
Alshayun: A mobile content-delivery application

Jacob Chappell

March 29, 2019

Contents

1 Introduction 3

1.1 What is Alshayun? . 3

1.2 Inspiration . 3

1.3 About the Name . 4

2 Alshayun 5

2.1 User Interface . 5

2.2 Caching Strategy . 11

2.3 Applets . 14

2.3.1 Tower of Hanoi Applet . 15

2.3.2 Sorting Applet . 15

2.4 Accepting Contributions . 15

2.5 Building and Running . 16

2.5.1 Setting up an Android Virtual Device (AVD) 18

2.5.2 Troubleshooting . 19

3 Quick n’ Dirty Server (QDS) 20

3.1 Motivation . 20

3.2 Backend . 20

3.3 Frontend . 22

3.4 Production Considerations . 25

3.5 Building and Running . 25

3.5.1 Troubleshooting . 28

1

4 Technologies Used 29

4.1 Architecture . 29

4.2 Node.js . 29

4.3 TypeScript . 31

4.4 Angular . 31

4.5 Ionic . 32

4.6 Cordova . 32

4.7 Flask . 32

4.8 Singularity . 33

5 Use Cases 34

5.1 Classroom Auxiliary Content . 34

5.2 Starter Mobile Blog . 34

6 Future Work 35

6.1 User Accounts . 35

6.2 Cloud Hosting . 35

6.3 Power Efficiency . 36

7 Conclusion 37

2

List of Figures

2.1 Initial startup screen, failed to load articles 6

2.2 Articles URL saved in settings . 7

2.3 Reloading articles . 8

2.4 List of loaded articles . 9

2.5 Tower of Hanoi article being read . 10

2.6 Tower of Hanoi applet playing in full-screen mode 11

2.7 Article marked as read in the articles list . 12

2.8 Marking an article as unread . 13

2.9 Insertion sort applet running on 50 bars . 16

3.1 Login page of QDS frontend . 23

3.2 List of articles in the QDS frontend . 24

3.3 Viewing and editing an article in the QDS frontend 26

3.4 Creating a new article in the QDS frontend 27

4.1 High-level architecture of Alshayun . 30

3

Chapter 1

Introduction

1.1 What is Alshayun?

Alshayun is a mobile application for delivering articles consisting of rich text and inter-

active applets to readers. Written in the portable Ionic framework, Alshayun is capable

of running on the Web, Android devices, and Apple iOS devices. However, Alshayun

has currently only been tested on a Samsung Galaxy S7 device running Android and a

Google Pixel emulator.

Alshayun is designed with three actors in mind: the content author, the reader, and

the developer. The content author is anyone who has anything they would like to write

about, potentially making use of interactive and embedded applets as assistive visual

aids. The reader is anyone who would like to read what one or more content authors have

to say. The developer is the one capable of developing applets and other functionality of

Alshayun of which content authors and readers can make use. While I speak of these

roles in the singular, many individuals may inhabit any given role, and some individuals

may inhabit multiple roles.

1.2 Inspiration

After taking a numerical methods course as part of my Computer Science undergraduate

degree, I became fascinated with Bézier curves. Whilst researching Bézier curves online,

4

I came across an article titled A Primer on Bézier Curves [12] authored by someone named

Pomax. The highly detailed and enlightening article was filled with interactive applets

designed to strengthen the reader’s understanding of each progressively difficult concept.

Intrigued by Pomax’s work, I was inspired to develop a sort of content delivery mech-

anism designed to allow content authors like Pomax author similar articles and deliver

them to interested readers. Supporting the development and use of interesting, interac-

tive applets was a priority. I recognized that any such modern application needed to be

mobile-friendly, and so I decided to develop exclusively with mobility in mind.

1.3 About the Name

Alshayun was originally meant to be tailored towards mathematics education. However,

during the process of developing the application, I realized that I had created a much

more generalizable platform capable of servicing any subject and perhaps more. Albeit,

I decided to keep the name I gave the application from the time of its inception—a name

that carries with it certain mathematical connotations.

