Communication between US and SS
18
Timing studies
19
CONCLUSION
21
Future Enhancements
21
Some proposals
21
Storage site failure
21
Creating a new SS
21
Access authorization
22
Learning Outcome
22
REFERENCES
23
APPENDIX A – Data Structures used
24
APPENDIX B – pseudo code for storage sites
27

INTRODUCTION

Objective

This document describes the design and implementation of a distributed file system in Linux. The Pseudo Distributed File System (PDFS) supports transparent access to files stored across the network. The file system is replicated in its entirety for better performance and higher availability than the NFS file system. PDFS borrows some ideas from LOCUS and NFS.

Tools used

All the module developments are in C on the Linux platform. PDFS uses TCP/IP for communicating between the machines.

Background

NFS: Sun Microsystems Inc. defines a remote file-access mechanism that allows a computer to run a server that makes some or all of its files available for remote access and allows applications on other computers to access those files. NFS provides the same operations on remote files that one expects to use on local files. An NFS server runs on a machine that has a local file system. The server makes some of the local files available to remote machines. An NFS client runs on an arbitrary machine and accesses the files on machines that run NFS servers. Often an organization chooses to dedicate a computer that has large disks to the server function. Such a machine is then called a file server. Dedicating one machine to serve all the clients makes that file server a single-point bottleneck. This bottleneck can be avoided by replicating the file server at different machines. But such a scenario introduces the problems of access synchronization and consistency maintenance among the replicas and PDFS attempts to address these issues. For complete details of NFS, refer to [1].

Locus: LOCUS is a distributed operating system that supports transparent access to data through a network-wide file system, permits automatic replication of storage, supports transparent distributed process execution, supplies a number of high-reliability functions such as nested transactions, and is upward-compatible with Unix. The system was developed at UCLA. For complete details, refer to [2].

PDFS combines the remote file-access mechanism of NFS and the mechanism of access synchronization of Locus.

Filesystem Overview

The PDFS file system supports a transparent global name space. The file system is replicated in its entirety for better performance and higher availability than the NFS file system. PDFS provides Unix semantics file-access and maintains consistency among the copies. PDFS categorizes the sites participating in the file system as User Site (US), Storage Site (SS) and Synchronization Site (CS), on the basis of their function.

· User Site (US): A site that issues access requests.

· Storage Site (SS): A site that contains a replica of the file system.

· Synchronization Site (CS): The site that enforces access synchronization for files in the file system and maintains consistency among the various copies of the file. There is only one synchronization site for the file system.

The administrator determines the number of SS’s. Each SS replicates the entire file system and registers with the CS for file updates. Each US mounts the file system by contacting the CS. One can attain a global name space by allowing all the US’s to mount the file system at the same mount point through an initialization script, as done by NFS clients.

File Handle

All access requests from the US to SS use a file handle to identify the file. File handle construction in PDFS is similar to NFS file handle construction. A file handle is 32 bytes long. The first 4 bytes specify the pseudo-inode number of the file obtained from the inode number and the device number where the file resides in the SS. The next byte specifies the length of the hashed path. The remaining 28 bytes of the file handle contains the hashed path of the file, where each byte specifies the hashed pseudo-inode number of the components of the file’s path name.

P
L
HP1
HP2
HP3
...

<-
 4 -> <-1-> <-1-> <-1->...

(in bytes)

 P – pseudo-inode of the file

 L – Length of the hashed path

 HP1,HP2, .. - Hashed pseudo-inode of the components of the file’s path name

For example,

Pseudo_inode(c) = 0xaaaaaaaa

Hashed_psi(‘/’) = 0xbb

Hashed_psi(‘/a’) = 0xcc

Hashed_psi(‘/a/b’) = 0xdd

Then the file handle for ‘/a/b/c’ in bytes is

0xaa0xaa0xaa0xaa0x030xbb0xcc0xdd0x00 ..

The file handle has meaning only in the SS where it is computed. The SS resolves the file handle into the absolute path name of the file. The hashed pseudo-inodes in the file handle are matched with the computed hashed pseudo-inode of each file entry in the directories starting from the root of the file system.

The SS also maintains a file-handle cache to speed up path computations from the file handle. The size of the file-handle cache is used as a metric to determine the load in the storage site.

Mount protocol

A US mounts the file system by contacting the CS. The CS on receiving a mount request polls the registered SS’s for their load. The CS then selects the SS with the least load to serve the mounting US. The CS also obtains the file handle of the root of the file system from the selected SS. This selected SS then becomes the primary SS for that US.

Replication policy

PDFS supports replication, thus improving availability and reliability in comparison to NFS. The unit of replication is the entire file system. When a file is created, the file is created in all the registered SS’s.

