
Satisfiability-based Set Membership Filters

Sean Weaver

Information Assurance Research Group
U.S. National Security Agency

May 7, 2018

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 1 / 38



Outline

1 Introduction

2 Bloom Filters

3 The Satisfiability Problem

4 The SAT Filter

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 2 / 38



The Set Membership Problem

Efficiently test whether a large set contains a given element
Some Examples

I Spell Checking
I Safe Browsing

Formally
Given an element x ∈ D and Y ⊆ D, determine if x ∈ Y

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 3 / 38



Bloom Filter [Blo70]

Constant time querying
Probabilistic — can give false positives
Efficient primary test for set membership
Algorithm has two stages, building and querying

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 4 / 38



Bloom Filter — Building

Bloom filter is an array of n bits, initially all 0
Map each element y ∈ Y to k indices, H(y ,1),H(y ,2), . . . ,H(y , k)
For all indices, set the corresponding bits in the Bloom filter

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 5 / 38



Bloom Filter — Querying

Map element x to k indices, H(x ,1),H(x ,2), . . . ,H(x , k)
If the filter’s k corresponding indices are all set, x is maybe in Y
If some bit is not set, then x is definitely not in Y

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 6 / 38



Bloom Filter — More Information

For more information such as how to calculate the false positive rate,
or how to determine the optimal size of the filter, see
Wikipedia: https://en.wikipedia.org/wiki/Bloom_filter

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 7 / 38

https://en.wikipedia.org/wiki/Bloom_filter


SAT Filter

Many different filter constructions since 1970
Most pertinent to this talk is a filter based on Satisfiability

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 8 / 38



Satisfiability (SAT)

Given a set of constraints, determine if a solution exists
Usually Boolean constraints (clauses) expressed in Conjunctive
Normal Form (CNF)
Example CNF Formula: (x0 ∨ x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (x0 ∨ x1)

A solution: {x0, x1, x2, x3}
Finding a solution is NP-Complete
Many open-source SAT solvers exist and are available for
download here: http://www.satcompetition.org/

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 9 / 38

http://www.satcompetition.org/


SAT Filter [WRM+14]

A filter based on SAT
Building

I Hash elements to CNF clauses, rather than array indices
I Treat the set of clauses as a SAT problem
I A solution to the SAT problem acts as a filter for the original set

Querying
I Hash an element into a CNF clause
I If the clause is satisfied by the stored solution it passes the filter
I If the clause is not satisfied, the element doesn’t pass the filter

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 10 / 38



SAT Filter

{x , y , z}

x0 ∨ x2 ∨ x3x0 ∨ x1 ∨ x3 x0 ∨ x2 ∨ x3

H(x) H(y) H(z)Build

A solution: {x0, x1, x2, x3}

w x0 ∨ x2 ∨ x3 Passes

v x0 ∨ x2 ∨ x3 Doesn’t pass

H(w)

H(v)
Query

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 11 / 38



SAT Filter Parameters

Y is the set of interest
m = |Y | is the number of clauses
n is the total number of variables (also the size of the filter)
k is the number of variables per clause
p = 1− 1

2k is the false positive rate

How many variables (k per clause, and n total) should there be?

How can the false positive rate be decreased?

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 12 / 38



Number of Variables, n

Amount of long-term storage
Desire to be as small as possible
Why not just make n tiny?

What kind of SAT problems are being generated?
Random k -SAT!

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 13 / 38



Random k -SAT

Clauses drawn uniformly, independently, and with replacement
from the set of all width k clauses [FP83]
The clauses-to-variables ratio αk = m/n determines almost
certainly the satisfiability of the set of clauses drawn [Ach09]

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 14 / 38



Random k -SAT Threshold

[FR13]

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 15 / 38



Random k -SAT Threshold

The threshold for random k -SAT is αk = 2k ln 2−O(k) [AP04]
Some values determined experimentally

k 1 2 3 4 5 6 7 8

αk 0 1 4.26 9.93 21.11 43.37 87.79 176.54

Why does this threshold exist?

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 16 / 38



Efficiency
Only so much information can fit into a filter with a fixed amount of
memory, i.e. the information-theoretic limit
Efficiency is a measure of how well a filter uses its
memory [Wal07]

E =
− log2 p

n/m
≤ 1

False positive rate p. For SAT filters p = 1− 2−k

The filter is n bits of memory
The filter is derived from m elements
k is the width of a clause

Plugging m/n = 2k ln 2−O(k) into E and performing an
asymptotic analysis shows that SAT filter efficiency E = 1
Bloom filter efficiency E = ln 2 ≈ 0.69

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 17 / 38



Efficiency

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1  2  3  4  5  6  7  8  9  10

Ef
fic

ie
nc

y

k

Efficiency Limit
SAT Filter Efficiency

Bloom Filter Efficiency

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 18 / 38



Efficiency

0b10011110

false positive rate p = 2−3, or 1
8

E =
− log2 p

n/m

E =
− log2 2−3

3/1

E =
3
3

E = 1

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 19 / 38



False Positive Rate

The false positive rate (p = 1− 2−k ) needs to be improved
One way is to find multiple solutions, say s
Now the false positive rate is increased to p = (1− 2−k )s

One catch — the solutions must be uncorrelated
Could build s different SAT instances (slow to query)
Or, could very carefully find s different solutions to the same
instance (slow to build)
Solutions in random k -SAT naturally cluster right before the
threshold
However, this is not so for some other random SAT paradigms
(NAESAT, XORSAT, . . . ).