Algebra (from the Arabic “al-jabr”) is one of the most powerful mathematical de-

vices and fields of study, as well as my personal favorite subject of mathematics. The

English-speaking world inherited its written algebraic works from Latin, which came

from Spanish, which came from Arabic. This line of inheritance spanned many years and

involved merchants and trade routes, among other things. In the original Arabic sources,

the word “al-shayun,” meaning “the unknown thing,” was frequently used to describe

the unknown in algebraic equations. Therefore, I found “al-shayun” to be an appropriate

name filled with mathematical historical meaning.

To learn more about how “al-shayun” came to be the letter “x” used in modern alge-

bra, check out the article Why X marks the unknown by Terry Moore [9].

5

Chapter 2

Alshayun

2.1 User Interface

When a user loads Alshayun for the first time, the application is configured to point at

a bogus articles server. Therefore, the application displays an appropriate error to the

user (see Figure 2.1). The user may navigate to the settings page by tapping on the blue

settings cog in the upper-right-hand side of the screen. Once in settings, the user is able

to configure the articles URL to point at a real server, perhaps powered by the QDS (see

Figure 2.2). Then, upon returning to the home screen, the user may pull down from the

top of the screen to trigger a reload of all articles (see Figure 2.3).

After the articles have been successfully loaded, the user is faced with a list of articles

where each article is identified by a title, zero or more tags, and an excerpt of the article’s

content (see Figure 2.4). Furthermore, the user may search for articles using the search

box at the top of the screen.

By tapping on an article in the list, the user is redirected to a dedicated page to read

the chosen article. Articles are displayed in rich-text with the possibility of embedded

images and applets. For example, the Tower of Hanoi article in Figure 2.5 has a series of

embedded interactive applets. An example of one of these applets in full screen can be

seen in Figure 2.6.

After returning to the articles listing, the visited article is marked as read as indicated

by a book icon and a gray text color (see Figure 2.7). The user may swipe an article from

6

Figure 2.1: Initial startup screen, failed to load articles

7

Figure 2.2: Articles URL saved in settings

8

Figure 2.3: Reloading articles

9

Figure 2.4: List of loaded articles

10

Figure 2.5: Tower of Hanoi article being read

11

Figure 2.6: Tower of Hanoi applet playing in full-screen mode

the right to access a button allowing the article to be marked unread if desired (see Figure

2.8).

2.2 Caching Strategy

In order to improve application performance as the number of articles grows, the full

text of each article is not loaded unless the article has been read. I accomplished this

by breaking articles into two pieces: metadata and text. The metadata of an article is its

unique ID, title, tags, and excerpt (short description of the article). The text is the body

of the article formatted in markdown. When the application loads the list of articles,

only the article metadata has been loaded. An implication of this is that article text is

not searchable, which is part of the reason I included the excerpt. When a user views an

article, the text is loaded on demand and kept in RAM for the duration of the application

session.

The manifest (example given below) is stored in JavaScript Object Notation (JSON),

and consists of an array of objects where each object represents an article. The unique

ID is a monotonically-increasing serial number. When a user reads an article, the fact the

12

Figure 2.7: Article marked as read in the articles list

13

Figure 2.8: Marking an article as unread

14

article has been read is saved on the user’s local device storage based on the article ID. If

older (smaller) IDs were recycled, this could cause some articles to be displayed as falsely

read.

[

{

"id": 12,

"title": "Tower of Hanoi",

"excerpt": "Learn about the Tower of Hanoi...",

"tags": [

"algorithms"

]

}

]

2.3 Applets

The applets are the crux of Alshayun. Applets are implemented as Angular components

that extend an Applet superclass. The superclass automatically sets up an HTML canvas

tag with drawing context and implements an animation loop if the subclass requests it.

