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The Set Membership Problem

Efficiently test whether a large set contains a given element
Some Examples

I Spell Checking
I Safe Browsing

Formally
Given an element x ∈ D and Y ⊆ D, determine if x ∈ Y
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Bloom Filter [Blo70]

Constant time querying
Probabilistic — can give false positives
Efficient primary test for set membership
Algorithm has two stages, building and querying
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Bloom Filter — Building

Bloom filter is an array of n bits, initially all 0
Map each element y ∈ Y to k indices, H(y ,1),H(y ,2), . . . ,H(y , k)
For all indices, set the corresponding bits in the Bloom filter
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Bloom Filter — Querying

Map element x to k indices, H(x ,1),H(x ,2), . . . ,H(x , k)
If the filter’s k corresponding indices are all set, x is maybe in Y
If some bit is not set, then x is definitely not in Y
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Bloom Filter — More Information

For more information such as how to calculate the false positive rate,
or how to determine the optimal size of the filter, see
Wikipedia: https://en.wikipedia.org/wiki/Bloom_filter
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SAT Filter

Many different filter constructions since 1970
Most pertinent to this talk is a filter based on Satisfiability
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Satisfiability (SAT)

Given a set of constraints, determine if a solution exists
Usually Boolean constraints (clauses) expressed in Conjunctive
Normal Form (CNF)
Example CNF Formula: (x0 ∨ x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (x0 ∨ x1)

A solution: {x0, x1, x2, x3}
Finding a solution is NP-Complete
Many open-source SAT solvers exist and are available for
download here: http://www.satcompetition.org/
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SAT Filter [WRM+14]

A filter based on SAT
Building

I Hash elements to CNF clauses, rather than array indices
I Treat the set of clauses as a SAT problem
I A solution to the SAT problem acts as a filter for the original set

Querying
I Hash an element into a CNF clause
I If the clause is satisfied by the stored solution it passes the filter
I If the clause is not satisfied, the element doesn’t pass the filter
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SAT Filter

{x , y , z}

x0 ∨ x2 ∨ x3x0 ∨ x1 ∨ x3 x0 ∨ x2 ∨ x3

H(x) H(y) H(z)Build

A solution: {x0, x1, x2, x3}

w x0 ∨ x2 ∨ x3 Passes

v x0 ∨ x2 ∨ x3 Doesn’t pass

H(w)

H(v)
Query
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SAT Filter Parameters

Y is the set of interest
m = |Y | is the number of clauses
n is the total number of variables (also the size of the filter)
k is the number of variables per clause
p = 1− 1

2k is the false positive rate

How many variables (k per clause, and n total) should there be?

How can the false positive rate be decreased?
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Number of Variables, n

Amount of long-term storage
Desire to be as small as possible
Why not just make n tiny?

What kind of SAT problems are being generated?
Random k -SAT!
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Random k -SAT

Clauses drawn uniformly, independently, and with replacement
from the set of all width k clauses [FP83]
The clauses-to-variables ratio αk = m/n determines almost
certainly the satisfiability of the set of clauses drawn [Ach09]
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Random k -SAT Threshold

[FR13]
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Random k -SAT Threshold

The threshold for random k -SAT is αk = 2k ln 2−O(k) [AP04]
Some values determined experimentally

k 1 2 3 4 5 6 7 8

αk 0 1 4.26 9.93 21.11 43.37 87.79 176.54

Why does this threshold exist?
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Efficiency
Only so much information can fit into a filter with a fixed amount of
memory, i.e. the information-theoretic limit
Efficiency is a measure of how well a filter uses its
memory [Wal07]

E =
− log2 p

n/m
≤ 1

False positive rate p. For SAT filters p = 1− 2−k

The filter is n bits of memory
The filter is derived from m elements
k is the width of a clause

Plugging m/n = 2k ln 2−O(k) into E and performing an
asymptotic analysis shows that SAT filter efficiency E = 1
Bloom filter efficiency E = ln 2 ≈ 0.69
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Efficiency

0b10011110

false positive rate p = 2−3, or 1
8

E =
− log2 p

n/m

E =
− log2 2−3

3/1

E =
3
3

E = 1
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False Positive Rate

The false positive rate (p = 1− 2−k ) needs to be improved
One way is to find multiple solutions, say s
Now the false positive rate is increased to p = (1− 2−k )s

One catch — the solutions must be uncorrelated
Could build s different SAT instances (slow to query)
Or, could very carefully find s different solutions to the same
instance (slow to build)
Solutions in random k -SAT naturally cluster right before the
threshold
However, this is not so for some other random SAT paradigms
(NAESAT, XORSAT, . . . ).