Consistency protocol

The consistency policy enforces Unix-semantics file consistency. The granularity for consistency is an entire file. During concurrent write sharing, the CS selects one copy as the primary copy. Then the SS that stores this primary copy serves all access requests for the file. When there are no more writers, the CS updates all the copies by a protocol described below.

Before it reads/writes from the SS, the US sends an open request to the CS along with the open mode. When an open for read request arrives at the CS, it registers the US for a callback. When the first open for write request arrives at the CS, the CS sends a callback to all the US’s that are registered. The copy of the file serving the writer becomes the primary copy. The callback to the readers includes the SS of the primary copy and the file handle of the primary copy. The US upon receiving a callback sets the received SS as the preferred SS for that file and directs all access requests to the preferred SS, the primary storage site serving the writer. All other arriving readers and writers are redirected by the CS to read/write from the primary server.

On closing a file, the US sends a close request to the CS. The CS removes the US from the list of registered US’s for the file. When there are no more writers, the CS sends an update message to all the registered SS’s. The update message includes the name of the file to be updated and the SS of the primary copy of the file. The CS then notifies the readers of the file to read from their primary SS. This design assumes that the update protocol can reliably update all the copies of the file.

Update protocol

The CS maintains a writers count for each file. When the writers count becomes zero, the CS sends an update message to all the registered SS’s other than the primary server of the file. The update request message includes the name of the primary server. Each SS upon receiving the update message connects to the primary server and sends an update request. The primary server sends the entire file to the requesting SS. The SS writes the received new contents to the file. The storage sites are designed as a single thread. Hence, when an SS is busy updating the file, it cannot serve any other request and thus ensures the consistency of the file being updated.

Communication Model

The communication model used is message passing. The sites exchange data by exchanging messages. TCP over IP is used for communication. There are four channels of communication,

· US to SS and back.

· US to SS and back.

· SS to CS and back.

· SS to SS and back.

1. A permanent TCP connection between each SS and the CS is set up during SS startup. It is used for sending polling, update and other common messages.

2. A permanent TCP connection between the US and the SS is set up during mounting. It is used for registering, canceling callbacks and dismounting.

3. A transient TCP connection is set up between the US and the SS. It is used for access requests and replies. The life of the connection is one access request and its reply.

4. A transient TCP connection is set up between the SS’s for requesting and receiving file updates.

Design

The following section discusses the data structure used by the storage site, synchronization site and user site. The below discussion also addresses communication between the sites.

Storage Site

Each SS in the file system replicates the file system in its entirety. The SS supports only regular files and directories. The SS is stateless, that is, it does not maintain any state about the access requests of the clients. For each file, the SS computes a unique file handle as described previously. Each access request includes the file handle and other information necessary to serve the request. The SS authenticates all the access requests. Access authentication is similar to Unix authentication using user id, group id and the access mode.

The SS maintains a file-handle cache for resolving the file handle into a corresponding absolute path name. The SS also maintains a TCP connection with the CS for receiving file-update messages, poll requests, and file/directory creation/deletion/rename requests.

File-handle cache

The cache is implemented as an array of cache entries indexed by the hashed code. A linked list of cache entries is used to deal with collisions in the hash table. The SS runs modified open source of the NFS server version-2.2beta31 developed by Mark Shand et al. I obtained the source code from the Internet. The SS runs in application space. I modified the original source to use TCP as communication mechanism instead of RPC and to interpret and execute the PDFS protocol.

Service Requests

The file access requests served by the storage site are

· create a directory/file

· read from a file/directory

· write to a file

· get/set the attributes of a file

· rename a file

· remove a file/directory

· lookup a file in a directory

· a null call used for performance measurement

The storage site provides the following functions.

NULL:

pdfsstat pdfs_null()

The null call does nothing. It is used to calculate the overhead involved in communicating with an SS and getting the response back. This call is only for the purpose of performance measurement.

All the following functions first authenticate the access request similar to Unix file authentication. The SS searches the file-handle cache to get the corresponding absolute path name of the file. If it is not present in the cache, the SS resolves the file-handle into a corresponding absolute path name as described earlier. The responses unless otherwise specified always include the status of the service request and the attributes of the file. Please refer to APPENDIX A for the definition of the data structures of the arguments and APPENDIX B for the pseudo code of each service routine.

GETATTR:
pdfsstat pdfs_getattr(pdfs_fh *argp, svc_req *rqstp, result *rslt)

The GETATTR service routine returns the file attributes corresponding to the request file handle. The SS resolves the file-handle into an absolute path name and retrieves the attributes using the lsat system call.

SETATTR:
pdfsstat pdfs_setattr(setattrargs *argp, svc_req *rqstp, result rslt)

The SETATTR service routine resets the attributes of a file given its file handle. The SS resolves the file handle into an absolute path name and changes the attributes of the file to the values given by the client using the setattr system call.

ROOT:
pdfsstat pdfs_root(pdfs_fh *argp, svc_req *rqstp)
The ROOT routine computes the root file handle. SS invokes this function when it receives a poll request from the CS to compute the root file handle.

