Satisfiability-based Set Membership Filters

Sean Weaver

Information Assurance Research Group
U.S. National Security Agency

May 7, 2018

Sean Weaver (Information Assurance Resear SAT Filters May 7, 2018

1/38

Outline

0 Introduction
@ Bloom Filters
© The satisfiability Problem

Q@ The SAT Filter

Sean Weaver (Information Assurance Resear

SAT Filters

The Set Membership Problem

@ Efficiently test whether a large set contains a given element
@ Some Examples

» Spell Checking
» Safe Browsing

@ Formally
Givenanelement x e Dand Y C D, determineif x € Y

Sean Weaver (Information Assurance Resear SAT Filters May 7, 2018 3/38

Bloom Filter [Blo70]

@ Constant time querying

@ Probabilistic — can give false positives

@ Efficient primary test for set membership

@ Algorithm has two stages, building and querying

Sean Weaver (Information Assurance Resear SAT Filters May 7, 2018 4/38

Bloom Filter — Building

@ Bloom filter is an array of n bits, initially all 0
@ Map each element y € Y to k indices, H(y,1),H(y,2),...,H(y, k)
@ For all indices, set the corresponding bits in the Bloom filter

{x 5z}

(Oftfofr[t[t[ojojojojoft]oft[o[0[1]O]

Sean Weaver (Information Assurance Resear SAT Filters May 7, 2018 5/38

Bloom Filter — Querying

@ Map element x to k indices, H(x, 1), H(x,2), ..., H(x, k)
@ If the filter’s k corresponding indices are all set, x is maybe in Y
@ If some bit is not set, then x is definitely notin Y

{x, ¥z}

(Oftfoft]t]1]0JOJOJOJOJt[O[1[O0[0[1]0]

Sean Weaver (Information Assurance Resear SAT Filters May 7, 2018 6/38

Bloom Filter — More Information

For more information such as how to calculate the false positive rate,
or how to determine the optimal size of the filter, see
Wikipedia: https://en.wikipedia.org/wiki/Bloom_filter

Sean Weaver (Information Assurance Resear SAT Filters May 7, 2018 7138

https://en.wikipedia.org/wiki/Bloom_filter

SAT Filter

@ Many different filter constructions since 1970
@ Most pertinent to this talk is a filter based on Satisfiability

Sean Weaver (Information Assurance Resear SAT Filters May 7, 2018 8/38

Satisfiability (SAT)

@ Given a set of constraints, determine if a solution exists

@ Usually Boolean constraints (clauses) expressed in Conjunctive
Normal Form (CNF)

@ Example CNF Formula: (xo V X2 V X3) A (X1 V X2) A (Xo V X1)
@ A solution: {xg, X1, X2, X3}
@ Finding a solution is NP-Complete

@ Many open-source SAT solvers exist and are available for
download here: http://www.satcompetition.org/

Sean Weaver (Information Assurance Resear SAT Filters May 7, 2018 9/38

http://www.satcompetition.org/

SAT Filter [WRM+14]

@ Afilter based on SAT
@ Building

» Hash elements to CNF clauses, rather than array indices

» Treat the set of clauses as a SAT problem

» A solution to the SAT problem acts as a filter for the original set
@ Querying

» Hash an element into a CNF clause

» If the clause is satisfied by the stored solution it passes the filter
» If the clause is not satisfied, the element doesn’t pass the filter

Sean Weaver (Information Assurance Resear SAT Filters May 7, 2018 10/38

SAT Filter

{x, ¥y, z}
Build H(x) H(y) H(z)
Xo V X1V X3 XoV Xo V X3 Xo V Xo V X3

A solution: {Xg, X1, Xz, X3}

H(w)

w Xo VX2V X3 Passes

H(v :
v (v) XoV X2V X3 Doesn’t pass @

Sean Weaver (Information Assurance Resear SAT Filters May 7, 2018 11/38

Query

SAT Filter Parameters

Y is the set of interest

m = |Y| is the number of clauses

n is the total number of variables (also the size of the filter)
k is the number of variables per clause

p=1- J is the false positive rate

How many variables (k per clause, and n total) should there be?

How can the false positive rate be decreased?

Sean Weaver (Information Assurance Resear SAT Filters May 7, 2018 12/38

Number of Variables, n

@ Amount of long-term storage
@ Desire to be as small as possible
@ Why not just make n tiny?

@ What kind of SAT problems are being generated?
@ Random k-SAT!

