
1

Logic Puzzle Solver

University of Kentucky

Fall 2012 Masters Project Document

Darra Ricks

INTRODUCTION

The Logic Puzzle Solver (LPS) is a web application that serves as an aid for performing

the deductive reasoning necessary to solve logic puzzles and problems. This program allows the

user to create a custom logic grid and deduces information based on logic clues entered by the

user. Logic Puzzle Solver can solve most puzzles of standard size and structure.

The size of a logic puzzle is C *P where C = Number of Categories and P = Number of

Options. A common size for logic puzzles is (5x5). For example, a puzzle with five categories

such as (NAME, VEHICLE, JOB, AGE, and PET) and five options within each category would

be considered a 5x5 logic puzzle. The NAME category, for example, could contain the five name

options ("Joe", "Darra", "Jim", "Ansean" and "Keshia"). Puzzles of this size are usually ranked

with a medium to high level of difficulty. Puzzles of smaller sizes are generally ranked with a

difficulty level of medium to low. Standard logic puzzles contain an equal number of options for

each category. Enthusiasts often solve logic puzzles by building a grid, as shown in Figure 1.

This figure also defines the terms used in this document for the fundamental components of a

logic puzzle.

2

True Block

False Block

FIGURE 1

Category: A category is a set of options. Every category contains the same number of options.

Grid Block: Each grid block corresponds to an option pair. A grid block can be marked true, false or blank. A red
(false) grid block that corresponds to options {Jim, 38} means that NAME: Jim IS NOT AGE: 38. A green (true) grid
block that corresponds to options {Chevy, Snake} means VEHICLE: Chevy IS PET: Snake.

Grid Region: A grid region contains (P2) grid blocks. Each grid region corresponds to an individual pair of categories.
Each pair of categories is associated with exactly one grid region. The highlighted grid region below corresponds to
Category 2 and Category 3 {Vehicle, Job}.

Null Block

3

HOW TO USE LPS

LPS has been written completely in Java as an applet. It executes in a Web browser with

Java compatibility or in a Java applet viewer. If using a web browser, the user must first grant the

application rights to access their machine’s local file directory in order for the application to save

or open an existing logic puzzle file. The file extension for each logic puzzle file LPS generates

is (.lps). The user can grant LPS access rights after seeing the digital certificate the web browser

presents upon initialization of the applet. A sample Firefox warning security message is shown

below:

By clicking the run button the user agrees to trust LPS.

After access is granted, the Home Screen of the application appears. In the Home Screen the user

has three choices:

1. Open an existing logic puzzle grid

2. Create a new logic puzzle grid

3. Exit

4

Create a New Logic Puzzle Grid

LPS prompts the user to enter the number of categories and number of options for the puzzle to

be solved. Next, the user enters the names of the categories and the names of the options in each

category. LPS then generates a blank logic grid based on this information. Below are screen

shots of these steps.

1. Click “Create New Grid”

2. Enter the number of categories and the number of options and then press “Next”

5

3. Enter the category names and then press “Next”.

4. Enter the option names for each category and then click “Next”.

6

Grid Screen Functions

Undo

- Undo the last change to the logic grid. LPS keeps a stack of actions in order to undo

multiple actions.

Redo

- Redo the last undo change to the logic grid. LPS keeps a stack of actions in order to redo

multiple actions.

Step Solve

- Deduces new information from the selections currently in the logic grid and updates the

logic grid based on this new information

All Solve

- Attempts to solve the entire logic puzzle based on the selections currently in the logic

grid

Reset

- Clear all relationships chosen on grid by setting every grid block to blank

Exit to Home Screen

- Prompts user to save current puzzle and navigates to the Home Screen

Save

- Save current puzzle to a Logic Puzzle Solver .lps file

Grid Button

- Each grid button has three different settings: blank (gray), false (red), true (green).These

settings change by clicking the grid button multiple times.

7

Clue Builder Functions

In order for LPS to aid in solving a given puzzle, the user must enter the known facts or

clues of the puzzle. From these clues, LPS deduces information and represents this information

in the logic grid interface. Enter clues using the clue builder interface pictured in Figure 2. The

Clue Builder is on the main grid screen on the far right hand side as shown on page 5.

