
The π-calculus and the Pict
Programming Language

Owen McGrath
owen.mcgrath@uky.edu

Jan 24

mailto:owen.mcgrath@uky.edu

Background: Turing Machines
Turing machines were one of the first mathematical descriptions of general
computation.

Their method of operation could be described as a calculus,
in that it provides a definition of calculation.

Background: Lambda Calculus
The lambda calculus also provides a background for computation, but describes
computation as application of functions to other functions.

It is possible to derive everything in a programming language as an abstraction of
the lambda calculus.

I will talk about the π-calculus,
which is yet another calculus.

Example lambda expressions

Background: Imperative vs. Functional languages
Imperative languages : Turing Machines :: Functional Languages : Lambda
calculus

Motivation
Turing Machines can help us model and understand computation.

⇒ This naturally leads to structured programming and many features found in C
and Algol.

The Lambda calculus can help us understand functions and higher-order
functions.

⇒ This leads to constructs that can be useful like easy recursion (via the fixed
point combinator), lazy evaluation, and functions with no side effects.

Motivation
However, there are still some problems that neither functional nor imperative
paradigms help with.

The major problem I will address here is concurrency.

Concurrency is hard: C++ example
std::thread - Only available since C++11

std::atomic - Hard / impossible to create atomic user-defined type

We also have std::mutex, std::promise and std::future...

Many new features in C++20.

These may work well, but they are not a natural language construct in the way
functions or variables are.

How can we improve the situation?
Lambda calculus derives everything (numbers, typed values) as abstractions
around functions, and this makes it easier to work with functions in programming
languages.

Therefore, is it possible to define everything as an abstraction of concurrent
communication to make concurrency easier?

The π-calculus attempts to do that.

Turing Machines Lambda Calculus π-Calculus ...

Computation can be
thought of as...

Symbol manipulation Functions and
function application

Concurrent
Processes

...

This makes it easy
to...

Model and
understand
computation

Reason about
higher-order
functions

Efficiently use and
reason about
concurrency?

...

Languages inspired C++

Algol

Haskell

Lisp Pict
...

Introduction to the π-Calculus
● Everything is an agent or a link
● No Types

Agents can be thought of as processes, and links can allow communication
between agents.

Introduction to the π-Calculus
Computation happens by separate concurrent agents communicating over links.

Links can be thought of as busses or pipes: data is sent in one end, and it is sent
out the other.

I will discuss agent semantics first.

π-calculus: agents
P | Q This agent executes P and Q simultaneously.

0 The zero agent does nothing.

We need a way to describe processes and how they interact.

We will use agents to be an abstraction of processes or threads, and we will have rules for executing them
in parallel and for sending messages between them.

Agent examples

Because the zero agent does nothing,
we can eliminate it without changing
the program.

This would be analogous to the C++
code on the right.

Links between agents
Say we have agents P and Q running in parallel.

As an example, say P is a thread that looks polls the internet for data, and Q is a
thread that processes that data. In this example, we cannot have P finish before
beginning Q. Therefore, we need some way to communicate between the threads.

Links between agents

In our example, P must communicate information to Q. An important aspect of this
communication is that the communication is one-way.

The π-calculus models this as a link from P to Q.

Because P sends information across the link, it has the input prefix.
Q will have the output prefix.

We now need a way of handling links.

π-calculus: links
 This agent sends y along the link x and continues as the agent P.

This is known as the negative prefix or the input prefix.

This agent receives z along link x and continues as P, with the variable z replaced with what
is received.
Also known as the positive prefix or output prefix.

In our example, P needs to give information to Q. This means that we will need a link between them. Let
this link be x; then, P will have the input prefix and Q will have the output prefix.

Links are also known as channels. Often, the π-calculus concerns links while the Pict language concerns
channels.

Example: passing information between processes

This is two processes running in parallel, where x is a link between them. The left
hand side of the composition (|) sends y along the link x. The right hand side
receives anything on that link as z. Therefore, this can be reduced to

The act of receiving y as argument z can be thought of as calling a function, and
Q{y/z} can be thought of as replacing the parameters with the arguments.

Example: passing information between processes

Because x is a link on which information can be exchanged between P and Q, it
makes sense to think of x as a link between P and Q.

We can represent agents as nodes and links between them as edges in a graph
that models the program.

Network topology

The name y is passed from P to Q.
y could be a link here, but no agent is waiting on a signal from y.

Computation

Passing links between agents

We have been passing around y between two processes. So far, y has just been a
variable that represents information.

We could imagine that y itself is a link. To accomplish this, we must introduce a
destination to be at the positive end of y.

We will call this new process R, and it must have the output prefix for y.

Passing links between agents

We have introduced an arbitrary destination agent R. This makes y a link that
ends in R.

y can still be passed around along links, but now it is also a link itself.

We will now look at how this affects the network topology.

Will then become

Passing links between agents

Computation

P has passed y (a link to R) to Q (via x).
By doing so, the network changes.

Changing network topology
The ability to represent
computation over a changing
network topology is an
important aspect of the
π-calculus.

A common example of a use case is the communication between a car radio
and radio towers.

The car will come within range of a tower and may leave the range of others.

Graphic from The Polymorphic Pi-Calculus: Theory and Implementation by David N. Turner (1995)

π-calculus in distributed computing
In the π-calculus so far, we have only defined communication over links as
passing other links. We have not allowed passing agents themselves over links.

As a demonstration of the versatility of the π-calculus, I will show that this is
almost possible.

Goal: pass an agent over a link
Take the following program:

Let P be an agent that does not use ε at all. In other words, P is waiting for some
value over link t but does not use the data at all. (ε ∉ fn(P))

If Q does not send data over t, then P will never execute.
If Q does send data over t, regardless of the actual data, P can immediately begin
execution.