All the subclass needs to do is extend a draw method, which is automatically called by the

superclass 30 times per second. The draw method performs whatever drawing needs to

be done in the context of the canvas to implement the applet’s functionality. Furthermore,

the subclass may choose to extend the applet toolbar that the superclass sets up. The

default toolbar has a button for toggling full screen mode, but more buttons can be added.

Applets are included in articles with a dedicated <applet> tag. All applets accept

at least two parameters: name and width. The name parameter indicates which specific

applet should be loaded, and the width parameter sets the width of the applet on the

screen. If no width is specified, the applet assumes a width of 100%. All applets render in

the aspect ratio of the device’s screen dimensions and orientation. Furthermore, specific

applets may implement their own parameters. An example applet tag is given below.

15

<applet name="sort"

width="50%"

data-method="insertion"

data-num-bars="50"></applet>

Currently, there are two applets implemented in Alshayun. Details follow.

2.3.1 Tower of Hanoi Applet

The Tower of Hanoi (see Figure 2.6) applet is designed to illustrate the solution to the

famous Tower of Hanoi problem. The applet supports running between 3 and 8 rings.

The user can step through the algorithm frame by frame or have the algorithm run itself

with an adjustable speed. The spindles and rings are all drawn mathematically and are

two-dimensional despite the three-dimensional appearance.

2.3.2 Sorting Applet

The sorting applet (see Figure 2.9) is designed to illustrate the inner workings and relative

performance metrics of various sorting algorithms. The applet works by sorting between

10 and 100 integers represented by bars of height proportional to the integer. Presently,

bubble sort and insertion sort are the two sorting methods implemented. Dark gray bars

are in unsorted position, light gray bars are in sorted position, and blue bars have just

been targeted for consideration by the algorithm.

2.4 Accepting Contributions

For Alshayun to be useful to a large audience, a number of developers need to come on

board and contribute code. Particularly, the development of a wide variety of config-

urable applets is necessary. Because Alshayun is hosted on GitHub [1], accepting contri-

butions is easy.

To accept a contribution, a developer must fork the Alshayun repository, create a de-

velopment branch, and work on whatever feature they want. After development, the

16

Figure 2.9: Insertion sort applet running on 50 bars

developer submits a pull request to the main Alshayun repository, at which point I am

triggered to thoroughly review the code, make comments and suggestions, and ultimately

accept the pull request. Once the contribution is merged in the master branch, and after

sufficient time passes, a release cycle occurs. At the time of a release cycle, a snapshot of

the master branch is made and released to the public. Thus all Android users for example

have access to the new applets and features developed in between release cycles.

2.5 Building and Running

Building Alshayun requires Ionic, Cordova, and the Android Software Development Kit

(SDK) with all of their dependencies. While Ionic and Cordova support many platforms,

I have only tested Alshayun with Android, which is why I call it out here. Setting up

such an environment is complicated and time consuming. As a result, I have built a

Singularity container that encapsulates the full development environment necessary to

build and run Alshayun.

To begin, make sure Singularity 3.0 [14] or greater is installed on your computer. I

found the container to be useful to all Ionic developers, so I uploaded it to the Sylabs

17

Cloud Library. To download the image, run the following command from the application

root directory.

singularity pull ionic.sif library://phphavok/default/ionic:latest

Should that command fail for some reason, or if you prefer to build the container

yourself, run the following command from the application root directory.

sudo singularity build ionic.sif Singularity

Once the container has been downloaded or built, run the following commands from

the application root directory.

mkdir -p sdk/build-tools sdk/platforms

singularity shell \

-B sdk/build-tools:/usr/local/android/build-tools \

-B sdk/platforms:/usr/local/android/platforms \

-p ionic.sif

sdkmanager 'platforms;android-27' 'build-tools;27.0.3'

ionic cordova build android

The singularity command launches a shell inside the container environment, and

you are still inside this container environment upon the completion of the ionic com-

mand. You may type exit or press CTRL+D on your keyboard to exit this environment.