FIGURE 2: Clue Builder Interface

8

To enter a clue, select the first category from the Category 1 dropdown box, then select

the option from the Option 1 dropdown box. Next select an operation from the Operation drop

down box. The available operations to select from are IS (=) and IS NOT (!=). Next, select the

Category 2 option, then click the Add Clue button. Once the Add Clue button is pressed, the

string version of the clue is added to the clue bank.

The clue builder interface can also be used to build composite clues like “Jim IS in the

Condo AND he does NOT own a rat”. To create a composite clue, choose AND or OR from the

AND/OR drop down box and then click the Add Category button. When the Add Category

button is pressed, an additional row of category and option drop-down boxes appears. Choose the

correct category and option and press the Add Clue button. The clue builder allows the user to

create composite clues up to six categories long. Add all necessary clues to the clue bank and

press the Apply Clue button to apply these clues to the logic grid.

HOW IT ALL WORKS

Grid Structure

Four Java classes implement the logic grid:

1. Block

2. Grid Region

3. Main Grid

4. Clue

Block (block.java)

The block object is a single grid block, which can be true, false or blank. This object can

return and set its own (true/false/null) value. Also, it can return its grid location. The grid

location is the number of the row and column the block belongs to in the grid region.

9

Grid Region (gridblock.java)

The grid region object contains a two-dimensional array of grid block objects. The

object’s constructor takes the number of options in each category, as input, which allows it to

allocate a sufficient number of grid block objects upon initialization. The grid region object

contains two primary methods: Auto Complete and Reset. The Auto Complete method sets all

blocks in the same row and column as a true block to false. The reset method sets all blocks in

the grid region object to null.

Main Grid (maingrid.java)

The main grid object contains a 2-dimensional jagged array of grid-region objects. This

object contains (C-1) rows of grid regions. The number of grid regions in each row r is C - r.

For example, a four-category main grid object has three rows of grid regions: 3 grid regions in the

first row, 2 grid regions in the second row and 1 grid region in the third row. The main grid

object contains methods to save the logic grid to a file, reset the entire grid, undo and redo recent

changes to the grid, deduce new information from existing information selected in the logic grid

and exit to the homepage of the application.

Clue (clue.java)

 This object represents a clue entered by the user through the clue builder. A clue consists

of the following: a base category, base option, an IS/IS NOT Boolean choice and at least one

additional category/option pair. The base category/option pair is the component of the clue which

all other category/option pairs in the clue build upon.

For example, in the clue:

“John IS NOT tall” = (PERSON, John) IS NOT (CHARACTERISTIC, Tall)

The base category is PERSON and the base option is John. Additional category 1 is

CHARACTERISTIC and additional option 1 is Tall. Therefore, the pairs (PERSON, John) and

(CHARACTERISTIC, Tall) are created. The boolean choice in this clue is “IS NOT”.

10

Additional categories are used for composite clues, such as:

”John is NOT tall or obese or from KY”

The additional categories vector component stores these additional categories. Every composite

clue must use an AND or an OR Boolean option. In LPS, OR is inclusive when it appears with

IS NOT and exclusive when it appears with IS.

For example:

“John is NOT tall or obese or from KY” = (PERSON, John) IS NOT (CHARACTERISTIC, Tall)

OR (CHARACTERISTIC, Short) OR (STATE, KY)

A clue can be either pending or active. An active clue’s information can be entered immediately

into the logic grid. Pending clues cannot be applied to the grid immediately because they require

more information, because they are composite.

An example of a pending clue is as follows:

“John IS tall OR from KY OR drives a Mazda”

More information is needed before this clue can be applied because IS/OR means John is exactly

one of the options listed. As more information is entered into the logic grid, pending clues are

updated. If the user enters into the grid “John IS NOT tall”, then LPS removes

(CHARACTERISTIC, Tall) from the pending clue’s additional category and additional options

vectors. Once the pending clue has only one category/option pair remaining, the clue becomes

active and can be applied to the grid.

Another component of the clue object is the associate clue vector. The associate clue vector

applies when all the additional categories in an IS/OR composite clue are the same.