Sean Weaver (Information Assurance Research Group) SAT Filters May 7, 2018 20 / 38



XORSAT

A lot like random k -SAT, but the clause operand is XOR(⊕), not
OR(∨)
Example XORSAT Formula: (x0 ⊕ x1 ⊕ x3 ≡ 1) ∧ (x2 ⊕ x3 ≡ 0)
A solution: {x0, x1, x2, x3}

The phase transition is sharp, and tends to 1

k 2 3 4 5 6 7

αk 0.5 0.917935 0.976770 0.992438 0.997379 0.999063
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XORSAT Filter

{x , y , z}

x0 ⊕ x2 ⊕ x3 ≡ 1x0 ⊕ x1 ⊕ x3 ≡ 0 x0 ⊕ x1 ⊕ x2 ≡ 0

H(x) H(y) H(z)Build

A solution: {x0, x1, x2, x3}

w x0 ⊕ x2 ⊕ x3 ≡ 1 Passes

v x0 ⊕ x2 ⊕ x3 ≡ 0 Doesn’t pass

H(w)

H(v)
Query
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XORSAT Filter vs SAT Filter

XORSAT p = 2−s vs. SAT p = (1− 2−k )s

Sharper threshold, so the reach information theoretic limit can be
achieved with smaller k , and the filter can be smaller
Easy to find uncorrelated solutions to an XORSAT instance
Solving linear equations in GF(2) is in P vs. NP for SAT
XORSAT filters can store and retrieve meta-data
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XORSAT Filter Example

H = [xxHash(“cat”), xxHash(“fish”), xxHash(“dog”)]
= [0xb85c341a,0x87024bb7,0x3fa6d2df] .

SH = [[0xb,0x8,0x5,0xc,0x3,0x4,0x1,0xa],

[0x8,0x7,0x0,0x2,0x4,0xb,0xb,0x7],

[0x3,0xf,0xa,0x6,0xd,0x2,0xd,0xf]] .
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XORSAT Filter Example

SH = [[0xb,0x8,0x5,0xc,0x3,0x4,0x1,0xa],

[0x8,0x7,0x0,0x2,0x4,0xb,0xb,0x7],

[0x3,0xf,0xa,0x6,0xd,0x2,0xd,0xf]] .

IY .0 = [[SH00(mod n),SH01(mod n),SH02(mod n),SH03(mod 2s)],

[SH10(mod n),SH11(mod n),SH12(mod n),SH13(mod 2s)],

[SH20(mod n),SH21(mod n),SH22(mod n),SH23(mod 2s)]]

= [[0xb(mod 4),0x8(mod 4),0x5(mod 4),0xc(mod 8)],
[0x8(mod 4),0x7(mod 4),0x0(mod 4),0x2(mod 8)],
[0x3(mod 4),0xf(mod 4),0xa(mod 4),0x6(mod 8)]]

= [[3,0,1,4],
[0,3,0,2],
[3,3,2,6]] .
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XORSAT Filter Example

IY .0 = [[3,0,1,4],
[0,3,0,2],
[3,3,2,6]] .

XY .0 = [x3 ⊕ x0 ⊕ x1 ≡ [1,0,0],
x0 ⊕ x3 ⊕ x0 ≡ [0,1,0],
x3 ⊕ x3 ⊕ x2 ≡ [1,1,0]]

= [x0 ⊕ x1 ⊕ x3 ≡ [1,0,0],
x3 ≡ [0,1,0],
x2 ≡ [1,1,0]] .
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XORSAT Filter Example

XY .0 = [x0 ⊕ x1 ⊕ x3 ≡ [1,0,0],
x3 ≡ [0,1,0],
x2 ≡ [1,1,0]] .