The ionic command builds an Android Package (APK) file, which you can install on

any compatible Android device. If you wish to build for a different platform or version of

the Android SDK, you may modify the sdkmanager command as desired. You can also

have Ionic directly install and run the built APK file on your compatible Android device

by attaching your Android device to your computer via Universal Serial Bus (USB), en-

abling USB debugging on the Android device, and running the following command from

within the container environment.

ionic cordova run android

If you don’t have an Android device, you may setup and test Alshayun on an Android

Virtual Device (AVD).

18

2.5.1 Setting up an Android Virtual Device (AVD)

Exit the container environment and create an additional directory by running the follow-

ing command from the application root directory.

mkdir -p sdk/system-images

Then, once again launch a shell into the container environment, and be sure to mount

in the additional directory.

singularity shell \

-B sdk/build-tools:/usr/local/android/build-tools \

-B sdk/platforms:/usr/local/android/platforms \

-B sdk/system-images:/usr/local/android/system-images \

-p ionic.sif

Select a system image to use for your AVD and install it by running the following

command from within the container environment (assuming you chose Android version

27).

sdkmanager 'system-images;android-27;google_apis;x86'

Once you’ve installed a system image, run the following command to list available

devices and pick one.

avdmanager list devices

After picking a device (pixel in this example), choose a name for your AVD (e.g.,

test), and create it using the selected device and system image installed in the previ-

ous steps. By default, AVDs are installed under $HOME/.android/avd. If you want a

different path, add -p /path/to/avd to the avdmanager command.

avdmanager create avd \

-n test \

-k 'system-images;android-27;google_apis;x86' \

--device pixel

19

Finally, launch the AVD in an emulator.

emulator -no-snapshot -avd test

Afterwards, you should be able to install and run APK files on the emulator.

2.5.2 Troubleshooting

Building may fail if there is not sufficient space in /tmp or under unpredictable network-

ing circumstances. In the former case, allocate more space under /tmp. In the latter case,

just try the build command again.

20

Chapter 3

Quick n’ Dirty Server (QDS)

3.1 Motivation

During the early stages of developing Alshayun, I included articles in the APK to be

installed on devices. While great for initial testing and rapid development, it quickly be-

came clear that such an approach was inflexible and would hinder any future production-

readiness of the application. In response, I setup an Nginx Web server on my desktop

computer and began storing articles there. However, I wanted the source code of Al-

shayun to be all-inclusive of everything necessary to build, run, and test the application.

Thus, the QDS was born.

After the QDS was built and successfully serving articles to Alshayun, I decided to

prototype a frontend Web interface designed to facilitate the creation and management

of articles by content authors. Because the frontend depended on a RESTful interface

provided by the backend of the QDS, it was only natural to roll the frontend into the

QDS and treat both components as a single deployable unit.

3.2 Backend

The backend is written in Flask and serves two functions: deliver articles to Alshayun

and expose a RESTful interface to the frontend to allow content authors to create and

manage articles. The articles are stored in plain-text files on the local disk, and Flask

21

allows easily serving static content through the send from directory method.

@app.route('/articles/<path:filename>')

def get_article(filename):

return send_from_directory('articles/', filename)

In the above code, a request to /articles/article.1.md results in the file

articles/article.1.md relative to the Flask application to be read from the disk

and served back to the requesting client as the HTTP response. The minimum code to

accomplish this task is part of what makes Flask so powerful and useful.

As another example, consider the following code which exposes a RESTful interface

for creating a new article.

@app.route('/article', methods = ['POST'])

def create_article():

if (not request.json) or \

(not 'title' in request.json) or \

(not 'excerpt' in request.json) or \

(not 'tags' in request.json) or \

(not 'text' in request.json):

abort(400)

Create article object

article = {}

article['id'] = checkout_serial()

article['title'] = str(request.json['title'])

article['excerpt'] = str(request.json['excerpt'])

article['tags'] = request.json['tags']

Write article file to disk

f = open('articles/article.' + str(article['id']) + '.md', 'w')

f.write(str(request.json['text']))

f.close()

Add article object to manifest

22

manifest = read_manifest()

manifest.append(article)

write_manifest(manifest)

Return status

ret = {}

ret['message'] = 'Success'

ret['id'] = article['id']

return json.dumps(ret)

The @app.route decorator prefixing the function indicates that the function should

be called if an HTTP POST request is sent to /article on the server. The function begins

by making sure a minimally valid request has been supplied. The abort(400) call is

provided by Flask and conveniently triggers an HTTP response with error code 400. An

article object is created to store information passed in from the request safely, and then

the contents of the article are written out to disk using an established naming convention.

