QuantC: A CUDA-Inspired Language
for Quantum Computing

"

Crash Course in Quantum Computing: Qubits

* Qubits are like bits, but are based on some quantum phenomenon with a binary set

of states when measured
« Can store 0 and 1 like a regular bit, but can also be in a superposition of 0 and 1

« Measuring a qubit causes it to collapse into either a 0 or 1 if it’s in a superposition

% University of
Kentucky:

Crash Course in Quantum Computing: Gates and Measuring

A common representation of computations on qubits is as a circuit, with operations represented

as quantum logic gates
* Quantum circuits are just as computationally powerful as classical circuits

 However, quantum circuits do have some constraints classical versions don’t have
« (Gates/circuits must be reversible; at minimum, the # outputs = # inputs

» (Gates can'’t be used to copy or delete arbitrary quantum states

% University of
Kentucky:

Crash Course in Quantum
Mechanics

Value of a qubit is represented by a normalized
vector in C?

First coefficient is always taken to be real

Gates are unitary matrices in €2 *2"
Unitary: UUT = UTU =1

Measurement corresponds to randomly picking
a base state, where the probability of picking it

is based on the coefficient in the qubit vector

7, 0\ .
|Yp) = sin > |0) + cos > e'?|1)

0= 3.1 =[2

% University of
Kentucky:

Examples of Quantum Gates

Classically Equivalent Gates Purely Quantum Gates

@ NOT (a.k.a X-gate)
Hadamard gate
XOR
(a.k.a Controlled NOT, CNOT)

AND (a.k.a Toffoli gate, CCNOT)

VNOT gate

% University of
Kentucky:

Simple Circuit Examples

Entanglement Circuit Full Adder

100) + [11)
V2

|00) -

% University of
Kentucky:

Design Goals

« Create a language with syntax to support creating programs with both
classical and quantum components

« Minimize the overhead for learning the language
« Extend an existing language, rather than start from scratch
« Make distinguishing the two parts of code clear
* Only introduce new syntax for new concepts

« Avoid overloading the meaning of existing symbols for quantum code unless the
semantics are closely related

« Abstract communication between the classical and quantum computers

% University of
Kentucky:

Standard C Code
/v,:-:d saxpy(int n, Float a, \

float *x, float *y)
i

for (int 1 = 0; 1 < A ++1)

E-“W{Hp 2.“. Ny ?]:

.

C with CUDA extensions

g loha
c:d saxpy(int n, Float a,

float *x, float *y)

\

{
it i1 = Block
if (i < n)

}

i ¥l lockDim. 2 + theead

int N = 1<<20:

cudaMesmcpyx, d x, M, ﬂﬂmm‘t-rﬂm‘l'iﬂl!]i
cudiMemopyly, doy, N, cudiMemcpyHost ToDewvice);

E_axw o [. e A [H. I-np I| ?};-

h:.l’-‘--—::.ﬂ_ﬂ{ﬂ_}r. Ve M, clrd:ﬂﬂ-:pg,l!}t.-riteTnl-b:.t]f/

%

University of

Kentucky:

Storage Classifier: quantum

« Keyword on functions to distinguish between classical code and quantum
code

* Inside quantum functions, variables can also be marked as quantum to
differentiate between qubits and bits

quantum 1int hello_quantum() {

Tht a,b:

quantum int g0,ql;

% University of
Kentucky:

Calling Quantum Functions

* When calling a quantum function in classical code,
the compiler substitutes it with a call to a function
to transmit the compiled quantum code to the
quantum computer

« The quantum intermediate representation (IR) is
stored as a string created by the compiler

« |t's assumed that any additional translation from
the quantum IR to quantum machine instructions is
handled by the quantum computer itself

» Constraints on quantum functions

« Can have quantum arguments, but they must be
pass by reference (pointer)

 Only functions with exclusively classical arguments
passed by value can be called from classical code

« They can return values, but only classical values
» Recursive calls are not allowed

int main() {

hello_quantum(...);

char * hello_quantum_str = "...

int main() {

_quant_comm(hello_gquantum_str,

quantum void qfuncl();

quantum int qfunc2();

quantum void qfunc3(int a);

quantum void qfunc4(quantum int x a);
quantum void gqfunc5(quantum int a);

% University of
Kentucky:

Semantics of Quantum Variables

 With qubits, what assignment means
becomes tricker to define S -
quantum int hello_quantum() {

- Between two quantum variables, int a, b;
assignment has move semantics quantum int G0, q1, 2, 43;
rather than copy semantics '

* The variables being assigned to
must be uninitialized, and the
variables being used in the
assignment expression can’'t be used
again

* When working with expressions with
multiple variables, need to establish
a 1-to-1 mapping of names across L G ol S
assignment

 This is all checked by the compiler at
compile time

% University of
Kentucky:

Quantum Operations (Classical)

~ql;
ql " q2;
gl & g2 : result;

ql | q2 : resulty; // Implicitly Toffoli

% University of
Kentucky:

Quantum Operations (Unary)

uPHASE(angle) ql en
%S ql se gal
%T ql;

%RX (angle) q1l;
%RY (angle) ql;
%RZ(angle) ql;

% University of
Kentucky:

Quantum Operations (Binary)

ql HP){angIE) qz
ql < C|2 '/ Classical sw

% University of
Kentucky.

Quantum Operations (Modifiers)

/ Controlled gates

% University of
Kentucky:

Implementation

Code generation:

Preprocessing: Lexer & Parser: AST & Semantics _ Linking:
GCC Flex & Bison Checking: LLV_M (Classical) GCC
Hand-coded Quil (Quantum)

COMPILER INFRASTRUCTURE

— Quil101) —

% University of
Kentucky:

Progress

« Established compilation of minimal amount of classical/quantum code

« Basically, can compile main() and make a call to a quantum function
« Can compile down to Linux object files/executables
« Can link with standard C library code

* Created a basic version of code that can communicate quantum code with a
local simulator (QVM) over HTTP

* Next Phase
« Complete quantum operation code generation
« Handle assignment of quantum variables
« Handle generate code for multiple quantum functions in the same translation unit
« Add all/most classical constructs (if/else, for loop, etc.) to both kinds of code

% University of
Kentucky:

Demo

% University of
Kentucky:.

	QuantC: A CUDA-Inspired Language for Quantum Computing
	Crash Course in Quantum Computing: Qubits
	Crash Course in Quantum Computing: Gates and Measuring
	Crash Course in Quantum Mechanics
	Examples of Quantum Gates
	Slide Number 6
	Design Goals
	Slide Number 8
	Storage Classifier: quantum
	Calling Quantum Functions
	Semantics of Quantum Variables
	Quantum Operations (Classical)
	Quantum Operations (Unary)
	Quantum Operations (Binary)
	Quantum Operations (Modifiers)
	Implementation
	Progress
	Demo

