
QuantC: A CUDA-Inspired Language 
for Quantum Computing

4/20/2022Department of Computer Science - Keeping Current 1



Crash Course in Quantum Computing: Qubits

• Qubits are like bits, but are based on some quantum phenomenon with a binary set 

of states when measured

• Can store 0 and 1 like a regular bit, but can also be in a superposition of 0 and 1

• Measuring a qubit causes it to collapse into either a 0 or 1 if it’s in a superposition

4/20/2022Department of Computer Science - Keeping Current 2



Crash Course in Quantum Computing: Gates and Measuring

• A common representation of computations on qubits is as a circuit, with operations represented 

as quantum logic gates

• Quantum circuits are just as computationally powerful as classical circuits

• However, quantum circuits do have some constraints classical versions don’t have

• Gates/circuits must be reversible; at minimum, the # outputs = # inputs

• Gates can’t be used to copy or delete arbitrary quantum states

4/20/2022Department of Computer Science - Keeping Current 3



Crash Course in Quantum 
Mechanics

• Value of a qubit is represented by a normalized 
vector in ℂ2

• First coefficient is always taken to be real

• Gates are unitary matrices in ℂ2𝑛𝑛×2𝑛𝑛

• Unitary: 𝑈𝑈𝑈𝑈† = 𝑈𝑈†𝑈𝑈 = 𝐼𝐼

• Measurement corresponds to randomly picking 
a base state, where the probability of picking it 
is based on the coefficient in the qubit vector

4/20/2022Department of Computer Science - Keeping Current 4

|𝜓𝜓⟩ = sin
𝜃𝜃
2

|0⟩ + cos
𝜃𝜃
2

𝑒𝑒𝑖𝑖𝑖𝑖|1⟩

0 = 1
0 , 1 = 0

1



4/20/2022Department of Computer Science - Keeping Current 5

Examples of Quantum Gates
Classically Equivalent Gates

NOT (a.k.a X-gate)

XOR
(a.k.a Controlled NOT, CNOT)

AND (a.k.a Toffoli gate, CCNOT)

Purely Quantum Gates

Hadamard gate

𝑁𝑁𝑁𝑁𝑁𝑁 gate



4/20/2022Department of Computer Science - Keeping Current 6

Full AdderEntanglement Circuit

00 →
00 + |11⟩

2

Simple Circuit Examples



Design Goals

• Create a language with syntax to support creating programs with both 
classical and quantum components

• Minimize the overhead for learning the language
• Extend an existing language, rather than start from scratch
• Make distinguishing the two parts of code clear
• Only introduce new syntax for new concepts
• Avoid overloading the meaning of existing symbols for quantum code unless the 

semantics are closely related

• Abstract communication between the classical and quantum computers

4/20/2022Department of Computer Science - Keeping Current 7



4/20/2022Department of Computer Science - Keeping Current 8



Storage Classifier: quantum

• Keyword on functions to distinguish between classical code and quantum 
code

• Inside quantum functions, variables can also be marked as quantum to 
differentiate between qubits and bits 

4/20/2022Department of Computer Science - Keeping Current 9



Calling Quantum Functions

• When calling a quantum function in classical code, 
the compiler substitutes it with a call to a function 
to transmit the compiled quantum code to the 
quantum computer

• The quantum intermediate representation (IR) is 
stored as a string created by the compiler

• It’s assumed that any additional translation from 
the quantum IR to quantum machine instructions is 
handled by the quantum computer itself

• Constraints on quantum functions
• Can have quantum arguments, but they must be 

pass by reference (pointer)
• Only functions with exclusively classical arguments 

passed by value can be called from classical code
• They can return values, but only classical values
• Recursive calls are not allowed

4/20/2022Department of Computer Science - Keeping Current 10



Semantics of Quantum Variables

4/20/2022Department of Computer Science - Keeping Current 11

• With qubits, what assignment means 
becomes tricker to define

• Between two quantum variables, 
assignment has move semantics 
rather than copy semantics

• The variables being assigned to 
must be uninitialized, and the 
variables being used in the 
assignment expression can’t be used 
again

• When working with expressions with 
multiple variables, need to establish 
a 1-to-1 mapping of names across 
assignment

• This is all checked by the compiler at 
compile time



Quantum Operations (Classical)

4/20/2022Department of Computer Science - Keeping Current 12



Quantum Operations (Unary)

4/20/2022Department of Computer Science - