
Modern C++: 11 and up

Neil Moore

Department of Computer Science
University of Kentucky

Lexington, Kentucky 40506

neil@cs.uky.edu

24 January, 2018



Outline

About C++ and C++ standards

(Some) new features of C++11 and later
I Range-based for loops
I Type inference with auto
I Lambdas
I constexpr
I Move semantics

Where to find more information

N. Moore (UK CS) Modern C++ January 2018 2 / 22



Guiding principles of C++

C++ is a “general purpose programming language with a bias
towards systems programming” (Stroustrup
http://www.stroustrup.com/C++.html)

Supports object-oriented programming, doesn’t force it.

“You don’t pay for what you don’t use”

“Zero-overhead abstractions”

This talk will focus on new features of C++11 and up.

N. Moore (UK CS) Modern C++ January 2018 3 / 22

http://www.stroustrup.com/C++.html


C++ standards: history

C++ was developed by Bjarne Stroustrup at AT&T from the late 70s.

Originally a preprocessor for C, influenced by SIMULA (1960s)

1985: First commercial release, first edition of The C++
Programming Language book

1998: International standardization: ISO/IEC 14882:1998
(“C++98”)

2003: Bug fixes: C++03 (ISO 14882:2003)

2011: Huge revision: C++11
I Took forever: was C++0x in development.
I Still almost entirely backwards-compatible with C++98.
I “Modern C++” usually means C++11 and up.

2014: Era of clockwork revisions: C++14

2017: Tock: C++17

N. Moore (UK CS) Modern C++ January 2018 4 / 22



C++ standards: history

C++ was developed by Bjarne Stroustrup at AT&T from the late 70s.

Originally a preprocessor for C, influenced by SIMULA (1960s)

1985: First commercial release, first edition of The C++
Programming Language book

1998: International standardization: ISO/IEC 14882:1998
(“C++98”)

2003: Bug fixes: C++03 (ISO 14882:2003)

2011: Huge revision: C++11
I Took forever: was C++0x in development.
I Still almost entirely backwards-compatible with C++98.
I “Modern C++” usually means C++11 and up.

2014: Era of clockwork revisions: C++14

2017: Tock: C++17

N. Moore (UK CS) Modern C++ January 2018 4 / 22



C++ standards: history

C++ was developed by Bjarne Stroustrup at AT&T from the late 70s.

Originally a preprocessor for C, influenced by SIMULA (1960s)

1985: First commercial release, first edition of The C++
Programming Language book

1998: International standardization: ISO/IEC 14882:1998
(“C++98”)

2003: Bug fixes: C++03 (ISO 14882:2003)

2011: Huge revision: C++11
I Took forever: was C++0x in development.
I Still almost entirely backwards-compatible with C++98.
I “Modern C++” usually means C++11 and up.

2014: Era of clockwork revisions: C++14

2017: Tock: C++17

N. Moore (UK CS) Modern C++ January 2018 4 / 22



C++ standards: history

C++ was developed by Bjarne Stroustrup at AT&T from the late 70s.

Originally a preprocessor for C, influenced by SIMULA (1960s)

1985: First commercial release, first edition of The C++
Programming Language book

1998: International standardization: ISO/IEC 14882:1998
(“C++98”)

2003: Bug fixes: C++03 (ISO 14882:2003)

2011: Huge revision: C++11
I Took forever: was C++0x in development.
I Still almost entirely backwards-compatible with C++98.
I “Modern C++” usually means C++11 and up.

2014: Era of clockwork revisions: C++14

2017: Tock: C++17

N. Moore (UK CS) Modern C++ January 2018 4 / 22



C++ standards: history

C++ was developed by Bjarne Stroustrup at AT&T from the late 70s.

Originally a preprocessor for C, influenced by SIMULA (1960s)

1985: First commercial release, first edition of The C++
Programming Language book

1998: International standardization: ISO/IEC 14882:1998
(“C++98”)

2003: Bug fixes: C++03 (ISO 14882:2003)

2011: Huge revision: C++11
I Took forever: was C++0x in development.
I Still almost entirely backwards-compatible with C++98.
I “Modern C++” usually means C++11 and up.