LOOKUP:
pdfsstat pdfs_lookup(diropargs *argp, svc_req *rqstp, result rslt)
The LOOKUP service returns a file handle and the attributes given the file handle of the directory and the filename to be looked up in the directory. The SS computes the new file handle using the directory file handle and the name of the file. The SS authenticates the user’s access to the new file handle and returns the attributes for the file.

READ:
pdfsstat pdfs_read(readargs *argp, svc_req *rqstp, char *rdbuff, result *rslt)

The READ routine returns the contents of a file given the file handle, the file pointer position and the number of bytes to be read. The SS obtains the file descriptor corresponding to the file handle from the cache. If there is no cached file descriptor, it opens a new file descriptor for the file. The file pointer is set to the value given by the client. Then the SS reads the bytes from the file using the read system call and returns the bytes and the number of bytes read to the client.

WRITE:
pdfsstat pdfs_write(writeargs *argp, svc_req *rqstp, char *buffer)

The WRITE service routine writes data onto a file. It functions exactly as the READ service routine except that it writes instead of reading from the file.

READDIR:
pdfsstat pdfs_readdir(readdirargs *argp, svc_req *rqstp, result *rslt)

The READDIR routine reads the contents of the given directory. The SS opens the directory using the opendir system call and reads the entries using the readdir system call. The SS returns the entries and the count of entries to the US.

All the create/rename/remove requests to SS’s arrive from the CS. The US sends the request to the CS and the CS relays them to all the registered SS’s. The CS waits for the response from all the SS’s and relays the status of the request to the US. This design assumes that all the storage sites are listening and are consistent.

REMOVE:
pdfsstat pdfs_remove(svc_req *rqstp, char *dir_name, char *f_name)

The REMOVE routine removes a file from a directory. The CS sends the name of the file to be removed and the absolute path name of the parent directory of the file to all the registered SS’s. The SS’s use the remove system call to delete the file. The status of the operation is returned to the CS.

RENAME:
pdfsstat pdfs_rename(svc_req *rqstp, char *path_from, char *path_to)

The RENAME routine renames a file to another name in a directory. The CS sends the absolute path name of both the files to all the registered SS’s. The SS’s use the rename system call to rename the file. The status of the operation is returned to the CS.

MKDIR:
pdfsstat pdfs_mkdir(svc_req *rqstp, char *dir_name, char *f_name, sattr *attribs)
The MKDIR routine creates a new sub-directory in a directory. The CS sends the absolute path name of the directory and the name of the sub-directory to be created to all the registered SS’s. The SS’s use the mkdir system call to create the new sub-directory. The status of the operation is returned to the CS.

RMDIR:
pdfsstat pdfs_rmdir(svc_req *rqstp, char *dir_name, char *f_name)

The RMDIR routine removes a sub-directory from the given directory. The CS sends the name of the directory to be removed and the absolute path name of the parent directory to all the registered SS’s. The SS’s use the rmdir system call to remove the directory. The status of the operation is returned to the CS.

CREATE:
pdfsstat pdfs_create(struct svc_req *rqstp, char *dir_name, char *f_name, sattr *attribs)

The CREATE routine creates a new file in a given directory. The CS sends the name of the file to be created and the absolute path name of the parent directory of the file to all the registered SS’s. The SS’s use the open system call with the mode set to O_CREAT to create the file. The status of the operation is returned to the CS.

Flow Chart for Storage Site

[image: image1.wmf]

[image: image2.wmf]

Synchronization site

The CS enforces access synchronization for the files. The CS balances the load in the SS’s by distributing the load among the SS’s when a US mounts the file system. It maintains a registry to register all the US’s that access a file and sends callbacks to the registered US’s to contact the primary server for the latest version of the file. The CS also maintains consistency among the copies of a file.

Registry Maintenance

The CS maintains a registry of list of US’s reading a file. For each file it maintains a readers count, writers count, the primary server and the file handle for the file at the primary server. As long as the open request for the file is for read-only mode, all the registered US’s are allowed to contact the storage servers they were assigned while mounting. When a writer arrives, the CS sets the SS serving the writer as the primary server and sends a callback message to all the registered US’s to change their SS for the file to this primary server. When the CS receives a close request from a US, it removes the US from the list of registered US’s and updates the counters appropriately. When the writers count for a file becomes zero, the CS sends a revert message to all the registered US’s to revert back to their original SS and file handle.

The registry is an array of registry entries. Each registry entry contains the absolute path name of the file (from the root of the PDFS), the primary storage server (if any), the file handle for the file at the primary storage server, the readers count, the writers count, and the list of US’s currently registered for callback. The level of the file in the hierarchy is used to index into the registry array. Entries for files in the same level of the hierarchy tree are maintained as a linked list. For instance if the hierarchy tree is

/

Then,

Level 0 has the entry for ‘/’.

Level 1 has the entry for a, b, c. Level 2 has the entry for d and e.

Storage Site list

The CS maintains a list of SS’s for sending file updates. The SS upon initialization registers with the CS. The CS maintains this SS’s list and sends update requests to all the registered SS’s when the writers count of a file becomes zero. The CS uses the SS list to relay a few other requests from a US to all the registered SS’s as described below.

Access Requests

A US sends create/delete/rename requests to the CS. The CS relays the requests to all the registered SS’s. The SS’s carry out the request and reply with their status. Currently the design does not consider failed SS’s, so all the SS’s are assumed to be consistent and hence return the same status to the CS. The CS relays this status to the US.

Flow chart for Synchronization Site

[image: image3.wmf]

[image: image4.wmf]

[image: image5.wmf]

User Site

For each file, the US maintains a preferred file handle and a preferred storage server. Initially, the preferred storage server is set to the SS obtained while mounting, and the preferred file handle is set to the file handle for that file at that SS. On receiving a callback message, the US changes the preferred file handle and the preferred storage server to the primary file handle and the primary server provided by the synchronization site. On receiving a revert message, the US changes the file handle and the storage site to their original values.

The current implementation of the US site has the utilities necessary for demonstrating the file system functionality. Please refer to the appendix for information regarding the usage of the US utilities.

Communication between US and SS

The communication between the sites is in the form of TCP segments. End of data transfer is used as the message boundary. The US sends the request and shuts down the socket signifying nothing more to send from its side of the full-duplex connection. Similarly, the storage site sends the reply and closes the socket signifying the end of the segment.

Timing studies

I studied the time taken to frame, send and receive the response for each request. I repeated the test several times and the calculated the average time taken for each request. I also noted the load at the SS’s before executing each request. Some SS’s are loaded by running multiple instances of an infinite loop. I carried out the tests under two different setups. Test setup 1 is with two lightly loaded SS’s. There were no other user processes in the SS’s. Test setup 2 is with two lightly loaded SS’s and two heavily loaded SS’s. Of the two heavily loaded SS’s, one had 10 instances of an infinite loop and the other had 5 instances of an infinite loop. The SS’s are AMD K6/2 at 500 MHz (some are a bit slower). The CS is a Pentium II at 400 MHz. All the hosts run Linux version 2.2.16. All the hosts are interconnected in a 10Mbps Ethernet LAN. The timings are measured at the US. The request is assumed complete when a response is received for the request. The timing is compiled into a table and is presented below.

 Request Type
Average Time in microseconds

Test Setup 1
Test Setup 2

Mount
14642
26795

Lookup
7074
NA *

Create a file
16225
26809

Create a directory
16281
28645

Delete a file
16893
26118

Delete a directory
16532
27872

List a directory
6834
NA *

Rename a file/directory
16219
28583

Read 0 bytes from position 0
6633
NA *

Read 100 bytes from position 0
7024
NA *

Read 100 bytes from position 100
7255
NA *

Read 1 byte from position 1000
7275
NA *

Write 100 bytes from position 0
8188
NA *

Write 100 bytes from position 100
8052
NA *

Write 1 bye from position 1000
7445
NA *

* This test setup is not relevant because the test is independent of the number of storage sites in the file system.

I repeated the above tests with the local file system and the NFS file system deployed in the lab. I studied the time taken for each request and averaged the time. I studied the time taken by the local file system by accessing the “/tmp” directory which is local to the host. I studied the time taken by the NFS by accessing the NFS mounted file system. The implementation of the NFS client is in kernel and has a file cache. The NFS server runs as an application and also has file cache. I repeated the tests with two setups. In test setup 1 the host is not heavily loaded. In test setup 2 the host is loaded with ten instances of an infinite loop. The following table summarizes the timing for each request.

Request Type
 Average Time in microseconds

Local File System
 NFS File System

Test Setup 1
Test Setup 2
Test Setup 1
Test Setup 2

Create a file
583
592
2581
2666

Create a directory
435
469
2686
2716

Delete a file
395
404
2174
2284

Delete a directory
422
425
2335
2551

Rename a file/directory
605
607
2785
3256

Read 0 bytes from position 0
336
310
1506
2688

Read 100 bytes from position 0
333
330
1857
3277

Read 100 bytes from position 100
340
338
1904
4786

Read 1 byte from position 1000
343
322
1870
3808

Write 100 bytes from position 0
351
350
1828
3551

Write 100 bytes from position 100
363
348
1870
3844

Write 1 bye from position 1000
357
342
1872
4343

The above studies show that PDFS takes considerable amount of time to server a request in comparison the NFS and local file system. This is because all the framing and checking are done in the application space. I believe a considerable amount of time will be saved when the implementations become a part of the kernel.