Sean Weaver (Information Assurance Resear SAT Filters May 7, 2018 13/38

Random k-SAT

@ Clauses drawn uniformly, independently, and with replacement
from the set of all width k clauses [FP83]

@ The clauses-to-variables ratio ax = m/n determines almost
certainly the satisfiability of the set of clauses drawn [Ach09]

Sean Weaver (Information Assurance Resear SAT Filters May 7, 2018 14/38

Random k-SAT Threshold

T T T L T T T 0.8
E %SAT
100 5 avg time -+

80 -1 0.6
“,
= -)
£ e 1o 8
& S
a0 b z

<4 0.2

20
.
0 | | | Jﬁ++++T++++—++uu. 0
0 1 2 3 6 7 8

Sean Weaver (Information Assurance Resear SAT Filters May 7, 2018 15/38

Random k-SAT Threshold

@ The threshold for random k-SAT is o = 2KIn2 — O(k) [AP04]
@ Some values determined experimentally

k [12 3 4 5 6 7 8
ak [0 1 426 993 21.11 4337 87.79 176.54

@ Why does this threshold exist?

Sean Weaver (Information Assurance Resear SAT Filters May 7, 2018

16/38

Efficiency
@ Only so much information can fit into a filter with a fixed amount of
memory, i.e. the information-theoretic limit

@ Efficiency is a measure of how well a filter uses its
memory [Wal07]

52M<1
n/m

@ False positive rate p. For SAT filters p =1 — 2k
@ The filter is n bits of memory

@ The filter is derived from m elements

@ k is the width of a clause

@ Plugging m/n = 2KIn2 — O(k) into £ and performing an
asymptotic analysis shows that SAT filter efficiency & = 1
@ Bloom filter efficiency € =In2 ~ 0.69

Sean Weaver (Information Assurance Resear SAT Filters May 7, 2018 17/38

Efficiency

11

T T

Efficiency Limit ——
SAT Filter Efficiency — x —

Bloom Filter Efficiency ---&--

0.9 -

Efficiency

0.7 = !

0.6 -

/
0.4 £ 1

ean Weaver (Information Assurance

SAT Filters

10

Efficiency

° positive rate p =23, or }
_ —log,p
n/m
P log, 272
3/1
3
°~3

Sean Weaver (Information Assurance Resear

SAT Filters

110

False Positive Rate

@ The false positive rate (p = 1 — 2=K) needs to be improved
@ One way is to find multiple solutions, say s

@ Now the false positive rate is increased to p = (1 — 27%)$
@ One catch — the solutions must be uncorrelated

@ Could build s different SAT instances (slow to query)

@ Or, could very carefully find s different solutions to the same
instance (slow to build)

@ Solutions in random k-SAT naturally cluster right before the
threshold

@ However, this is not so for some other random SAT paradigms
(NAESAT, XORSAT, ...).

Sean Weaver (Information Assurance Resear SAT Filters May 7, 2018 20/38

XORSAT

@ A lot like random k-SAT, but the clause operand is XOR(®), not
OR(V)

@ Example XORSAT Formula: (xo ® X1 @ X3 =1) A (X2 ® X3 = 0)

@ A solution: {xp, X1, X2, X3}

@ The phase transition is sharp, and tends to 1

k | 2 3 4 5 6 7
ak | 0.5 0.917935 0.976770 0.992438 0.997379 0.999063

Sean Weaver (Information Assurance Resear SAT Filters May 7, 2018 21/38

XORSAT Filter
{x, v, z}
Build H(x) H(y) H(z)

Xo@X1EBX3EO XO@XQEBX3E1 X()EBX1EBXQEO

A solution: {xg, Xy, X2, X3}

H(w)
W——> XS XoPX3=1 Passes

Query
H(v ;
v—()>x0@x2@x350 Doesn’t pass @

Sean Weaver (Information Assurance Resear SAT Filters May 7, 2018 22/38

XORSAT Filter vs SAT Filter

@ XORSAT p=2"Svs. SAT p= (1 —27K)s

@ Sharper threshold, so the reach information theoretic limit can be
achieved with smaller k, and the filter can be smaller

@ Easy to find uncorrelated solutions to an XORSAT instance

@ Solving linear equations in GF(2) is in P vs. NP for SAT

@ XORSAT filters can store and retrieve meta-data

Sean Weaver (Information Assurance Resear SAT Filters May 7, 2018 23/38

Efficiency

T
Efficiency Limit ——
11 XORSAT Filter Efficiency = = =]

SAT Filter Efficiency
Bloom Filter Efficiency —-— -

Efficiency

06 F 1
;o
)
'
05 [! 1
'
"o
o
04 Ly
1 2 3 4 5 6 7 8 9 10
k
=] = = E E Qe
SAT Filters

ean Weaver (Information Assurance

XORSAT Filter Example

H = [xxHash(“cat”), xxHash("fish”), xxHash(“dog”)]
= [0xb85c341a,0x87024bb7,0x3fa6d2df] .