2014: Era of clockwork revisions: C++14

2017: Tock: C++17

N. Moore (UK CS) Modern C++ January 2018 4 / 22



C++ standards: history

C++ was developed by Bjarne Stroustrup at AT&T from the late 70s.

Originally a preprocessor for C, influenced by SIMULA (1960s)

1985: First commercial release, first edition of The C++
Programming Language book

1998: International standardization: ISO/IEC 14882:1998
(“C++98”)

2003: Bug fixes: C++03 (ISO 14882:2003)

2011: Huge revision: C++11
I Took forever: was C++0x in development.
I Still almost entirely backwards-compatible with C++98.
I “Modern C++” usually means C++11 and up.

2014: Era of clockwork revisions: C++14

2017: Tock: C++17

N. Moore (UK CS) Modern C++ January 2018 4 / 22



C++ standards: history

C++ was developed by Bjarne Stroustrup at AT&T from the late 70s.

Originally a preprocessor for C, influenced by SIMULA (1960s)

1985: First commercial release, first edition of The C++
Programming Language book

1998: International standardization: ISO/IEC 14882:1998
(“C++98”)

2003: Bug fixes: C++03 (ISO 14882:2003)

2011: Huge revision: C++11
I Took forever: was C++0x in development.
I Still almost entirely backwards-compatible with C++98.
I “Modern C++” usually means C++11 and up.

2014: Era of clockwork revisions: C++14

2017: Tock: C++17

N. Moore (UK CS) Modern C++ January 2018 4 / 22



C++11

C++ goes to eleven.

N. Moore (UK CS) Modern C++ January 2018 5 / 22



Range-based for loops

Above: range-based six loops

N. Moore (UK CS) Modern C++ January 2018 6 / 22



Range-based for loops
Range-based for loops are syntactic sugar for a common iterator idiom.

In C++03:

const std::set<City> cities = . . . ;

for (std::set<City>::const_iterator i = cities.begin());

i != cities.end();

i++)

{

const City &c = *i;

. . .

}

In C++11:

const std::set<City> cities = . . . ;

for (const City &c : cities)

{

. . .

}

N. Moore (UK CS) Modern C++ January 2018 7 / 22



Range-based for loops
Range-based for loops are syntactic sugar for a common iterator idiom.

In C++03:

const std::set<City> cities = . . . ;

for (std::set<City>::const_iterator i = cities.begin());

i != cities.end();

i++)

{

const City &c = *i;

. . .

}

In C++11:

const std::set<City> cities = . . . ;

for (const City &c : cities)

{

. . .

}

N. Moore (UK CS) Modern C++ January 2018 7 / 22



Range-based for loops

Range for with plain arrays, not just data structures with iterators. In
C++11:

char name[] = "Stroustrup";

for (char letter : name)

cout << letter << ’\n’;

Loop variable can be a plain variable, reference, const reference, . . .:

char name[] = "Stroustrup";

for (char &letter : name)

letter = ’*’;

No access to the actual iterator!
I If you need the index (0, 1, 2, . . . ), don’t use range for.

N. Moore (UK CS) Modern C++ January 2018 8 / 22



Range-based for loops

Range for with plain arrays, not just data structures with iterators. In
C++11:

char name[] = "Stroustrup";

for (char letter : name)

cout << letter << ’\n’;

Loop variable can be a plain variable, reference, const reference, . . .:

char name[] = "Stroustrup";

for (char &letter : name)

letter = ’*’;

No access to the actual iterator!
I If you need the index (0, 1, 2, . . . ), don’t use range for.

N. Moore (UK CS) Modern C++ January 2018 8 / 22



Range-based for loops

Range for with plain arrays, not just data structures with iterators. In
C++11:

char name[] = "Stroustrup";

for (char letter : name)

cout << letter << ’\n’;

Loop variable can be a plain variable, reference, const reference, . . .:

char name[] = "Stroustrup";

for (char &letter : name)

letter = ’*’;

No access to the actual iterator!
I If you need the index (0, 1, 2, . . . ), don’t use range for.

N. Moore (UK CS) Modern C++ January 2018 8 / 22



Type inference with auto

But does it support type inference?