For example:

“John is tall or obese or short”

 All these option choices come from the same category CHARACTERISTIC. Therefore,

LPS derives that John IS NOT the remaining unlisted options within this category. If the

CHARACTERISTIC category contains options (obese, tall, short, stocky and slim), LPS derives

11

that “John IS NOT stocky OR slim”. This derived clue is an associate clue to the main clue “John

is tall or obese or short”. Associate clues are active and are applied immediately to the logic grid.

Finally, the clue object is serializable, so LPS saves it to a file in its current instance state. When

the user presses the Save Grid button, LPS creates a file containing a list of all the clue instances

in the current grid. The file extension of the clue data file is .clue_data and the file name is the

same file name as the logic puzzle solver file (.lps).

Grid Solving Logic

The logic grid is solved by propagating equality relations as in the following:

A = B, B = C => A = C

Here, = means that the entity with option A (in its category) is the same as the entity with option

B (in its category). For example, if we have a simple four-category puzzle to solve with four

options in each:

Person Place Thing Pet

Jim Condo Thing_1 Cat

Joe House Thing_2 Dog

Mike Trailer Thing_3 Rat

Jimmy Tent Thing_4 Mouse

And the given facts are:

Jim = Thing_3, Jim != House and Jim != Cat

Propagation deduces that since Jim = Thing_3 then Thing_3 must also not be equal to House and

Cat so:

Jim = Thing_3 => Thing_3 !=House and Thing_3 != Cat

Say we also know another fact:

Thing_3 = Trailer

 this means,

Thing_3 = Trailer => Trailer = Jim and Trailer !=Cat

12

LPS solves logic grids by propagating existing information to corresponding category regions

horizontally and vertically.

During vertical propagation LPS examines each row of every grid region for true blocks.

A true block means that an option from a category 1 is equal to an option from a category 2.

Since option1 = option2, every (true/false) choice in option 1 propagates to the blocks in the

option 2 row and every (true/false) choice in the option 2 row propagates to the option 1 row.

Also, every blank block in the same row or column as the true block at hand is set to false.

Next, each row in every grid region is examined for false blocks. If a false block is found, an

option from a category 1 is NOT equal to an option in a category 2. Therefore, if there are any

true choices in the corresponding rows for option 1 (from category 1), these need to be set to false

in the corresponding rows for option 2.

FIGURE 3: Example 1 of Vertical Propagation in Logic Grid

2B = 1B , 2B !=3A, 2B != 3C => 1B != 3A 1B != 3C, 1B != 2A, 1B != 2C

FIGURE 4: Example 2 of Vertical Propagation

2B != 1B, 2B=3B => 3B !=1B

13

Horizontal propagation is similar to vertical propagation, but instead of examining the rows

within the grid regions, horizontal propagation examines each column. The deduced information

propagates across to the corresponding columns instead of rows.

FIGURE 5: Example 1 of Horizontal Propagation

2B = 3B, 2B != 1A, 2B != 1C => 3B != 1A, 3B != 1C

FIGURE 6: Example 2 of Horizontal Propagation

2B != 3B, 3B = 1B => 2B !=1B

14

LPS also recognizes conflicts in the logic grid. Figure 7 demonstrates an example of such a

conflict.

In the illustration, 2B = 1B, 2B != 3A and 2B!=3C => 1B !=3A, but the grid says that

1B = 3A. This is a conflict and the application always notifies the user of such conflicts.

LPS also automatically recognizes obvious falses that derive directly from a truth choice.

For example, if Jim = Cat, then Jim != Dog, Rat or Mouse. By recursively performing the above

horizontal and vertical propagation and resolving logical conflicts, LPS solves most logic puzzle

grids completely.

Demonstration Example

To demonstrate the functionality of this application, we turn to a logic puzzle entitled “Lazy Final

Saturday” from http://www.braingle.com/brainteasers/45491/lazy-final-saturday.html. The puzzle

is as follows:

The Saturday after final's week, five roommates were feeling lazy. So they decided to wake up

late, eat breakfast, read a book, and then watch a sport on the TV. From the clues given can you

determine who ate what breakfast, the book they read, and the sport they watched.

1) Sam White watched soccer, while the basketball watcher had crepes.

2) Adam Brown read The Shack.

3) Edward Black had toast for breakfast; he didn't read The Host or watch football.