SH = [[0xb, 0x8, 0x5, 0xc,0x3, 0x4, 0x1, 0xal,
[0x8,0x7,0x0,0x2,0x4, 0xb, 0xb, 0x7],
[0x3,0xf, Oxa,0x6,0xd, 0x2,0xd, Oxf]] .

Sean Weaver (Information Assurance Resear SAT Filters May 7, 2018 25/38

XORSAT Filter Example

SH = [[0xb, 0x8, 0x5, 0xc, 0x3, 0x4, 0x1, 0xa],
[0x8,0x7,0x0,0x2,0x4, 0xb, 0xb, 0x7],
[0x3,0xf, Oxa, 0x6,0xd, 0x2,0xd, Oxf]] .

Ty = [[SHoo(mod n), SHy1(mod n), SHy2(mod n), SHyz(mod 2°)],
[SH1o(mod n), SHy1(mod n), SHi2(mod n), SHy3(mod 2°)],
[SHoo(mod n), SHo1(mod n), SHas(mod n), SHez(mod 2°)]]

= [[0xb(mod 4), 0x8(mod 4), 0x5(mod 4), 0xc(mod 8)],
[0x8(mod 4), 0x7(mod 4), 0x0(mod 4), 0x2(mod 8)],
[0x3(mod 4), 0xf(mod 4), 0xa(mod 4), 0x6(mod 8)]]

=1[3,0,1,4],
[0,3,0,2],
[3,3,2,6]] .

XORSAT Filter Example

z"Y.O = [[37 Oa 1) 4]’
[0,3,0,2],
3,3,2,6]] .

Xyo=[X3® X ®x1 =[1,0,0],
Xo@X3®X02[0,1,0],

X3® X3 ® x2 =[1,1,0]]
=[xo®x ®x3=[1,0,0],

x3 =1[0,1,0],

X2 =[1,1,0]] .

Sean Weaver (Information Assurance Resear SAT Filters May 7, 2018 27/38

XORSAT Filter Example

XY.O = [XO@X'I D X3 = [17070]7
X3£[0,1,0],
XZE[17170” .

Xy = [% @ x1 © x3 =[1,0,0] || [0,0],
x3 =1[0,1,0] || [0, 1],
X2 =[1,1,0] || [1,0]]
=[x ®xs ®&x3=1[1,0,0,0,0],
x3=10,1,0,0,1],
x2=[1,1,0,1,0]] .

Sean Weaver (Information Assurance Resear SAT Filters May 7, 2018 28/38

XORSAT Filter Example

Xy =[xo®x1 & x3=[1,0,0,0,0],
x3 =[0,1,0,0,1],
xo =1[1,1,0,1,0]] .

Sy: [[XO = 1,X1 = 1,X2 :O,X3 = 1],
X =0,x1=1,x=1,x3 =1],
[Xo =0,x1 =0,x =0, x3 :0],
Xo=1,x=1,x=1,x3=0],
[X0= 1,X1=0,%=0,x3 = 1]] .

Sean Weaver (Information Assurance Resear SAT Filters May 7, 2018 29/38

XORSAT Filter Example

Sy=[x=1,x1=1,x%=0,x3 =1],
[X0=0,x1=1,x%=1,x3=1],
[Xo =0,x;1 =0,x2 =0,x3 =0],
[Xo=1,x1 =1, =1,x3=0],

[XO = 1,X1 :0,X2 :O,X3 = 1]] .

Fy =([[1,0,0,1,1],
[1,1,0,1,0],
[0,1,0,1,0],
[1,1,0,0,1]],
n=8,k=3,s=3,r=2).

Sean Weaver (Information Assurance Resear SAT Filters

May 7, 2018

30/38

XORSAT Filter Query Example

H = xxHash(“horse”)
= 0x3f37ala’7.

SH = [0x3,0xf,0x3,0x7,0xa,0x1,0xa, 0x7] .

T = [SHy(mod n), SH;(mod n), SH>(mod n), SH3(mod 2°)]
= [0x3(mod 4), 0x£(mod 4), 0x3(mod 4), 0x7(mod 8)]
=13,3,3,7] .

C:XS@XS@XSE[17171] || [171]
= X3E[1,1717171]'

Sean Weaver (Information Assurance Resear SAT Filters May 7, 2018 31/38

XORSAT Filter Query Example

CZXSEBXS@X3E[17171] H [171]
= XSE[171715171]'

CFY:FY(3)5[171717171]
=[1,1,0,0,1] =[1,1,1,1,1]
=[1,1,0,0,1].