N. Moore (UK CS) Modern C++ January 2018 9 / 22



Type inference with auto
C++11 can in many instances infer types of variables automatically:

std::vector<Animal> pets = get_pets();

auto opal = pets[2]; // copy: Animal opal = pets[2];

auto &gus = pets[3]; // ref: Animal &gus = pets[3];

// std::vector<Animal>::iterator start = . . .

auto start = pets.begin();

C++14 made auto return types work for most functions:

auto myfn(bool large) // double myfn(bool large)

{

if (large)

return std::exp(20.0);

else

return 20.0;

}

N. Moore (UK CS) Modern C++ January 2018 10 / 22



Type inference with auto
C++11 can in many instances infer types of variables automatically:

std::vector<Animal> pets = get_pets();

auto opal = pets[2]; // copy: Animal opal = pets[2];

auto &gus = pets[3]; // ref: Animal &gus = pets[3];

// std::vector<Animal>::iterator start = . . .

auto start = pets.begin();

C++14 made auto return types work for most functions:

auto myfn(bool large) // double myfn(bool large)

{

if (large)

return std::exp(20.0);

else

return 20.0;

}

N. Moore (UK CS) Modern C++ January 2018 10 / 22



Type inference with auto
C++11 can in many instances infer types of variables automatically:

std::vector<Animal> pets = get_pets();

auto opal = pets[2]; // copy: Animal opal = pets[2];

auto &gus = pets[3]; // ref: Animal &gus = pets[3];

// std::vector<Animal>::iterator start = . . .

auto start = pets.begin();

C++14 made auto return types work for most functions:

auto myfn(bool large) // double myfn(bool large)

{

if (large)

return std::exp(20.0);

else

return 20.0;

}

N. Moore (UK CS) Modern C++ January 2018 10 / 22



Type inference with auto, cont’d

AAA style: “almost always auto”:

auto num_users = 5;

auto name_array = "hello world";

auto name_str = std::string{"hello world"};

auto name_str2 = "hello world"s; // Same, since C++14

N. Moore (UK CS) Modern C++ January 2018 11 / 22



Lambdas

Can you believe there were two movies in 1990 about the lambada dance?
Both were box-office flops.

N. Moore (UK CS) Modern C++ January 2018 12 / 22



Lambdas

Lambdas are unnamed functions that can capture variables in the
surrounding scope:

int min_value = flag ? 3 : 5;

auto it = std::find_if(vec.begin(), vec.end(),

[min_value](int num) -> bool {

return num >= min_value

});

[captures] (arguments) -> ret type { body }

Square brackets: variables to capture
I &var to capture by reference
I = for all variables used
I & for all variables used, by reference.

Parentheses: function parameters

->: return type

N. Moore (UK CS) Modern C++ January 2018 13 / 22



Lambdas

Lambdas are unnamed functions that can capture variables in the
surrounding scope:

int min_value = flag ? 3 : 5;

auto it = std::find_if(vec.begin(), vec.end(),

[min_value](int num) -> bool {

return num >= min_value

});

[captures] (arguments) -> ret type { body }
Square brackets: variables to capture

I &var to capture by reference
I = for all variables used
I & for all variables used, by reference.

Parentheses: function parameters

->: return type

N. Moore (UK CS) Modern C++ January 2018 13 / 22



constexpr

Apologies to Allie Brosh of Hyperbole and a Half.

N. Moore (UK CS) Modern C++ January 2018 14 / 22



constexpr
The keyword constexpr tells the compiler that a variable or function can
and should be computed at compile time.

Faster run-time, slower compilation.

C++11 only allowed constexpr for very simple functions.
I C++14 greatly expanded what can be done at compile time.

// OK in C++11, but a loop or if would only work in C++14:

constexpr long long factorial(int n)

{

return n <= 0 ? 1

: n * factorial(n - 1);

}

// Computed at compile-time:

constexpr auto thirteen_fact = factorial(13);

int x = . . .;

auto x_fact = factorial(x); // Computed at run-time

constexpr auto x_fact_2 = factorial(x); // ERROR

N. Moore (UK CS) Modern C++ January 2018 15 / 22



constexpr
The keyword constexpr tells the compiler that a variable or function can
and should be computed at compile time.