CONCLUSION

The current version of the software implements all the functions described above. I performed the timing studies and believe that many improvements can be made to the existing software to enhance its performance.

Future Enhancements

· Currently fault tolerance issues are not considered. The robustness of the protocol should be increased to handle site failures and network failures.

· The US’s are not allowed to cache data blocks. A cache can be implemented at the US’s to enhance performance. To do so, a protocol has to be designed to validate the cached blocks with the SS. Cache coherence protocols from Andrew/Sprite file systems can be used for cache coherency.

· All the sites currently run in application space. They can be made to run in the kernel space for better performance.

· The US module can be integrated in the VFS of the Linux kernel as a registered file system.

· Additional system-administration tools can be developed for conveniently adding/deleting an SS.

Some proposals

Here are some proposals to handle fault tolerance issues in the file system.

Storage site failure

The design described above does not consider fault tolerance issues. It is possible that an SS intermittently becomes unavailable. Fault tolerance can be enhanced by the following protocol. In addition to the SS list, the CS maintains the state of each SS and the timestamp of the last successful communication with the SS. A storage site can be either active or inactive based on its connectivity to the CS. When the CS looses connectivity to an SS, it changes the state of the SS to inactive. The CS also maintains a history of events happening in the file system along with their timestamp. File/directory create, delete, rename, update are some typical events. When the SS comes back and registers with the CS, the CS sends all the events that have happened during the time for which the SS was inactive. The SS applies those changes and notifies the CS. The CS then changes the state of the SS to active, and makes it available for user access requests. The CS does not include an event to the history of events if it has been successfully communicated to all the registered storage sites.

Creating a new SS

A new SS can be created using the following protocol. The SS during initialization registers with the CS. The CS checks if the SS already exists in the SS list. If not present, the registering SS is a new SS and the CS adds the SS to the storage site list and sets the state of the SS to inactive. The CS then returns an SS address to the registering SS. The registering SS contacts the other SS and downloads the entire file system. After the complete download, the SS registers back with the CS. Now the CS follows the procedure as mentioned in the previous case.

Access authorization

Access authorization in PDFS can be achieved using the following protocol. The SS is run in privileged mode. The SS and the US have the same userid/groupid list. When a request arrives at the SS, the SS sets the current effective user id of the process to be the user id of the requesting user. Then it uses the access system call to verify the user’s accessibility of the file. The SS then reverts back to the privileged mode.

Learning Outcome

It has been a nice experience working on a big project involving complex design and implementation. I learned about various intricacies involved in a distributed file system. It was also very interesting to read and understand the flow of a huge software code like the NFS version-2 open source. I also learned the working of VFS in Linux.

REFERENCES

1. RFC 1094. NFS: Network File System, Sun Microsystems, Inc. 1989. Refer to http://www.ietf.org/rfc/rfc1094.txt?number=1094.

2. The LOCUS distributed operating system, Bruce Walker et al, ACM, 1983.

3. TCP/IP – Illustrated vol.1, Douglas Comer & David. L. Stevens, Prentice-Hall.

4. TCP/IP – Illustrated vol.3, Douglas Comer & David. L. Stevens, Prentice-Hall.

5. Linux Kernel Internals, Dirk Verworner, et.al, Addison Wesley.

6. Unix Network Programming, Richard Stevens.

7. System Manual for UNIX system calls.

APPENDIX A – Data Structures used

The data structure of the operation argument exchanged between SS and US

union gen_op_args{

struct readdirargs readdir_args; // readdir arguments

struct diropargs dirop_args; // directory operation arguments

struct getattrargs getattr_args; // get attributes of a file

struct readargs
 read_args; // read from a file

struct writeargs write_args; // write to a file

struct setattrargs sattrargs;
 // to set attributes of a file

struct op_result svc_result; // result of a service request

};

struct file_attributes {

u_short ftype;
 // file type

 uid_t uid; // id of the user

 gid_t gid; // group id of the user

 mode_t mode; // mode of the file

 time_t atime; // last access time

 time_t mtime; // last modified time

time_t ctime;
 // time of last change

u_int size;
 // size of the file

u_int nlink;
 // number of links

u_int blocksize; // size of each block

u_int blocks;
 // number of blocks

};

struct sattr {

 uid_t uid; // id of the user

 gid_t gid; // group id of the user

 mode_t mode; // mode of the file

 time_t atime; // last access time

 time_t mtime; // last modified time

 u_int size;
 // size of the file

};

struct diropargs {

pdfs_fh
dir_fh;

// directory handle

char name[PDFS_MAXNAMELEN];
// name of the file

};

struct diropres {

pdfs_fh
 fh;

// if status OK, file handle for the request

};

struct getattrargs {

pdfs_fh fh;
// file handle

};

struct readargs {

pdfs_fh fh;
// file handle of the file

u_long
offset;