Goal: pass an agent over a link

In this program, t can be called a trigger for P. Any other agent that has access to t
can send data through it begin execution of P.

In this way, transmission of the link t over some other link is mostly identical to
transmission of the agent P.

(P can only be executed once though, although this can be fixed through the special agent replication
operator *P.)

The π-calculus can model any program

Although I will not show it here, if we add the following agent rule:

It is possible to embed any lambda term in the π-calculus. It is therefore possible
to embed a program in any turing-complete language in the π-calculus.

*P Agent replication.
Identical to (P|*P).

π-calculus
Overall, I have showed that:

● The π-calculus is effective at modeling concurrent programs
● It can represent computation over a changing network landscape
● It can model sending processes themselves over links

I will now show how the π-calculus can actually be used in the real world.

The Pict Programming
Language

The Pict programming language
I have chosen to talk about the Pict language because of how close it is to the
π-calculus. Of course, some concessions must be made in order to function as a
real programming language.

One of these is the translation of the π-calculus to ASCII:

Simple programs similar to the π-calculus

We are used to creating concurrent agents and the zero agent:

In either case, no output is produced.

In Pict, the special channel print is introduced. Anything sent along this channel is
sent to stdout. Using the input prefix notation x!y, we can create the hello world
program:

Types in Pict
In Pict, every variable has a type, including channels. In the pure π-calculus, there
are no types.

Some common types are Bool, String, and Int, and tuples.

Value Type

32 Int

[1 2 3] [Int Int Int]

[] []

“Hello World” String

Channel Types in Pict
In Pict, channels have a distinct type. Every channel can carry values of only one type. Therefore, the type
of a channel is defined by the type it carries.

We will denote the type of a channel carrying X’s to be ^X.

We will often use a channel of type ^[] to act as a trigger or a function that takes no arguments.

Value Type

Channel that carries numbers ^Int

Channel that carries pairs of
numbers

^[Int, Int]

Channel that sends and receives
Strings

^String

Usage of a channel
Unlike the π-calculus as I have introduced it, all channels must be declared before
use. To declare a channel q of type K, we use the syntax:

To send the integer 3 along channel x, we use:

To receive a value y along channel x and send y to print, we use:

Usage of a channel
Putting this all together, we obtain the following program.

({- this -} is a comment)

Output: Hello

Usage of a channel: similar to a variable
In this Pict program, we are:

● Declaring a name (x) which can be used to
interact with information

● “Giving” x the information “Hello”
● Retrieving the information and sending it to print.

All of this might seem familiar to the following C++ program:

This is evidence that channels in Pict can act like mutable
variables in other languages.

Procedures
If we have a channel declared as:

(a channel receives any value of the type [] -- which can only be [])

and we define the following:

Then, anything we send along x will cause “X was executed” to be sent to the
console. This may feel similar to the following π-calculus term:

Procedures
This program defines a “procedure” x:

...and this will “execute” it:

Before, we made a comparison between Pict’s channels and mutable variables.
We can now also think of them as procedures.

Literals in Pict
In the pure π-calculus, there are no literals such as “strings” or 12. However, Pict
gives us these “for free.”

However, it is possible to define booleans without the need for special literals. I will
show how this is possible, then show how if-then-else statements arise naturally
out of them.

This will appear familiar to the construction of bools in the lambda calculus.

Usage example of a bool
Normally, when using a bool, we will have some construction similar to the
following:

We want this to be equivalent to true_case if condition is true, and false_case
otherwise.

if (condition)
then

true_case
else

false_case

Bools in Pict
In Pict, we will define the values:

new TRUE : ^[^[] ^[]]

run TRUE?[true_case false_case] = true_case![]

Here, we have defined TRUE to be a channel that takes pairs of procedures.
When TRUE is given a pair of two procedures, it will execute (by sending the
empty list along) the first one.

Bools in Pict
We will also define false:

new FALSE : ^[^[] ^[]]

run FALSE?[true_case false_case] = false_case![]

FALSE acts the same as TRUE, but it will execute the second argument it is given
instead of the first.

FALSE will essentially select the second argument, while TRUE will select the
first.

Conditional statements in Pict
Now, we can have statements that produce different output depending on FALSE
or TRUE:

Conditional statements in Pict
In our program, the conditional statement is on line 13:

Because TRUE selects the first argument, this will trigger the true_case, which
was defined:

So the program will output:

Conditional statements in Pict
If we had however written:

FALSE would have selected the second case, which would then print:

In this way, we can simulate conditional statements in Pict.

From the π-calculus to Pict
The π-calculus only provides facilities for agents and inter-agent communication.
However, Pict can be developed from these basic definitions. We can define:

● Mutable variables
● Procedures and Functions
● Conditional statements
● Output to stdout.

Applications of the π-calculus and Pict
● Modeling business processes (see Business Process Modeling Language

(BPML), XLANG)

● Simulation of the signalling pathway in a cell
○ It is possible to simulate the entire metabolic network of a simple cell using a variant of

π-calculus

● Pict as a compilation target

● Reasoning about highly concurrent
problems.

Cryptographic applications
● ProVerif: automatic crypto protocol verification
● ProVerif uses a variant of the π-calculus, the Spi calculus

Questions?

π-calculus:

● motivation
● syntax
● agents
● channels

○ network topology
○ channels over channels

■ changing network
○ agents over channels

Pict Language:

● types
○ channel types

● agent syntax
● channel syntax

○ channels as variables
○ channels as procedures

● procedures
● boolean literals

○ conditional statements