Faster run-time, slower compilation.

C++11 only allowed constexpr for very simple functions.
I C++14 greatly expanded what can be done at compile time.

// OK in C++11, but a loop or if would only work in C++14:

constexpr long long factorial(int n)

{

return n <= 0 ? 1

: n * factorial(n - 1);

}

// Computed at compile-time:

constexpr auto thirteen_fact = factorial(13);

int x = . . .;

auto x_fact = factorial(x); // Computed at run-time

constexpr auto x_fact_2 = factorial(x); // ERROR

N. Moore (UK CS) Modern C++ January 2018 15 / 22



constexpr
The keyword constexpr tells the compiler that a variable or function can
and should be computed at compile time.

Faster run-time, slower compilation.

C++11 only allowed constexpr for very simple functions.
I C++14 greatly expanded what can be done at compile time.

// OK in C++11, but a loop or if would only work in C++14:

constexpr long long factorial(int n)

{

return n <= 0 ? 1

: n * factorial(n - 1);

}

// Computed at compile-time:

constexpr auto thirteen_fact = factorial(13);

int x = . . .;

auto x_fact = factorial(x); // Computed at run-time

constexpr auto x_fact_2 = factorial(x); // ERROR

N. Moore (UK CS) Modern C++ January 2018 15 / 22



constexpr
The keyword constexpr tells the compiler that a variable or function can
and should be computed at compile time.

Faster run-time, slower compilation.

C++11 only allowed constexpr for very simple functions.
I C++14 greatly expanded what can be done at compile time.

// OK in C++11, but a loop or if would only work in C++14:

constexpr long long factorial(int n)

{

return n <= 0 ? 1

: n * factorial(n - 1);

}

// Computed at compile-time:

constexpr auto thirteen_fact = factorial(13);

int x = . . .;

auto x_fact = factorial(x); // Computed at run-time

constexpr auto x_fact_2 = factorial(x); // ERROR

N. Moore (UK CS) Modern C++ January 2018 15 / 22



constexpr
The keyword constexpr tells the compiler that a variable or function can
and should be computed at compile time.

Faster run-time, slower compilation.

C++11 only allowed constexpr for very simple functions.
I C++14 greatly expanded what can be done at compile time.

// OK in C++11, but a loop or if would only work in C++14:

constexpr long long factorial(int n)

{

return n <= 0 ? 1

: n * factorial(n - 1);

}

// Computed at compile-time:

constexpr auto thirteen_fact = factorial(13);

int x = . . .;

auto x_fact = factorial(x); // Computed at run-time

constexpr auto x_fact_2 = factorial(x); // ERROR

N. Moore (UK CS) Modern C++ January 2018 15 / 22



Move semantics

Imagine this truck is full of semantics.

N. Moore (UK CS) Modern C++ January 2018 16 / 22



Move semantics

One of the most significant changes in C++11 was the addition of move
constructors, move assignment operators, and rvalue references.

Consider a function that takes a (potentially long) string argument
and modifies it internally.

C++98 and 03 options:
I Call-by-value: Requires a copy: expensive!
I Call-by-reference: Doesn’t work for temporaries.
I Call-by-const-reference: Can’t modify the argument.

Move semantics: move data directly from temporary into argument.
I Usually just a pointer adjustment: cheap!
I The data is lost from the original location.
I But that’s a temporary, so no problem!
I “Valid but unspecified state”.

Most of the standard data structures support move semantics.

N. Moore (UK CS) Modern C++ January 2018 17 / 22



Move semantics

One of the most significant changes in C++11 was the addition of move
constructors, move assignment operators, and rvalue references.

Consider a function that takes a (potentially long) string argument
and modifies it internally.

C++98 and 03 options:
I Call-by-value: Requires a copy: expensive!
I Call-by-reference: Doesn’t work for temporaries.
I Call-by-const-reference: Can’t modify the argument.

Move semantics: move data directly from temporary into argument.
I Usually just a pointer adjustment: cheap!
I The data is lost from the original location.
I But that’s a temporary, so no problem!
I “Valid but unspecified state”.