XY = [x0 ⊕ x1 ⊕ x3 ≡ [1,0,0] || [0,0],
x3 ≡ [0,1,0] || [0,1],
x2 ≡ [1,1,0] || [1,0]]

= [x0 ⊕ x1 ⊕ x3 ≡ [1,0,0,0,0],
x3 ≡ [0,1,0,0,1],
x2 ≡ [1,1,0,1,0]] .
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XORSAT Filter Example

XY = [x0 ⊕ x1 ⊕ x3 ≡ [1,0,0,0,0],
x3 ≡ [0,1,0,0,1],
x2 ≡ [1,1,0,1,0]] .

SY = [[x0 = 1, x1 = 1, x2 = 0, x3 = 1],
[x0 = 0, x1 = 1, x2 = 1, x3 = 1],
[x0 = 0, x1 = 0, x2 = 0, x3 = 0],
[x0 = 1, x1 = 1, x2 = 1, x3 = 0],
[x0 = 1, x1 = 0, x2 = 0, x3 = 1]] .
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XORSAT Filter Example

SY = [[x0 = 1, x1 = 1, x2 = 0, x3 = 1],
[x0 = 0, x1 = 1, x2 = 1, x3 = 1],
[x0 = 0, x1 = 0, x2 = 0, x3 = 0],
[x0 = 1, x1 = 1, x2 = 1, x3 = 0],
[x0 = 1, x1 = 0, x2 = 0, x3 = 1]] .

FY = ([[1,0,0,1,1],
[1,1,0,1,0],
[0,1,0,1,0],
[1,1,0,0,1]],
n = 3, k = 3, s = 3, r = 2) .
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XORSAT Filter Query Example

H = xxHash(“horse”)
= 0x3f37a1a7 .

SH = [0x3,0xf,0x3,0x7,0xa,0x1,0xa,0x7] .

I = [SH0(mod n),SH1(mod n),SH2(mod n),SH3(mod 2s)]

= [0x3(mod 4),0xf(mod 4),0x3(mod 4),0x7(mod 8)]
= [3,3,3,7] .

C = x3 ⊕ x3 ⊕ x3 ≡ [1,1,1] || [1,1]
= x3 ≡ [1,1,1,1,1] .
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XORSAT Filter Query Example

C = x3 ⊕ x3 ⊕ x3 ≡ [1,1,1] || [1,1]
= x3 ≡ [1,1,1,1,1] .

CFY = FY (3) ≡ [1,1,1,1,1]
= [1,1,0,0,1] ≡ [1,1,1,1,1]
= [1,1,0,0,1] .
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XORSAT Filter Query Example

x = “cat”

C = x0 ⊕ x1 ⊕ x3 ≡ [1,0,0,1,1] .

Evaluating C against FY produces

CFY = FY (0)⊕ FY (1)⊕ FY (3) ≡ [1,0,0,1,1]
= [1,0,0,1,1]⊕ [1,1,0,1,0]⊕ [1,1,0,0,1] ≡ [1,0,0,1,1]
= [1,0,0,0,0] ≡ [1,0,0,1,1]
= [1,1,1,0,0] .

Since the first three bits of CFY are all True, the element passes the
filter. Hence, “cat” is in Y with a 1

23 chance of being a false positive.
The last two bits of CFY , [0,0], represent the stored meta-data, namely,
the index 0.
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Results

Table: Achieved efficiency and seconds taken to build non-blocked XORSAT
filters with p = 1

210 . m is the number of elements in the data set being stored
and k is the number of variables per XOR clause.

m k = 3 k = 4 k = 5 k = 6

210 (88%, < 1) (93%, < 1) (93%, < 1) (93%, < 1)
211 (89%, < 1) (97%, < 1) (97%, < 1) (97%, < 1)
212 (90%, < 1) (97%, < 1) (98%, < 1) (98%, < 1)
213 (91%, 1) (97%, 1) (98%, 1) (99%, 1)
214 (91%, 2) (97%, 3) (99%, 4) (99%, 5)
215 (89%, 17) (97%, 21) (98%, 28) (98%, 36)
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Results
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Questions?
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