
Making C less dangerous

Keeping current, 9/12/2018
Presented by Raphael Finkel
Based on

▶ https:
//lwn.net/SubscriberLink/763641/c9a04da2a33af0a3/

▶ https:
//developers.slashdot.org/story/18/09/01/2311248/
how-linuxs-kernel-developers-make-c-less-dangerous

▶ https://www.hpe.com/us/en/insights/articles/
making-c-less-dangerous-1808.html

▶ https://raphlinus.github.io/programming/rust/
2018/08/17/undefined-behavior.html

https://lwn.net/SubscriberLink/763641/c9a04da2a33af0a3/
https://lwn.net/SubscriberLink/763641/c9a04da2a33af0a3/
https://developers.slashdot.org/story/18/09/01/2311248/how-linuxs-kernel-developers-make-c-less-dangerous
https://developers.slashdot.org/story/18/09/01/2311248/how-linuxs-kernel-developers-make-c-less-dangerous
https://developers.slashdot.org/story/18/09/01/2311248/how-linuxs-kernel-developers-make-c-less-dangerous
https://www.hpe.com/us/en/insights/articles/making-c-less-dangerous-1808.html
https://www.hpe.com/us/en/insights/articles/making-c-less-dangerous-1808.html
https://raphlinus.github.io/programming/rust/2018/08/17/undefined-behavior.html
https://raphlinus.github.io/programming/rust/2018/08/17/undefined-behavior.html

Strict aliasing
▶ Aliasing problems: overlaying a struct with a buffer of, say, int.

struct msg_t {
int a, b;

} msg;
char *buffer = &msg;

▶ What’s can go wrong?
▶ Optimization assumes that two pointers of two different types can’t overlap.
▶ The compiler might place msg.a in a register in a situation where it is

used heavily, such as in a loop.
▶ Access to buffer[0] might not use that register.

▶ Fix the problem by using a union
union {

struct msg_t msg;
char asBuffer[sizeof(msg_t)/sizeof(char)]

}
▶ Also worry about endianness when overlaying with char.

Undefined behavior in C

▶ Uninitialized local variables (garbage based on previous memory use)
▶ gcc fix: -finit-local-vars

▶ void pointers to callable typed functions (a type-system weakness)
▶ Poorly designed library routines (memcpy() doesn’t take/update a

“destination-remaining size”).

Dynamic-length arrays

int size = 8192
char buf[size];
buf[bad] = foo;

▶ Can overwrite return address or other stack frame; can circumvent guard
pages and stack canaries

▶ Actually slower (13%) than static-length arrays.
▶ gcc warning: -Wvla

Fall-through of switch cases

▶ A common error (67 such bugs reported in Linux kernel): forgetting
break in a switch branch.

▶ Other languages inherit the same poor design (Java, JavaScript).
▶ But some automatically insert break, require fallthrough if desired

(Go)

▶ gcc warning: -Wimplicit-fallthrough; mark intentional
fall-through with a comment.

▶ unrelated error with switch: unreachable initialization statements
(before the first case.

▶ gcc warning: -Wswitch-unreachable

Arithmetic overflow

▶ Signed integer arithmetic overflow is usually an error.
▶ Unsigned overflow is often intentional, as in hash-function computation

▶ The hardware does not generate a trap (unlike divide-by-zero error).
▶ But code can check by investigating condition codes.

▶ gcc fix: -fsanitize=signed-integer-overflow
▶ Fast: undetectable time cost
▶ Big: warnings increase size by 6%

▶ Use macros to explicitly check individual operations

if (check_add_overflow(a, b, &c)) return -EOVERFLOW;

Bounds checking

▶ C array indices are not checked for bounds
▶ It is easy to commit an off-by-one error.
▶ Even negative indices are valid, but are usually erroneous.

▶ The kernel has some explicit checks
▶ copy_to_user(): less than 1% speed cost
▶ strncpy(): about 2% speed cost

▶ Don’t use for null-terminated strings; the final null may not fit.
▶ null-pads entire destination, even if not needed.
▶ strlcpy() always places at least one null at the end.

▶ Hardware memory tagging is much faster; available on SPARC.

Control-flow integrity

▶ Forward-edge vulnerability: Methods stored in the heap are often called
without checking the function prototype.

▶ Backward-edge vulnerability: An attack might overwrite the return
address.

▶ Shadow stack holds a copy of the return address
▶ Function prologue copies the return address to the shadow stack
▶ Function epilogue compares shadow return address with ordinary return

address
▶ Clang fix: -fsanitize=shadow-call-stack

▶ Hardware support for signed return address in ARM v8.3a
▶ gcc: -msign-return-address

The Linux Kernel Self-Protection Project (KSPP)

▶ Purpose: protect the kernel (not userspace) from attack.
▶ The Linux kernel is mostly written C, because it generates fast code.

Architecture-dependent parts (memory management, interrupt handling,
…) are written in assembler.

▶ Status
▶ Nearly eradicated variable-length arrays.
▶ Steady progress on marking fall-through on switch branches.
▶ Waiting for compiler help on always-initialized local variables.
▶ Explicit arithmetic overflow detection for memory allocation.
▶ Waiting for hardware support for bounds checking.
▶ Forward-edge control-flow integrity: in progress; works on Android.
▶ Backward-edge control-flow integrity: shadow stack on Android (ARM);

waiting for hardware support for other platforms.

Variants of C

▶ Semi-portable C
▶ C is “a portable assembly language”
▶ heavy use of #ifdef and autoconf.
▶ type punning is OK so long as sizes align.

▶ Standard (ANSI) C: A compromise
▶ many enhancements to provide type security
▶ must still pay attention to correct use of pointers

▶ avoid memory errors: use-after-free, double-free, out-of-bounds access

▶ introduces “undefined behavior”
▶ shift-past-bitwidth: “x << 64 is allowed to crash, subtly corrupt memory, or

connect to a server to transfer money out of your account.”
▶ signed integer overflow, reading uninitialized memory, computing (not just

dereferencing) an out-of-bounds pointer, type punning through pointers,
https://blog.regehr.org/archives/213

https://blog.regehr.org/archives/213

Other pitfalls due to bad language design
▶ The = and == operators look similar, and wherever one is valid, so is the

other.
▶ Curly braces are not required on if branches, or for or while bodies.

(Go requires braces)
▶ A maintainer must add braces to enlarge the branch or body.
▶ The programmer could accidentally place ; before the body.

▶ Function prototypes are not required.
▶ The auto-increment and auto-decrement operators are confusing

j = j++ // what does this mean?
▶ Conflating pointers and arrays

▶ If you pass an array to a function, the function treats it as a pointer, and
bounds checking is not possible.

▶ Strings require a null terminator.

myString = (char *)malloc(stringLength+1);