Most of the standard data structures support move semantics.

N. Moore (UK CS) Modern C++ January 2018 17 / 22



Move semantics

One of the most significant changes in C++11 was the addition of move
constructors, move assignment operators, and rvalue references.

Consider a function that takes a (potentially long) string argument
and modifies it internally.

C++98 and 03 options:
I Call-by-value: Requires a copy: expensive!
I Call-by-reference: Doesn’t work for temporaries.
I Call-by-const-reference: Can’t modify the argument.

Move semantics: move data directly from temporary into argument.
I Usually just a pointer adjustment: cheap!
I The data is lost from the original location.
I But that’s a temporary, so no problem!
I “Valid but unspecified state”.

Most of the standard data structures support move semantics.

N. Moore (UK CS) Modern C++ January 2018 17 / 22



Move semantics

One of the most significant changes in C++11 was the addition of move
constructors, move assignment operators, and rvalue references.

Consider a function that takes a (potentially long) string argument
and modifies it internally.

C++98 and 03 options:
I Call-by-value: Requires a copy: expensive!
I Call-by-reference: Doesn’t work for temporaries.
I Call-by-const-reference: Can’t modify the argument.

Move semantics: move data directly from temporary into argument.
I Usually just a pointer adjustment: cheap!
I The data is lost from the original location.
I But that’s a temporary, so no problem!
I “Valid but unspecified state”.

Most of the standard data structures support move semantics.

N. Moore (UK CS) Modern C++ January 2018 17 / 22



Move semantics, cont’d
To add move semantics to your own data structures, add a move constructor and
a move assignment operator with an rvalue reference parameter (&&):

class my_string {

char *data;

std::size_t length;

public:

my_string(my_string &&other)

: data(other.data), length(other.length)

{ other.data = nullptr; other.length = 0; }

my_string &operator =(my_string &&other)

{ std::swap(data, other.data);

std::swap(length, other.length);

}

// Probably also need a copy constructor and assignment operator

// (const my_string &other)

}

N. Moore (UK CS) Modern C++ January 2018 18 / 22



Move semantics, cont’d
To add move semantics to your own data structures, add a move constructor and
a move assignment operator with an rvalue reference parameter (&&):

class my_string {

char *data;

std::size_t length;

public:

my_string(my_string &&other)

: data(other.data), length(other.length)

{ other.data = nullptr; other.length = 0; }

my_string &operator =(my_string &&other)

{ std::swap(data, other.data);

std::swap(length, other.length);

}

// Probably also need a copy constructor and assignment operator

// (const my_string &other)

}

N. Moore (UK CS) Modern C++ January 2018 18 / 22



Move semantics, cont’d
To add move semantics to your own data structures, add a move constructor and
a move assignment operator with an rvalue reference parameter (&&):

class my_string {

char *data;

std::size_t length;

public:

my_string(my_string &&other)

: data(other.data), length(other.length)

{ other.data = nullptr; other.length = 0; }

my_string &operator =(my_string &&other)

{ std::swap(data, other.data);

std::swap(length, other.length);

}

// Probably also need a copy constructor and assignment operator

// (const my_string &other)

}

N. Moore (UK CS) Modern C++ January 2018 18 / 22



Move semantics, cont’d
To add move semantics to your own data structures, add a move constructor and
a move assignment operator with an rvalue reference parameter (&&):

class my_string {

char *data;

std::size_t length;

public:

my_string(my_string &&other)

: data(other.data), length(other.length)

{ other.data = nullptr; other.length = 0; }

my_string &operator =(my_string &&other)

{ std::swap(data, other.data);

std::swap(length, other.length);

}

// Probably also need a copy constructor and assignment operator

// (const my_string &other)

}

N. Moore (UK CS) Modern C++ January 2018 18 / 22



Further reading

N. Moore (UK CS) Modern C++ January 2018 19 / 22



Books

Stroustrup, Programming: Principles and Practice Using C++,
2nd ed. 2014.

I Introductory programming textbook using modern C++.

Stroustrup, A Tour of C++. 2013.
I Overview of modern C++ for people who know old-fashioned C++.
I 2nd ed. will cover C++20, but that’s a few years off.