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 20 / 38



XORSAT

A lot like random k -SAT, but the clause operand is XOR(⊕), not
OR(∨)
Example XORSAT Formula: (x0 ⊕ x1 ⊕ x3 ≡ 1) ∧ (x2 ⊕ x3 ≡ 0)
A solution: {x0, x1, x2, x3}

The phase transition is sharp, and tends to 1

k 2 3 4 5 6 7

αk 0.5 0.917935 0.976770 0.992438 0.997379 0.999063

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 21 / 38



XORSAT Filter

{x , y , z}

x0 ⊕ x2 ⊕ x3 ≡ 1x0 ⊕ x1 ⊕ x3 ≡ 0 x0 ⊕ x1 ⊕ x2 ≡ 0

H(x) H(y) H(z)Build

A solution: {x0, x1, x2, x3}

w x0 ⊕ x2 ⊕ x3 ≡ 1 Passes

v x0 ⊕ x2 ⊕ x3 ≡ 0 Doesn’t pass

H(w)

H(v)
Query

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 22 / 38



XORSAT Filter vs SAT Filter

XORSAT p = 2−s vs. SAT p = (1− 2−k )s

Sharper threshold, so the reach information theoretic limit can be
achieved with smaller k , and the filter can be smaller
Easy to find uncorrelated solutions to an XORSAT instance
Solving linear equations in GF(2) is in P vs. NP for SAT
XORSAT filters can store and retrieve meta-data

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 23 / 38



Efficiency

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1  2  3  4  5  6  7  8  9  10

E
ff
c
ie
n
c
y

k

Effciency Limit

XORSAT Filter Effciency

SAT Filter Effciency

Bloom Filter Effciency

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 24 / 38



XORSAT Filter Example

H = [xxHash(“cat”), xxHash(“fish”), xxHash(“dog”)]
= [0xb85c341a,0x87024bb7,0x3fa6d2df] .

SH = [[0xb,0x8,0x5,0xc,0x3,0x4,0x1,0xa],

[0x8,0x7,0x0,0x2,0x4,0xb,0xb,0x7],

[0x3,0xf,0xa,0x6,0xd,0x2,0xd,0xf]] .

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 25 / 38



XORSAT Filter Example

SH = [[0xb,0x8,0x5,0xc,0x3,0x4,0x1,0xa],

[0x8,0x7,0x0,0x2,0x4,0xb,0xb,0x7],

[0x3,0xf,0xa,0x6,0xd,0x2,0xd,0xf]] .

IY .0 = [[SH00(mod n),SH01(mod n),SH02(mod n),SH03(mod 2s)],

[SH10(mod n),SH11(mod n),SH12(mod n),SH13(mod 2s)],

[SH20(mod n),SH21(mod n),SH22(mod n),SH23(mod 2s)]]

= [[0xb(mod 4),0x8(mod 4),0x5(mod 4),0xc(mod 8)],
[0x8(mod 4),0x7(mod 4),0x0(mod 4),0x2(mod 8)],
[0x3(mod 4),0xf(mod 4),0xa(mod 4),0x6(mod 8)]]

= [[3,0,1,4],
[0,3,0,2],
[3,3,2,6]] .

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 26 / 38



XORSAT Filter Example

IY .0 = [[3,0,1,4],
[0,3,0,2],
[3,3,2,6]] .

XY .0 = [x3 ⊕ x0 ⊕ x1 ≡ [1,0,0],
x0 ⊕ x3 ⊕ x0 ≡ [0,1,0],
x3 ⊕ x3 ⊕ x2 ≡ [1,1,0]]

= [x0 ⊕ x1 ⊕ x3 ≡ [1,0,0],
x3 ≡ [0,1,0],
x2 ≡ [1,1,0]] .

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 27 / 38



XORSAT Filter Example

XY .0 = [x0 ⊕ x1 ⊕ x3 ≡ [1,0,0],
x3 ≡ [0,1,0],
x2 ≡ [1,1,0]] .

XY = [x0 ⊕ x1 ⊕ x3 ≡ [1,0,0] || [0,0],
x3 ≡ [0,1,0] || [0,1],
x2 ≡ [1,1,0] || [1,0]]

= [x0 ⊕ x1 ⊕ x3 ≡ [1,0,0,0,0],
x3 ≡ [0,1,0,0,1],
x2 ≡ [1,1,0,1,0]] .

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 28 / 38



XORSAT Filter Example

XY = [x0 ⊕ x1 ⊕ x3 ≡ [1,0,0,0,0],
x3 ≡ [0,1,0,0,1],
x2 ≡ [1,1,0,1,0]] .

SY = [[x0 = 1, x1 = 1, x2 = 0, x3 = 1],
[x0 = 0, x1 = 1, x2 = 1, x3 = 1],
[x0 = 0, x1 = 0, x2 = 0, x3 = 0],
[x0 = 1, x1 = 1, x2 = 1, x3 = 0],
[x0 = 1, x1 = 0, x2 = 0, x3 = 1]] .

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 29 / 38



XORSAT Filter Example

SY = [[x0 = 1, x1 = 1, x2 = 0, x3 = 1],
[x0 = 0, x1 = 1, x2 = 1, x3 = 1],
[x0 = 0, x1 = 0, x2 = 0, x3 = 0],
[x0 = 1, x1 = 1, x2 = 1, x3 = 0],
[x0 = 1, x1 = 0, x2 = 0, x3 = 1]] .

FY = ([[1,0,0,1,1],
[1,1,0,1,0],
[0,1,0,1,0],
[1,1,0,0,1]],
n = 3, k = 3, s = 3, r = 2) .

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 30 / 38



XORSAT Filter Query Example

H = xxHash(“horse”)
= 0x3f37a1a7 .

SH = [0x3,0xf,0x3,0x7,0xa,0x1,0xa,0x7] .

I = [SH0(mod n),SH1(mod n),SH2(mod n),SH3(mod 2s)]

= [0x3(mod 4),0xf(mod 4),0x3(mod 4),0x7(mod 8)]
= [3,3,3,7] .

C = x3 ⊕ x3 ⊕ x3 ≡ [1,1,1] || [1,1]
= x3 ≡ [1,1,1,1,1] .

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 31 / 38



XORSAT Filter Query Example

C = x3 ⊕ x3 ⊕ x3 ≡ [1,1,1] || [1,1]
= x3 ≡ [1,1,1,1,1] .

CFY = FY (3) ≡ [1,1,1,1,1]
= [1,1,0,0,1] ≡ [1,1,1,1,1]
= [1,1,0,0,1] .

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 32 / 38



XORSAT Filter Query Example

x = “cat”

C = x0 ⊕ x1 ⊕ x3 ≡ [1,0,0,1,1] .

Evaluating C against FY produces

CFY = FY (0)⊕ FY (1)⊕ FY (3) ≡ [1,0,0,1,1]
= [1,0,0,1,1]⊕ [1,1,0,1,0]⊕ [1,1,0,0,1] ≡ [1,0,0,1,1]
= [1,0,0,0,0] ≡ [1,0,0,1,1]
= [1,1,1,0,0] .

Since the first three bits of CFY are all True, the element passes the
filter. Hence, “cat” is in Y with a 1

23 chance of being a false positive.
The last two bits of CFY , [0,0], represent the stored meta-data, namely,
the index 0.

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 33 / 38



Results

Table: Achieved efficiency and seconds taken to build non-blocked XORSAT
filters with p = 1

210 . m is the number of elements in the data set being stored
and k is the number of variables per XOR clause.

m k = 3 k = 4 k = 5 k = 6

210 (88%, < 1) (93%, < 1) (93%, < 1) (93%, < 1)
211 (89%, < 1) (97%, < 1) (97%, < 1) (97%, < 1)
212 (90%, < 1) (97%, < 1) (98%, < 1) (98%, < 1)
213 (91%, 1) (97%, 1) (98%, 1) (99%, 1)
214 (91%, 2) (97%, 3) (99%, 4) (99%, 5)
215 (89%, 17) (97%, 21) (98%, 28) (98%, 36)

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 34 / 38



Results

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 35 / 38



Questions?

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 36 / 38



References I

Dimitris Achlioptas, Random satisfiability, Handbook of
Satisfiability (Armin Biere, Marijn Heule, Hans van Maaren, and
Toby Walsh, eds.), Frontiers in Artificial Intelligence and
Applications 185, IOS Press, 2009, pp. 245–270.

Dimitris Achlioptas and Yuval Peres, The threshold for random
k-SAT is 2k log2−O(k), Journal of the American Mathematical
Society 17 (2004), no. 4, 947–973.

Burton H. Bloom, Space/time trade-offs in hash coding with
allowable errors, Communications of the ACM 13 (1970), no. 7,
422–426.

John Franco and Marvin Paull, Probabilistic analysis of the Davis
Putnam procedure for solving the satisfiability problem, Discrete
Applied Mathematics 5 (1983), no. 1, 77–87.

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 37 / 38



References II

Marcelo Finger and Poliana M. Reis, On the predictability of
classical propositional logic, Information 4 (2013), no. 1, 60–74.

Alden Walker, Filters, Master’s thesis, Haverford College, 2007.

Sean A. Weaver, Katrina J. Ray, Victor W. Marek, Andrew J.
Mayer, and Alden K. Walker, Satisfiability-based set membership
filters, Journal on Satisfiability, Boolean Modeling and Computation
8 (2014), 129–148.

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 38 / 38


	Introduction
	Bloom Filters
	The Satisfiability Problem
	The SAT Filter