The checkout serial function keeps track of an auto-incrementing integer called the

serial, which is used to name and index articles. The manifest stores the metadata about

the article.

3.3 Frontend

The frontend is written as a standalone Angular application. The frontend listens on port

4200 when running, and can be accessed from the URL http://127.0.0.1:4200/.

Upon accessing, the user is presented with a default sign in screen (see Figure 3.1). After

signing in with the default username of admin and default password of password, the

user is presented with a list of articles (see Figure 3.2). If this is the first time the user has

signed in, the articles are the sample articles included with the application source code.

The user may delete or view/edit an article by clicking the appropriate buttons next to

each article’s description. When viewing an article (see Figure 3.3), the user is presented

with a field to enter the title of the article, a field to enter a comma-delimited list of tags

associated with the article, a field to enter a short excerpt of the article, and a field to enter

23

http://127.0.0.1:4200/

Figure 3.1: Login page of QDS frontend

24

Figure 3.2: List of articles in the QDS frontend

25

the main text of the article. Articles are written in Markdown [8], and a live preview of

the rendered article is presented next to the editable article text (see Figures 3.3, 3.4). The

user may also create a new article by clicking the appropriate button on the home page.

3.4 Production Considerations

The Flask instance of the backend runs a built-in development Web server, as does the

Angular instance of the frontend. However these servers are not designed to handle pro-

duction scenarios. Therefore, if an Alshayun user wants to take the QDS into production,

some things should be taken into consideration first.

For the backend, a real production Web server such as Nginx or Apache should be

setup. The Web server can run a Web Server Gateway Interface (WSGI) module which

redirects applicable requests to the Flask code. Furthermore, the production Web server

can and should have signed Secure Sockets Layer (SSL) certificates setup to encrypt re-

quests. Lastly, the current backend has no authentication mechanism for the RESTful

APIs exposed to the frontend. Therefore, anyone can technically create, edit, and delete

articles. An authentication mechanism would need to be developed. Options for this in-

clude HTTP Basic Authentication, OAuth, client certificate authentication handled by the

production Web server, or a variety of other methods.

For the frontend, a real production Web server would also need to be setup. Per-

haps the same Web server powering the backend could be used, which may help aid in

security and latency concerns. SSL certificates and an administrative account that isn’t

admin/password is of course necessary.

3.5 Building and Running

The Quick n’ Dirty Server (QDS) consists of two components: a backend and a fron-

tend. The backend is written in Flask, whereas the frontend is written in Angular. In

order to facilitate easy building and running of the QDS, I have built two Singularity

containers: one for the frontend and one for the backend. Though the QDS is techni-

26

Figure 3.3: Viewing and editing an article in the QDS frontend

27

Figure 3.4: Creating a new article in the QDS frontend

28

cally two components, I refer to it in the singular, and a single Makefile is provided for

convenience.

To begin, make sure Singularity 3.0 [14] or greater is installed on your computer.

Then, run the following command from the application root directory. The command

prompts you to escalate to root privileges if you are not already root.

make -C qds

Upon completion, the QDS is built and ready for running. To start the QDS as a

background service, run the following command from the application root directory.

make -C qds start

While the QDS is running, ports 4200 and 5000 are bound on your computer. The

frontend can be accessed from the URL http://127.0.0.1:4200/. The backend runs

on port 5000 and is used by the frontend and by Alshayun.