Stroustrup, The C++ Programming Language, 4th ed. 2013.
I The complete reference manual for C++. Covers up to C++11.

Scott Meyers, Effective Modern C++
I Using new features of C++11 and C++14 to maximum effect.

N. Moore (UK CS) Modern C++ January 2018 20 / 22



Free online material

CppCon videos: https://www.youtube.com/user/CppCon/videos
I Annual C++ conference.
I Lots of excellent talks, from beginner to expert.
I Great (IMHO) speakers: Scott Meyers, Herb Sutter, Chandler Carruth,

Stephan T. Lavavej, Bjarne Stroustrup

cppreference: http://en.cppreference.com/
I Excellent, but very technical, reference manual for C++.
I Indicates changes between C++03, C++11, C++14, C++17.
I Almost every page has an example!

C++17 working draft: https://isocpp.org/std/the-standard
I The official standard costs money, but the last working draft before the

ballot is available for free.
I Hope you like standardese!
I Mostly useful for C++ implementors. . .

N. Moore (UK CS) Modern C++ January 2018 21 / 22

https://www.youtube.com/user/CppCon/videos
http://en.cppreference.com/
https://isocpp.org/std/the-standard


Free online material

CppCon videos: https://www.youtube.com/user/CppCon/videos
I Annual C++ conference.
I Lots of excellent talks, from beginner to expert.
I Great (IMHO) speakers: Scott Meyers, Herb Sutter, Chandler Carruth,

Stephan T. Lavavej, Bjarne Stroustrup

cppreference: http://en.cppreference.com/
I Excellent, but very technical, reference manual for C++.
I Indicates changes between C++03, C++11, C++14, C++17.
I Almost every page has an example!

C++17 working draft: https://isocpp.org/std/the-standard
I The official standard costs money, but the last working draft before the

ballot is available for free.
I Hope you like standardese!
I Mostly useful for C++ implementors. . .

N. Moore (UK CS) Modern C++ January 2018 21 / 22

https://www.youtube.com/user/CppCon/videos
http://en.cppreference.com/
https://isocpp.org/std/the-standard


Free online material

CppCon videos: https://www.youtube.com/user/CppCon/videos
I Annual C++ conference.
I Lots of excellent talks, from beginner to expert.
I Great (IMHO) speakers: Scott Meyers, Herb Sutter, Chandler Carruth,

Stephan T. Lavavej, Bjarne Stroustrup

cppreference: http://en.cppreference.com/
I Excellent, but very technical, reference manual for C++.
I Indicates changes between C++03, C++11, C++14, C++17.
I Almost every page has an example!

C++17 working draft: https://isocpp.org/std/the-standard
I The official standard costs money, but the last working draft before the

ballot is available for free.
I Hope you like standardese!
I Mostly useful for C++ implementors. . .

N. Moore (UK CS) Modern C++ January 2018 21 / 22

https://www.youtube.com/user/CppCon/videos
http://en.cppreference.com/
https://isocpp.org/std/the-standard


Free online material

CppCon videos: https://www.youtube.com/user/CppCon/videos
I Annual C++ conference.
I Lots of excellent talks, from beginner to expert.
I Great (IMHO) speakers: Scott Meyers, Herb Sutter, Chandler Carruth,

Stephan T. Lavavej, Bjarne Stroustrup

cppreference: http://en.cppreference.com/
I Excellent, but very technical, reference manual for C++.
I Indicates changes between C++03, C++11, C++14, C++17.
I Almost every page has an example!

C++17 working draft: https://isocpp.org/std/the-standard
I The official standard costs money, but the last working draft before the

ballot is available for free.
I Hope you like standardese!
I Mostly useful for C++ implementors. . .

N. Moore (UK CS) Modern C++ January 2018 21 / 22

https://www.youtube.com/user/CppCon/videos
http://en.cppreference.com/
https://isocpp.org/std/the-standard


Thank you! Questions or remarks?

N. Moore (UK CS) Modern C++ January 2018 22 / 22


	Introduction
	About C++
	Range-based for loops
	Type inference with auto
	Lambdas
	constexpr
	Move semantics
	Further reading

