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Background

I The IEEE Software Engineering Body of Knowledge
(SWEBOK) provides a concise definition of software testing:
“Software testing consists of the dynamic verification that a
program provides expected behaviors on a finite set of test
cases, suitably selected from the usually infinite execution”
[13]

I Key points:
I Dynamic: Input and source code are not always enough to

determine behavior
I Examples: I/O, SLF4J

I Expected: We must be able to define expected behavior to test
for it

I Finite: The set of possible test cases is practically infinite, so
we must choose a finite subset

I Selected: Test cases can vary in usefulness considerably, so the
choice is important



Different Kinds of Testing

I Testing can be classified by target or objective
I Classifying by target gives three levels:

I Unit Testing: Small pieces of software testable in isolation
I Integration Testing: Interactions between software components
I System Testing: An entire system

I Classifications by objective:
I Regression testing
I Acceptance testing
I Security testing
I Performance testing
I Stress testing



What is Unit Testing?

I From the SWEBOK:“Unit testing verifies the functioning in
isolation of software elements that are separately testable.”
[13]
I What constitutes a unit? It depends on context
I Developers may have differing ideas about what constitutes a

unit

I Usually performed by the developer of the unit or someone
with programming skills and access to the source code

I Surveys suggest unit testing is an important testing method
that sees widespread use

I Unit testing is sometimes conflated with other kinds of testing
I E.g. a ”unit test” that relies on a database connection is not a

unit test under the definition given



Testing Terms and Software Metrics

I Failure: An undesired behavior

I Fault: The cause of a failure

I Defect: A fault or failure
I General software measures:

I Code size (lines of code)
I Number of independent paths through code (cyclomatic

complexity)
I Degree of nesting
I Average number of parameters
I Fan-out, or how many classes does this class use?
I Fan-in, or how many classes use this class?

I Survey data are used to measure things that are difficult to
measure objectively



Challenges in Software Testing

I Tests that are written without referring to some external
specification can only suggest that the code does what the
developer intended

I Exhaustive testing is impractical at best and impossible at
worst. Consider a program similar to ”echo” in Unix that
takes a Unicode string argument:
I With Unicode 11, 137374n permutations of length n are

possible[3]

I Some tests are more useful than others. How do we choose
the best set of tests?

I How do we know if we have enough tests?

I How do we know if testing is effective?

I Testing always involves a trade-off. More tests may find more
problems, but tests take time to write and maintain



Common Techniques for Choosing a Test Set

I Ad-hoc: Choose test inputs based on intuition and experience

I Boundary-value Analysis: Choose inputs close to boundaries in
the input domain e.g. largest and smallest possible values for
numerical datatypes

I Code-based analysis techniques:
I Control Flow Analysis: Choose tests that follow a subset of the

possible control flow paths through the code
I Data Flow Analysis: Choose tests that follow a subset of the

possible data flow paths through the code
I Mutation Analysis: Choose tests that fail when the program

under test is changed slightly

I The code-based techniques are often used to assess test
sufficiency



Control-Flow and Data-Flow Analysis

I Units contain assignment statements and conditional
statements

I Units have well-defined entry and exit points

I A path is a sequence of instructions

I Conditional statements determine control flow

I Assignment statements determine data flow

I Control-flow and data-flow analysis both involve selecting tests
so their execution follows different paths through the code

I They differ in perspective and how paths are selected:
I Control flow analysis considers paths between the entry and

exit points
I Data flow analysis considers paths that start with an

assignment statement and end with the last use of the variable



Coverage Metrics

I Coverage metrics assess how many execution paths are tested
versus how many are possible

I Metrics are based on desired level of coverage

I More complete coverage means exploring a larger portion of
the possible execution paths

I Path selection criteria for control-flow analysis:
I Statement Coverage: All statements are executed at least once
I Branch Coverage: Every branch is taken at least once
I Predicate Coverage: Every combination of truth value for

every conditional is tried at least once
I All-Paths Coverage: Every execution path is tried at least once

I Path selection criteria for data-flow analysis are based on
when variables are defined and used



Mutation Analysis

I Mutation score comes from mutation analysis, first proposed
in a 1978 article ”Hints on Test Data Selection”[6]

I Key insights:
I Programmers usually write software that is ”almost correct”
I Finding simple errors uncovers complex errors

I Used to assess test data sufficiency
I Mutation analysis involves making small, syntactically-legal

changes to the unit under test, producing mutants
I If the mutant causes some test to fail, it is said to be dead
I If the mutant does not cause any tests to fail, it is said to be

alive,killable, or stubborn
I Mutants are killed when the test set is sufficiently sensitive to

detect the mutation

I Mutation score is the number of mutants killed divided by the
total number of mutants



What Does a Good Test Look Like?