FIGURE 7: Example of Conflict in Logic Grid

2B = 1B, 2B != 3A, 2B!=3C => 1B !=3A

15

4) Fried eggs and 206 Bones took up most of the morning of one of the roommates, but not Sam

5) The reader of Spartan Gold did watch football.

6) The reader of The Host didn't eat pancakes, and the reader of the A Princess of Landover didn't

watch baseball.

STEPS

1. Navigate to application http://www.drickslogicpuzzlesolver.com/LogicPuzzle.html

2. Click the Launch Logic Puzzle Solver link

3. Click the Create New Grid Button

4. Enter the number of categories and options. This puzzle has 4 categories and 5 options.

5. Press the Next button

6. Enter the Category names (Name, Sport, Book, Breakfast)

7. Press the Next button

8. Enter the following option names in the corresponding text fields.

Name Sport Book Breakfast

Russell Soccer 206 Bones Crepes

Sam Swimming The Host Pancakes

Chris Football A Princess Waffles

Adam Baseball The Shack Toast

Edward Basketball Spartan Gold Fried Eggs

16

9. Press the Next button to navigate to the main grid screen

17

10. Enter the following clues into the logic grid using the Clue Builder User Control

Each of the following clues can be broken down into multiple clues for entry into the Clue

Builder. After entering a clue, press the Add Clue button.

Clue 1

 Sam White watched soccer, while the basketball watcher had crepes.

- Sam IS Soccer

- Basketball IS crepes

Clue 2

Adam Brown read The Shack.

 Adam IS The Shack

Clue 3

Edward Black had toast for breakfast; he didn't read The Host or watch football.

- Edward IS toast

- Edward IS NOT The Host OR football

Clue 4

Fried eggs and 206 Bones took up most of the morning of one of the roommates, but not Sam

White or Russell Green.

- Fried eggs IS 206 Bones

- Sam IS NOT fried eggs OR 206 Bones

- Russell IS NOT fried eggs OR 206 Bones

Clue 5

The reader of Spartan Gold did watch football.

Football IS Spartan Gold

Clue 6

The reader of The Host didn't eat pancakes, and the reader of the A Princess of Landover didn't

watch baseball.

- The Host IS NOT pancakes

- A Princess IS NOT baseball

11. Add all clues to the Clue Builder clue bank, then press the Apply Clues button.

18

12. Press the All Solve Button, and LPS should solve the entire puzzle completely.

The solution to the example puzzle is as follows

Name Sport Book Breakfast

Russell Football Spartan Gold Pancakes

Sam Soccer The Host Waffles

Chris Baseball 206 Bones Fried Eggs

Adam Basketball The Shack Crepes

Edward Swimming A Princess Swimming

Pending and Associate Clue Demonstration

Person Place Thing

Jim KY Bottle

Keshia OH Mouse

Sally GA Phone

Roger FL Pencil

As mentioned earlier, LPS handles certain clues that require more information before being

applied to the logic grid. To demonstrate this function, create a new grid based on the three-

category table above. Use the Clue Builder to enter the following IS/OR composite clue:

“Keshia IS KY OR Bottle OR GA OR Pencil”

Click the Apply Clues button. Notice that LPS does not select any grid blocks that correspond to

this clue. The clue cannot apply immediately since it is an IS/OR clue composed of two different

categories Place and Thing.

Now set the false grid blocks that correspond to:

“Keshia IS NOT KY”

“Keshia IS NOT Pencil”

“Keshia IS NOT GA”

And press the Step Solve button

19

The selection “Keshia IS Bottle” should now appear in the logic grid, which means LPS has

applied the pending clue to the logic grid, since there is no more information to be obtained for

the clue.

Press the Reset Grid button and delete all clues in Clue Builder clue bank by clicking the clue

entry and pressing the Delete Clue button. Now to demonstrate the associate clue functionality

enter the following clue into the logic grid using the Clue Builder control.

“Keshia IS GA OR KY”

Apply this clue to the logic grid by pressing the Apply Clues button. Notice how the grid blocks

that correspond to “Keshia IS NOT FL” and “Keshia IS NOT OH” are selected in the logic grid.