// from where

u_long
howmuch;
// read count

};

struct readres {

u_long
count;

// read count

};

struct writeargs {

pdfs_fh
fh;
// file handle of the file

u_int
offset;

// from where

u_int
howmuch;
// write count

};

struct writeres {

pdfs_fh
fh;

// file handle

u_long howmuch;

// written count

};

struct readdirargs {

pdfs_fh
dir;
// directory handle

u_long cookie;
// directory may be big enough to have

// multiple packets. in such a case

// we need to maintain from where u want

// the readdir

};

struct readdirres {

u_long count;

// number of entries this result has

};

struct setattrargs {

pdfs_fh
fh;

// file whose attributes are to be set

sattr attributes;
// attributes to be set

};

struct op_result {
// every request returns the result code

fattr attr;

// attributes of the file.

pdfsstat status;
// status of the request

union {

 struct readdirres readdir_res;

 struct createres create_res;

 struct readres read_res;

 struct diropres dirop_res;

} rslt;

};

The data structures used by the Synchronization site are

Registry data structure

typedef struct cl_details {

 pdfs_fh fh; // filehandle for the file

 open_stat omode; // access mode

 char clnt_addr[16]; // client address in dotted-quad

 int sockfd; // socket for this mount

 char srvr_addr[16]; // storage server address in dot-quad

 struct cl_details *next; // next client

} cl_details;

typedef struct reg_entry {

 char *fname; // name of the file

 int writer_count; // number of clients in read/write mode

 int reader_count; // number of clients in read mode

 char primary_server[16]; // primary copy's site address in

 // dotted=quad

 pdfs_fh primary_fh; // primary copy's pdfs file handle

 cl_details *clients; // list of clients

 struct reg_entry * next; // next file in the same level

} reg_entry;

SS list data structure

typedef struct s_list {

 char ss_addr[16]; // address in the dotted-quad

 int sockfd; // socket to communicate with the storage server.

 struct s_list *next;

} s_list;

US – CS Message Format:

typedef struct acc_req {

 pdfs_fh fh; // file handle

 u_short mode; // mode for the file

 char ss_addr[16]; // synchronisation site address

 char fname[PDFS_MAXPATHLEN+PDFS_MAXNAMELEN+1];

 // name of the file

} acc_req;

typedef struct call_bk {

 pdfs_fh fh ; // old file handle

 pdfs_fh new_fh; // new file handle

 char ss_addr[16]; // new site address

} call_bk;

typedef struct cs_us_msg{

 u_short msg_code; // message code of the packet

 struct svc_req user_info;

 union {

 crargs cr_args;

 renargs ren_args;

 call_bk cbk_args;

 acc_req acc_args;

 pdfsstat status;

} args;

}cs2us_msg;

CS – SS Message Format

typedef struct updateargs {

 // args needed for file update

 char pref_srvr[16]; // pref server address.

 char fname[PDFS_MAXPATHLEN+PDFS_MAXNAMELEN+1];

} upargs;

typedef struct mntreply {

 pdfs_fh root_fh; // root file handle

 u_short load; // load in the file system

} mntreply;

typedef struct cs_ss_msg{

 u_short msg_code; // message code of the packet

 u_short cookie; // cookie to associate request & reply

 struct svc_req user_info;

 union {

 mntreply mnt_reply;

 upargs up_args;

 crargs cr_args;

 renargs ren_args;

 pdfsstat status;

 } args;

} cs2ss_msg;

APPENDIX B – pseudo code for storage sites

int pdfs_null(void)

{

return (0);

}

int pdfs_getattr(pdfs_fh *argp, svc_req
*rqstp,result *rslt)

{

pdfsstat status;

fhcache *fhc;

fhc = auth_fh(rqstp, argp, &status, CHK_READ);

return fhc_getattr(fhc, rslt);

}

int pdfs_setattr(setattrargs *argp,svc_req *rqstp,result rslt)

{

pdfsstat status;

fhcache *fhc;

char *path;

struct stat buf, *opt;

fhc = auth_fh(rqstp, &(argp->fh), &status, CHK_WRITE);

path = fhc->path;

if (lstat(path, &buf) < 0)

return errno;

status = setattr(path, &argp->attributes, &buf, rqstp, SATTR_ALL);

if (status != PDFS_OK)

return status;

return fhc_getattr(fhc, rslt);

}

int pdfs_root(pdfs_fh *argp, svc_req *rqstp)

{

int status;

status = fh_create(argp,export_root);

if (status == (int) PDFS_OK)

return (0);

return -1;

}

/*

 * Look up a file by name.