I Bowes et al.[2] wrote a paper called ”How Good Are My
Tests” that contained fifteen principles to follow when writing
unit tests

I Some of them include:
I ”Simplicity”
I ”Readability and Comprehension”
I ”Single-responsibility” (fail for one reason)
I ”Avoid over-protectiveness” (e.g. redundant assertions)
I ”Test behavior (not implementation)”
I ”Tests should not dictate the code”
I ”A test should fail.” Tests that never fail are useless
I ”Reliability”, and no nondeterminism
I ”Happy vs. sad tests”

I ”Happy” tests verify system behavior
I ”Sad” tests break the system
I Both are useful, but confirmation bias creeps in and causes us

to favor ”happy” tests



Arguments for Unit Testing

I Helps uncover defects early in the development process

I Allows developers to refactor with confidence because
breaking changes will cause the tests to fail

I Can encourage good software design
I Unit testing requires the unit under test (UUT) to be isolated
I Tightly-coupled units require more effort to test
I Tightly-coupled units are less robust
I Difficulty or undue effort in testing indicates suggest code

needs refactoring to reduce coupling

I Tests serve as a form of documentation



Arguments Against, or Unit Testing Considered Harmful

I Unit testing does not positively affect code quality in practice
I Most tests only assess whether the code does what the

developer intended
I Developers write lower-quality code to meet coverage-based

requirements

I Low-quality tests are worse than no tests at all since they
must be maintained

I Unit tests provide a false sense of security

I Unit testing costs more time than it saves

I Integration and system testing are more effective at
uncovering defects



What Does the Research Say?

I No correlation found yet between unit testing and code
quality[8]

I No correlation found between coverage-based methods for
determining test sufficiency quality and code quality[8]

I Developers need a better understanding of what makes a unit
test good[5]

I Test-Driven Development (TDD), of which unit testing is an
integral part, seems to measurably improve software quality in
some cases[12],[9]

I Automated test generation is in use, but mostly used in cases
where specifications are not required[5]



What About Test-Driven Development?

I Test-driven development (TDD) is a development style built
around two rules:[1]
I ”Write new code only if you first have a failing automated

test”
I ”Eliminate duplication”

I Important points:
I Test: Unit tests are written before new code
I Failing: The test must fail at first
I Automated: Tools are used to run tests and collect results

I ”The goal is clean code that works...”[1]
I Clean code has the smallest possible number of dependencies
I Empirical studies of TDD use different measures
I The ambiguity was probably intentional1

1Test-Driven Development By Example says,”TDD is an awareness of the
gap between decision and feedback during programming,and techniques to
control that gap”



...and the Research?

I A 2008 article [9] found modest improvements in code size
and complexity but not in coupling or cohesion

I A 2013 meta-analysis[12] of 27 empirical studies found that
TDD ”results in a small improvement in quality but results on
productivity are inconclusive.”

I A recent (July 2018) article[10] called ”What Do We (Really)
Know About Test-Driven Development?” offers the following:
I Use of TDD is uncommon in practice
I TDD does appear to improve some measures of quality in

some cases
I Evidence for the effects of TDD on productivity is inconclusive
I The order of testing is not the important part of TDD
I Using a short development cycle had much more impact on

quality than the order of testing (test-first versus test-last)



Conclusions

I Unit testing can be worth the trouble, but it is not sufficient
by itself to improve software quality

I An iterative development process with short, gradual steps
seems to improve software quality

I Unit testing and TDD are tools. Like other tools, they work
best in the hands of those that know how to use them

I Test quality is very important since we are limited to a very
small subset of possibilities when testing

I Testing is a balancing act
I Test selection is an important problem
I Tests are not free to maintain, even if a machine writes them

for you

I Automation and tool support is a poor substitute for thinking
about design



So What Can Be Done?

I ”A Survey On Unit Testing Practice and Problems”[5]
suggests:
I Developers need help identifying what to test and whether a

given test is good or not
I Automatic test generation helps with the ”how” of testing but

not the ”what”
I The question of ”what” is shared across all types of testing
I Tests should be realistic

I Furthermore:
I Software design is a skill that must be learned and practiced
I Though part of design, testing is a distinct skill that must be

learned and practiced
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