At any time, you may stop the QDS by running the following command.

make -C qds stop

3.5.1 Troubleshooting

Building may fail if there is not sufficient space in /tmp or under unpredictable network-

ing circumstances. In the former case, allocate more space under /tmp. In the latter case,

just try the build command again.

29

http://127.0.0.1:4200/

Chapter 4

Technologies Used

4.1 Architecture

Figure 4.1 illustrates the high-level architecture of Alshayun. A discussion of each of the

components of the architecture follows.

4.2 Node.js

Node.js (Node) [10] is a JavaScript runtime designed mainly to facilitate writing scalable,

server-side software in JavaScript. Before Node, first released in May of 2009, the idea of

writing server-side software in JavaScript was relatively unknown. Since its inception,

Node has received much attention and both praise and criticism from developers.

Less than a year after Node’s inception, a package manager was released in January of

2010 named the Node Package Manager (NPM) [11]. NPM has since played a vital role

in the development of most JavaScript software and frameworks and has transcended its

original intent to become a general JavaScript package manager.

While developing Alshayun, I never interacted directly with Node. However, NPM

was a vital part of my development process. It is for that reason that I mention NPM and

Node as a used technology.

30

Figure 4.1: High-level architecture of Alshayun

31

4.3 TypeScript

TypeScript [15] is a superset of JavaScript that ultimately compiles into JavaScript. Type-

Script complements JavaScript with type safety and true object-oriented programming

constructs such as classes, access modifiers, and inheritance. In TypeScript, every vari-

able and symbol in general have a type, either stated explicitly by the programmer or

inferred by the TypeScript compiler from usage. The TypeScript compiler is available for

installation as an NPM package.

As the programming language of Alshayun, TypeScript has been extraordinarily use-

ful in development. In particular, the access to object-oriented programming constructs

has allowed me to write clean, modular, and purpose-driven code.

4.4 Angular

Angular [2] is a Web application framework developed by Google and written in Type-

Script. Relatively new, Angular was released in September of 2016, although it’s based

on a rewrite of its older predecessor, AngularJS. Angular is useful for developing respon-

sive, single-page Web applications backed by a full suite of development tools to assist in

application development, testing, and deployment. Angular is available for installation

as an NPM package.

The single-page architecture of Angular is accomplished by the backing Web-server

rewriting URLs and redirecting requests to the root index.html file of the Angular appli-

cation. Angular then uses an internal router module to load the appropriate page of the

application. The application can be fully loaded up front, or lazily loaded on demand.

Lazy loading is recommended for larger applications to avoid a lengthy initial page load.

One of Angular’s strongest development points is its use of the Model-View-Controller

(MVC) design pattern. Angular provides a template syntax for easily binding the model

(data, variables) to the view (HTML elements such as forms). Thus, if a variable title

exists and the application has bound it to the heading tag of a page with the syntax

<h1>{{title}}</h1>, then simply updating the title variable automatically results

32

in the heading of the page being updated. The developer need not worry about the details

or be concerned with updating the view his or herself. Furthermore, interactive actions

such as button clicks can trigger the calling of methods that further update the model.

4.5 Ionic

Ionic [6] is a framework for building cross-platform applications in Hypertext Markup

Language (HTML), Cascading Style Sheets (CSS), and JavaScript. Ionic supports de-

veloping an application with a single codebase that deploys to Web, Android, and iOS

devices. As of version 4, the Ionic codebase is divorced of an underlying JavaScript

framework, although Angular is still the most supported and widely used base for Ionic.

Ionic provides a collection of HTML tags and CSS that generate components similar

to Bootstrap [3]. Examples of components include buttons, cards, toasts, modals, and

lists. Ionic components are designed to mimic the look and feel of a native Android or

iOS application, complete with built-in gestures and animations.

4.6 Cordova

Cordova [4] is an Apache project that provides a uniform interface for generating device-

dependent code for Android and iOS. For example, Cordova provides a JavaScript inter-

face for interacting with the built-in camera of mobile devices. Thus, the developer can

write one piece of code for taking pictures and gathering image data, and Cordova au-

tomatically translates that code into the appropriate programming language and format

for desired devices (Java for Android, Swift for iOS). Cordova is a vital part of Ionic, and

Ionic provides a direct command-line interface to Cordova for building mobile packages.