 */

int pdfs_lookup(diropargs *argp, svc_req *rqstp,result rslt)

{

pdfs_fh

*fh = &argp->dir_fh;

fhcache

*fhc;

pdfsstat
status;

struct stat
sbuf;

struct stat
*sbp = &sbuf;

int

ispublic = 0;

// authenticate the dir file handle

fhc = auth_fh(rqstp, fh, &status, CHK_READ)))

status = fh_compose(argp, &(dp->fh), &sbp, -1, -1, ispublic);

// as needed by the file handle cache compose

if (status != PDFS_OK)

return status;

fhc = auth_fh(rqstp, &(dp->fh), &status, CHK_READ);

return fhc_getattr(fhc, rslt);

}

int pdfs_read(readargs *argp, svc_req *rqstp, char *rdbuff,result *rslt)

{

int
fd, len;

pdfsstat status;

fhcache *fhc;

fhc = auth_fh(rqstp,argp->fh,&status,CHK_READ);

fd = fh_fd(fhc, &status, O_RDONLY)

lseek(fd,argp->offset, SEEK_SET);

if ((len = argp->howmuch) > PDFS_MAXDATA)

len = PDFS_MAXDATA;

res->count = read(fd, rdbuff, len);

return fhc_getattr(fhc,rslt);

}

int pdfs_write(writeargs *argp, svc_req
*rqstp, char *buffer)

{

pdfsstat status;

fhcache *fhc;

int fd;

fhc = auth_fh(rqstp, &(argp->fh), &status,CHK_WRITE);

fd = fh_fd(fhc, &status, O_WRONLY)

lseek(fd, (long) argp->offset, SEEK_SET);

// assuming here that buffer holds the data we should write completely

if(write(fd, buffer,argp->howmuch) != argp->howmuch)

return (pdfs_errno());

return fhc_getattr(fhc,rslt);

}

int pdfs_remove(struct svc_req *rqstp, char *dir_name, char *f_name)

{

 char pathbuf[PDFS_MAXPATHLEN+PDFS_MAXNAMELEN +1];

pathbuf = frame_absolutepath(dir_name);

if (*fname == '/')

 return PDFSERR_INVAL;

strcat(pathbuf, f_name);

 if (strlen(pathbuf) > PDFS_MAXPATHLEN)

 return PDFSERR_NAMETOOLONG;

/* Remove the file handle from our cache. */

fh_remove(pathbuf);

return unlink(pathbuf);

}

int pdfs_rename(struct svc_req *rqstp,char *path_from, char *path_to)

{

 char pathbuf1[PDFS_MAXPATHLEN+PDFS_MAXNAMELEN +1];

 char pathbuf2[PDFS_MAXPATHLEN+PDFS_MAXNAMELEN +1];

 char *sp1 = pathbuf1;

 char *sp2 = pathbuf2;

 // authenticate the user to access the two files

 pathbuf1 = frame_absolutepath(path_from);

pathbuf2 = frame_absolutepath(path_to);

/* Remove any file handle from our cache. */

 fh_remove(pathbuf1);

 fh_remove(pathbuf2);

 if (rename(pathbuf1, pathbuf2) != 0)

 return (pdfs_errno());

 return (PDFS_OK);

}

int pdfs_rmdir(svc_req *rqstp, char *dir_name, char *f_name)

{

 char pathbuf[PDFS_MAXPATHLEN+PDFS_MAXNAMELEN +1];

 // authenticate the user here for write/delete on the directory and

 // the file

pathbuf = frame_absolutepath(dir_name);

if (*fname == '/')

 return PDFSERR_INVAL;

strcat(pathbuf, f_name);

 if (strlen(pathbuf) > PDFS_MAXPATHLEN)

 return PDFSERR_NAMETOOLONG;

 /* Remove that file handle from our cache. */

 fh_remove(pathbuf);

 if (rmdir(pathbuf) != 0)

 return (pdfs_errno());

 return (PDFS_OK);

}

int pdfs_mkdir(svc_req *rqstp, char *dir_name, char *f_name, sattr *attribs)

{

 char pathbuf[PDFS_MAXPATHLEN+PDFS_MAXNAMELEN +1];

 // authenticate the user to create a file in the directory here

pathbuf = frame_absolutepath(dir_name);

if (*fname == '/')

 return PDFSERR_INVAL;

strcat(pathbuf, f_name);

 if (strlen(pathbuf) > PDFS_MAXPATHLEN)

 return PDFSERR_NAMETOOLONG;

 if (mkdir(pathbuf, ntohl(attribs->mode)) != 0)

 return (pdfs_errno());

 return PDFS_OK;

}

int pdfs_create(struct svc_req *rqstp, char *dir_name, char *f_name, sattr

*attribs)

{

 char pathbuf[PDFS_MAXPATHLEN+PDFS_MAXNAMELEN +1];

 int tmpfd, flags;

 struct stat sbuf;

 // authenticate the user to create a file in the directory here

pathbuf = frame_absolutepath(dir_name);

strcat(pathbuf, argp->where.name);

if (*fname == '/')

 return PDFSERR_INVAL;

if (strlen(pathbuf) > PDFS_MAXPATHLEN)

 return PDFSERR_NAMETOOLONG;

 exists = lstat(pathbuf, &sbuf) == 0;