Sean Weaver (Information Assurance Resear SAT Filters May 7, 2018 32/38

XORSAT Filter Query Example

X = “Cat”

C:XOEBX1€BXSE[170,07171]‘

Evaluating C against Fy produces

Cr, = Fy(0)® Fy(1) ® Fy(3) =[1,0,0,1,1]
=[1,0,0,1,1]®[1,1,0,1,0] ® [1,1,0,0,1] =[1,0,0,1,1]
=[1,0,0,0,0] =[1,0,0,1,1]
=[1,1,1,0,0] .

Since the first three bits of Cr, are all True, the element passes the
filter. Hence, “cat” is in Y with a 21—3 chance of being a false positive.
The last two bits of Cr,, [0, 0], represent the stored meta-data, namely,

the index O.
Sean Weaver (Information Assurance Resear SAT Filters May 7, 2018 33/38

Results

Table: Achieved efficiency and seconds taken to build non-blocked XORSAT
. mis the number of elements in the data set being stored
and k is the number of variables per XOR clause.

filters with p =

20 (88%,< 1) (93%,<1) (983%,<1) (93%, <1)
2" (89%, < 1) (97%, < 1) (97%, < 1) (97%, < 1)
22 (90%, < 1) (97%, < 1) (98%, < 1) (98%, < 1)
2B (91%, 1) (97%, 1) (98%, 1) (99%, 1)
2 (9%, 2) (97%, 3) (99%, 4) (99%, 5)
2% (89%, 17) (97%, 21) (98%, 28) (98%, 36)

34/38

Results

Table 4. Achieved efficiency, size (in KB), and seconds taken to build blocked XORSAT
and SAT filters with an expected 3072 elements per block, variables per clause k = 5,
and desired false positive rate p = 21117 Desired SAT filter efficiency was set to 75%
and desired XORSAT filter efficiency was set to 98%. The SAT filter hamming weight
metric [31] was set to 48%. Timeout (*-’) was set at one hour. Query speed (in millions
of queries per second) is also given for XORSAT, SAT, and Bloom filters.

XORSAT Filter SAT Filter
Build Time Build Time Query Speed
m 1 Core 8 Cores & Size 1 Core8 Cores & Size XORSAT SAT Bloom
21 <1 <1 98% 41 336 105 43% 56 18 4 23
26 1 <1l 98% 81 883 183 43% 111 18 4 23
217 2 <1 98% 163 1768 394 43% 222 18 4 23
218 5 1 98% 326 3441 723 44% 444 18 4 23
219 g 1 9% 659 - 1724 44% 887 18 4 23
220 17 2 97% 1321 - - - - 18 - 22
221 33 4 9T% 2646 - - - - 17 - 22
222 92 12 97% 5298 - - - - 13 - 20
2% 186 26 97% 10601 - - - - 9 - 20
224 372 52 97% 21204 - - - - 11 - 20
2% 751 104 96% 42416 - - - - 10 - 17
226 1515 208 96% 84958 - - - - 7 - 12

Sean Weaver (Information Assurance Resear SAT Filters

May 7, 2018 35/38

Questions?

Sean Weaver (Information Assurance Resear

SAT Filters

References |

[§ Dimitris Achlioptas, Random satisfiability, Handbook of
Satisfiability (Armin Biere, Marijn Heule, Hans van Maaren, and
Toby Walsh, eds.), Frontiers in Artificial Intelligence and
Applications 185, I10S Press, 2009, pp. 245-270.

[3 Dimitris Achlioptas and Yuval Peres, The threshold for random
k-SAT is 2Klog2 — O(k), Journal of the American Mathematical
Society 17 (2004), no. 4, 947-973.

[3 Burton H. Bloom, Space/time trade-offs in hash coding with
allowable errors, Communications of the ACM 13 (1970), no. 7,
422-426.

[@ John Franco and Marvin Paull, Probabilistic analysis of the Davis
Putnam procedure for solving the satisfiability problem, Discrete
Applied Mathematics 5 (1983), no. 1, 77-87.

Sean Weaver (Information Assurance Resear SAT Filters May 7, 2018 37/38

References Il

[@ Marcelo Finger and Poliana M. Reis, On the predictability of
classical propositional logic, Information 4 (2013), no. 1, 60-74.

[Alden Walker, Filters, Master’s thesis, Haverford College, 2007.

[Sean A. Weaver, Katrina J. Ray, Victor W. Marek, Andrew J.
Mayer, and Alden K. Walker, Satisfiability-based set membership
filters, Journal on Satisfiability, Boolean Modeling and Computation
8 (2014), 129-148.

Sean Weaver (Information Assurance Resear SAT Filters May 7, 2018 38/38

	Introduction
	Bloom Filters
	The Satisfiability Problem
	The SAT Filter