This is an example of an associate clue. Since Keshia can only be either GA or KY the associate

clue formed is:

“Keshia IS NOT FL OR OH”

LESSONS LEARNED

Since this was my first time working with a project that required an extensive user

interface, I learned about general user interface principles such as structure and visibility.

Structure requires an organized and meaningful user interface design laid out in such a way that it

is apparent to the users where functionality is located. Visibility means a user interface in

which all necessary user components for a task are evident, visible and distinguishable

from any user components that are unnecessary for a given task.

I wrote and organized the project source code using the Netbeans Integrated

Development Environment. Therefore, I learned how to manage a project of significant size using

this development environment. Netbeans provides a user-friendly interface for a forms designer,

which is quite useful for basic form creation. This project also enhanced my knowledge of Java

object oriented programming and the Java Swing Library.

Another new process I learned was “signing” a Java applet. For its saving functionality,

the applet accesses the file directory of the users machine through a web browser. The signing

process begins by first packaging the applet’s classes in a .jar file. A JAR file (Java Archive) is a

compressed file which can contain many files, such as all the classes and data needed for the

20

applet. Compressing a java application’s class files into a single JAR makes it easier to distribute

the application. Once the applet’s jar file is created, a public/private key pair must be generated

using the keytool utility provided by the Java Sun Development kit. An applet can be self signed

by the developer or it can be signed by a Certificate Authority. For self signing, the keytool

utility generates a private and public key based on an alias name and password provided by the

developer or Certificate Authority. This key is stored in a file called a keystore file. After the

keystore file is generated, a digital public certificate must be associated with the keystore file. A

digital certificate is a statement signed digitally using the alias and password for the keystore file.

Finally, the JAR should be signed using the signed certificate and the public/private key pair

contained within the keystore file. The jarsigner tool, which performs this task, is also provided

by the Java Sun Development Kit. Jarsigner uses the private key from the keystore file and a

unique string of bits from data within the JAR to create a digital signature. Jarsigner signs each

file within the JAR file with this signature and the “signing” process is completed.

CONCLUSION

One of the major limitations of LPS is that the user interface is configured to handle logic

puzzles with no more than 6 categories and 6 options. Although logic puzzles of sizes larger than

6 x 6 are uncommon, it would be interesting to be able to create and solve larger logic puzzles

with LPS. Also, since the level of difficulty increases with the size of the logic puzzle, there is a

greater need for the aid of this application to solve puzzles of larger size. The size of the puzzle

is limited mainly due to time constraints of this project. A puzzle of a larger size than 6x6 would

create a larger grid than the current configuration of the user interface can handle.

Many logic puzzles have clues that specify quantities and how much a certain option 1 is

greater than or less than another option 2. Take for example a puzzle with categories PERSON

(Ansean, Gloria, Darra, Troy), WEIGHT (150 lbs, 180 lbs, 233 lbs, 152 lbs), POSITION (1,2,3,4)

and AGE (23,33,40,17). An example clue for this type of logic puzzle would be “Ansean is

heavier than the person who is standing two positions to the left of a person who is heavier than

Gloria”. LPS cannot process clues based on quantities. To implement this functionality, program

LPS to flag numeric quantities prior to generating the logic grid. Either the user or LPS itself

could set this numeric flag. Once the categories are marked as numeric, then some type of

quantity comparison mechanism must be implemented in the deductive reasoning algorithm of

the application. The numeric operators <, >, = and +/- (a numeric amount) should be included in

the clue builder interface.

21

The (+/-) operation would be used to process clues such as:

“Bill is 7 years older than Tom”

(PERSON, Bill) +(AGE,7) (PERSON, Tom)

 It also would be beneficial to add a MATCH clue type to LPS. Add the category

SPORT(Swimming, Basketball, Baseball, Tennis) to the example puzzle This MATCH clue type

would handle clues such as “Troy and Gloria are, in some order, the swimmer and the person who

is 23 years old”. The MATCH clue type would signal LPS to exclude all other PERSON options

except Troy and Gloria to match with option SPORT(swimming) and AGE(23). Another feature

that could be added to the application is a logic puzzle database so that the user can simply load

an existing puzzle instead of using a logic puzzle from an outside source such as a book or the

internet. Enhancing this application to include such functionality would definitely be

advantageous because it would decrease the level of work for the user.

22