4.7 Flask

Flask [5] is a Python framework for the rapid development of Representational State

Transfer (REST) Application Programming Interface (API)s. Flask allows developers

33

to prefix Python functions with decorators indicating the URL endpoint that triggers the

function, the acceptable HTTP methods, and more. Flask also provides a collection of

helpful methods for generating HTTP responses, handling exceptions, and easily pro-

cessing HTTP request data. A built-in development server is provided for prototyping

purposes.

4.8 Singularity

Singularity [13] is a containerization software that allows users to develop, package, and

relocate full-fledged compute environments consisting of an operating system and soft-

ware binaries and libraries. Singularity is one of several containerization platforms in

existence. However, it stands apart by being the most secure and, in my opinion, sim-

plest to use. I have a personal connection to Singularity, having contributed code to the

open-source project and having developed many containers as part of my employment at

the University of Kentucky.

34

Chapter 5

Use Cases

5.1 Classroom Auxiliary Content

One use case for Alshayun is as an auxiliary content platform for K–12 schools and uni-

versities. Each independent classroom can run its own articles server (perhaps through

QDS to get started) and notify students to configure Alshayun to point to the articles

server. Then, the teacher could function as the sole content author, providing lecture

notes, practice problems, and so on. While Alshayun is not designed to protect articles,

teachers could implement minor security by only allowing the articles server to be ac-

cessed while on the school or university network. The tagging feature could be used to

organize subjects.

5.2 Starter Mobile Blog

Another use case for Alshayun is as a starter blog. If an upcoming blogger wants to

quickly distribute content to readers but hasn’t had time to setup a real blogging Web

site or build a real blogging application, Alshayun could be used as a temporary blog

distribution channel.

35

Chapter 6

Future Work

There are many areas where Alshayun can be improved. While not an exhaustive list by

any stretch of the imagination, here are a few areas I’d like to improve upon.

6.1 User Accounts

I would like to support user accounts so that readers can potentially save or bookmark

articles, comment on articles, and synchronize their personalized settings between de-

vices. This feature would require an overhaul of the QDS or preferably a production Web

server, and it carries with it certain security and privacy concerns. Furthermore, accounts

should be able to have content author privileges granted so that users of the QDS can

sign in independently and author their own articles with a proper set of capabilities and

roles implemented.

6.2 Cloud Hosting

Another feature I would like to have is a central production Alshayun server hosted

somewhere on the cloud (perhaps Amazon Web Services). This cloud server should be

used as the default so that users first opening Alshayun retrieve articles from the primary

central server. This could turn into a large project fast, as the cloud server could imple-

ment users and privileges, and would likely lead to a variety of other necessary features.

36

6.3 Power Efficiency

Finally, I have noticed that Alshayun is quite power hungry when many applets are

loaded. I would like to invest considerable time optimizing the applets to consume less

power and also implement better caching and unloading of unused elements on each

page.

37

Chapter 7

Conclusion

Through my work on Alshayun, I have learned the essentials of TypeScript, Angular,

and Ionic—three technologies that I likely would not have learned otherwise. I was also

able to build interesting Singularity containers and contribute back to the Singularity

community. My work with Flask was minor, and mainly drew upon some previous ex-

perience. While Ionic was the top-level primary framework of my development stack, I

learned the most about Angular, and my work with Angular is likely to impact my future

work the most.

Angular is a beautiful JavaScript framework, and I never thought I would be the one

to compliment or praise a JavaScript framework. However, by taking advantage of the

programming constructs made available by TypeScript and utilizing modern program-

ming methodologies, Angular feels like a legitimate software engineering platform. From

re-usable modules and components to features like automatic dependency injection, lazy

loading and flexible routing, Angular is a truly well-rounded development platform.