 // exists will be one if the file already exists

 // in such a case we truncate the file

 flags = CREATE_OMODE | O_TRUNC;

 if (!exists) flags |= O_CREAT;

 /* creat() is equivalent to open(..., O_CREAT|O_TRUNC|O_WRONLY) */

tmpfd = path_open(pathbuf, flags, ntohl(attribs->mode));

 if (tmpfd < 0)

 goto FAILURE;

 fstat(tmpfd, &sbuf);

if (!exists) {

 attribs->gid = -1;

 status = setattr(pathbuf, attribs, &sbuf, rqstp, SATTR_ALL & ~SA

TTR_SIZE);

 } else {

 status = setattr(pathbuf, attribs, &sbuf, rqstp, SATTR_SIZE);

 }

 if (status == PDFS_OK)

 return status;

FAILURE:

 if (tmpfd != -1)

 close(tmpfd);

 return (errno? pdfs_errno(): status);

}

int pdfs_readdir(readdirargs *argp, svc_req *rqstp,result *rslt)

{

 struct readdirres *res = &result.rslt.readdir_res;

 struct dirent **namelist;

 struct stat sbuf;

 fhcache *h;

 pdfsstat status;

 char *buf_ptr;

 int i;

 *nbytes = 0;

 h = auth_fh(rqstp, &(argp->dir), &status, CHK_READ);

 if (h == NULL) return status;

 if (lstat(h->path, &sbuf) < 0 || !(S_ISDIR(sbuf.st_mode)))

 return (PDFSERR_NOTDIR);

 res->count = scandir(h->path,&namelist,0,alphasort);

 buf_ptr = *buffer = (char *)malloc(res->count*PDFS_MAXNAMELEN);

 for(i = 0; i < res->count; i++) {

 sprintf(buf_ptr, "%s *",namelist[i]->d_name);

 buf_ptr += strlen(namelist[i]->d_name) + 2;

 *nbytes += strlen(namelist[i]->d_name) + 2;

 }

return PDFS_OK;

}

 	 CS

/

a

 US

 US

 SS

 SS

b

c

d

e

 Start

Get the CS address and Root of the

Exported file system.

Make a permanent TCP connection to CS (synch_sock), Create a socket and listen to US access requests (serv_sock), Create a socket and listen for update requests (update_sock).

If synch_sock

Select a socket that is ready for reading.

If serv_sock

Process

Service request

If update_sock

End of request

Process

Synch request

If mount req

If update req

If create file

If create dir

If remove file

Respond with load and root file-hanlde

Rename the file and return the status to CS.

Remove the dir and return the status to CS.

Create the file and return the status to CS.

If remove dir

If rename

Create the dir and return the status to CS.

Remove the file and return the status to CS.

Process

Synch request

Process

Service request

Get the filename, read the contents and send the contents to the requesting SS.

Y

End of request

Accept the connection from an US (new_sock)

Get the service request from the US.

Make a TCP connection to the primary server of the file.

Serve the US request based on the message id.

Send the response to the US and close the connection

End of request

Send the update request.

Get the new contents for the file from the primary server

Write the new contents to the file and close the connection

End of request

 Start

Create a socket and listen to mount requests (mount_sock)

Create a socket and listen to SS registers (synch_sock)

Select a socket that is ready for reading.

If mount_sock

Accept the connection and add to the list of ready sockets and US.

Send poll requests to all registered SS’s.

Get poll replies and select an SS with least load.

Send the SS address and the root file handle to the US.

If synch_sock

Accept the new storage site and add to list of registered SS’s.

Process

User request

Process

User request

If register request

If read only mode request

Register the client. Update the readers count.

If writer already

Send callback with primary server address and primary file-handle to the US.

Back to ready

Back to ready

Set this sites storage site and the file-handle as primary storage server and primary file-handle

Other

Request type

Other

Request type

If writer already

Update writers count

Send Register OK to US.

Send callback to all the

Registered clients.

If unregister request

Update readers/writers count and the callback list appropriately.

If writers count = 0

Send update request to all registered SS’s other than the primary server.

Send unregister ok to the US.

Back to ready

If unmount request

Clean up the registry and close the socket

User site has sent a create/delete/rename request. Relay the request to all the Registered SS’s.

Get the reply from all the SS and relay it to the US.

Process

Update request

Y

Y

N

N

N

Y

Y

Y

Y

Y

Y

Y

N

N

N

N

N

Process

Update request

N

N

Y

Y

N

Y

Y

Y

Y

N

N

Y

Y

N

Y

N

Send revert request to all registered US’s

N

17
2

_1021454975.doc

_1021460555.doc

_1021462596.doc

_1021458278.doc

_1021451730.doc

