
Yet Another Padding Oracle in OpenSSL CBC Ciphersuites

presented by Raphael Finkel
based on https://blog.cloudflare.com/
yet-another-padding-oracle-in-openssl-cbc-ciphersuites/
Keeping Current, September 5, 2018

https://blog.cloudflare.com/yet-another-padding-oracle-in-openssl-cbc-ciphersuites/
https://blog.cloudflare.com/yet-another-padding-oracle-in-openssl-cbc-ciphersuites/

The Cryptographic Doom Principle
▶ reference: https://moxie.org/blog/

the-cryptographic-doom-principle/ by Moxie Marlinspike
▶ If you have to perform any cryptographic operation before verifying the
MAC (message authentication code) on a message you’ve received, it
will somehow inevitably lead to doom.

▶ MAC is a cryptographic digest based on a secret key shared by Alice and
Bob.

▶ Proper use of MAC: Encrypt Then Authenticate (Encrypt-then-MAC, EtA;
used in IPsec)

▶ Alice sends to Bob: E(P) || MAC(E(P))
▶ Detail: E(P) also includes such information as the initialization vector and
the encryption algorithm; both are then covered by MAC().

▶ Bob first verifies MAC(E(P)), satisfying the principle. If that test passes,
Bob decrypts P.

▶ Good: Verifies integrity of E(P), therefore it also verifies integrity of P.
▶ Good: MAC(E(P)) provides no information about P.

https://moxie.org/blog/the-cryptographic-doom-principle/
https://moxie.org/blog/the-cryptographic-doom-principle/

Authenticate and encrypt (Encrypt-and-MAC, E&A; used in SSH)

▶ Alice sends to Bob: E(P) || MAC(P)
▶ Bob must first decrypt E(P) to get P, then confirm MAC(P), violating the
principle.

▶ Good: verifies integrity of P.
▶ Not good:

▶ May theoretically reveal information about P in MAC(P).
▶ No integrity check on E(P).

▶ Bad: vulnerable to chosen-ciphertext attacks on E.
▶ Man-in-the-middle Morton can try various versions of E(P), noting whether
Bob gets as far as trying to verify MAC(P).

▶ SSH is also vulnerable to a plaintext-recovery attack.

Authenticate then encrypt (MAC-then-encrypt, AtE; used in
SSL/TLS)

▶ Alice sends to Bob: E(P || MAC(P)).
▶ Bob must first decrypt E(P || MAC(P)) to get P and MAC(P), then confirm
MAC(P), violating the principle.

▶ Good: verifies integrity of P.
▶ Not good: does not verify integrity of E(P || MAC(P)).
▶ Bad: vulnerable to Vaudenay’s man-in-the-middle attack.

CBC (Cipher-block chaining) decryption

Figure 1: From Wikipedia

Vaudenay’s attack
▶ A padding-oracle attack, based on CBC decryption. The message to be
encrypted is padded to a multiple of the block size.

▶ The pad is N > 1 bytes, each containing the value N.
▶ Bob decrypts, then looks at the last byte, seeing N. Bob then verifies that
the last N bytes all have that same value. If not, padding error. Otherwise
Bob verifies MAC(P).

▶ M (Morton, the man in the middle) arbitrarily modifies R, the last byte in the
penultimate ciphertext block, which has a deterministic effect on the last
byte L of the last deciphered block, which Bob uses to determine padding.

▶ Either Bob gets a padding error or a MAC error. M can distinguish these
outcomes by a timing analysis.

▶ By trying at most 255 possible modifications of R, M can eventually trigger
a MAC error, because L is now 1, which is a valid padding value. M has
decrypted the last byte of the plaintext: R⊕ 1.

▶ M can now force L to be 2 and repeat the technique on the previous byte,
and so on, until M knows the entire plaintext.

Circumventing Vaudenay’s attack

▶ Bob can circumvent Vaudenay’s attack by running the padding check
plus the MAC check in constant time, never distinguishing to M which
check has failed.

▶ Store the result of each test in a success variable via AND operations,
doing each test regardless of the current success status; then return the
status.

▶ The padding value can be any value between 1 and blocksize-1; to ignore
non-padding bytes that B need not check, it checks them anyway but
ignores the (most likely bad) result with a mask.

▶ This code was introduced in TLS.

May 2016: Yet Another Padding Oracle in OpenSSL CBC
Ciphersuites

▶ CVE-2016-2107: reported to OpenSSL on 4/13/2016 by Juraj
Somorovsky.

▶ You can test any host via
https://filippo.io/CVE-2016-2107/. SSLLabs also tests.

▶ Our server, https://www.cs.uky.edu is not vulnerable. However,
https://elar.soas.ac.uk is vulnerable.

▶ Alice uses AtE: she sends E(P || MAC(P) || padding || padding length) in
CBC mode. Bob first decrypts, then verifies the padding, then verifies
MAC(P), then accepts P.

▶ This algorithm violates the Cryptographic Doom Principle.
▶ Coding error: The constant-time code did not check for a padding length
that is higher than legitimately possible.

▶ B’s mask can be fooled to check no bytes of the padding at all.
▶ So M can discover if a message is made entirely of bytes with value n≥
maxpad + 20.

https://filippo.io/CVE-2016-2107/
https://www.cs.uky.edu
https://elar.soas.ac.uk

Some details

▶ Assume block length is 32B, and MAC length is 20B. Then the padding
length p is constrained: 1 ≤ p ≤ 32 − 1 − 20, that is, maxpad is 11B.

▶ If the padding length is marked as 31, the mask for checking the MAC is
entirely out of range, so the MAC is not checked at all, although the
padding is checked.

▶ So M can discover if a message is made entirely of bytes with value n ≥
maxpad.

▶ If M can POST to B in an unauthenticated way, M can invoke B’s padding
and MAC check on its own plaintext.

▶ M aligns an unknown byte R (trying all possibilities) at the start of two
blocks containing 31 that it POSTs to B. When the MAC check passes,
the target byte is 31 ⊕ R.

▶ Sorry, but the details are pretty murky.

The fix

▶ Paraphrasing the blog: Under TLS-1.1, if the connection uses AES-CBC
and B supports AES-NI, M can recover at least 16B of anything it can get
the client to send repeatedly (by adding some JavaScript that does
exactly that, such as HTTP cookies) just before M-controlled data.

▶ The public report, including the bug and the fix,released 5/3/2016.
▶ The fix was developed by Kurt Roeckx of the OpenSSL development team.
▶ B should add a constant-time check that p ≤ maxpad.

And now for something completely different

▶ Look for https://map.what3words.com/lunch.hops.liked
▶ what3words: The world is divided into 3m× 3m squares.
▶ Each square has a 3-word address.
▶ The address is in English or any of about 20 languages.
▶ Populated areas use shorter words.
▶ Useful for giving a precise location, even if there is no nearby street
address

▶ Meeting someone at a large gathering
▶ Specifying where a drone should deliver your packet.

▶ There are apps for Android and iOS.

Original idea

Figure 2: xkcd.com/936/