The most powerful and enlightening feature I learned to use is observables. Observ-

ables allow providers to emit events over time while zero or more subscribers can sub-

scribe and unsubscribe from events at any point. For example, the QDS has a list of ar-

ticles with their titles, tags, and excerpts printed. When a user updates an article, I want

that list to update immediately as well. In the past, I would have devoted an extraordi-

nary amount of time and code to cleanly realize such a feature. However, with Angular I

simply developed an observable around the article metadata and used an asynchronous

38

data pipe to bind the observable to the view. The Angular framework takes care of the

rest. This is just one of many memorable Angular features that I have found useful and

enlightening.

Since completing Alshayun, I have begun building an Angular-powered Web site for

my mom’s Real Estate business [7]. With the help of Bootstrap for styling, the Web site

is quickly becoming the most beautiful REALTOR® Web site in the region (others have

told me this, I am not just being grandiose). This Web site as it exists would not have

been possible without my knowledge of Angular, and Angular’s full build environment

with deployment tools is incredibly useful. At this rate, I suspect many more projects will

come.

39

Bibliography

[1] Alshayun on GitHub. Retrieved from https://github.com/phpHavok/

alshayun.

[2] Angular. Retrieved from https://angular.io/.

[3] Bootstrap. Retrieved from https://getbootstrap.com/.

[4] Cordova. Retrieved from https://cordova.apache.org/.

[5] Flask. Retrieved from http://flask.pocoo.org/.

[6] Ionic. Retrieved from https://ionicframework.com/.

[7] Kristi Nickells REALTOR®. Retrieved from https://kristinickells.com/.

[8] Markdown. Retrieved from https://daringfireball.net/projects/

markdown/.

[9] Moore, Terry. Why X marks the unknown. Retrieved from https://

cosmosmagazine.com/mathematics/why-x-marks-unknown-0.

[10] Node.js. Retrieved from https://nodejs.org/en/.

[11] Node Package Manager. Retrieved from https://www.npmjs.com/.

[12] Pomax. A Primer on Bézier Curves. Retrieved from https://pomax.github.io/

bezierinfo/.

[13] Singularity. Retrieved from https://www.sylabs.io/singularity/.

40

https://github.com/phpHavok/alshayun
https://github.com/phpHavok/alshayun
https://angular.io/
https://getbootstrap.com/
https://cordova.apache.org/
http://flask.pocoo.org/
https://ionicframework.com/
https://kristinickells.com/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://cosmosmagazine.com/mathematics/why-x-marks-unknown-0
https://cosmosmagazine.com/mathematics/why-x-marks-unknown-0
https://nodejs.org/en/
https://www.npmjs.com/
https://pomax.github.io/bezierinfo/
https://pomax.github.io/bezierinfo/
https://www.sylabs.io/singularity/

[14] Singularity 3.0 Installation Guide. Retrieved from https://www.sylabs.io/

guides/3.0/user-guide/installation.html.

[15] TypeScript. Retrieved from https://www.typescriptlang.org/.

41

https://www.sylabs.io/guides/3.0/user-guide/installation.html
https://www.sylabs.io/guides/3.0/user-guide/installation.html
https://www.typescriptlang.org/

	Introduction
	What is Alshayun?
	Inspiration
	About the Name

	Alshayun
	User Interface
	Caching Strategy
	Applets
	Tower of Hanoi Applet
	Sorting Applet

	Accepting Contributions
	Building and Running
	Setting up an Android Virtual Device (AVD)
	Troubleshooting

	Quick n' Dirty Server (QDS)
	Motivation
	Backend
	Frontend
	Production Considerations
	Building and Running
	Troubleshooting

	Technologies Used
	Architecture
	Node.js
	TypeScript
	Angular
	Ionic
	Cordova
	Flask
	Singularity

	Use Cases
	Classroom Auxiliary Content
	Starter Mobile Blog

	Future Work
	User Accounts
	Cloud Hosting
	Power Efficiency

	Conclusion

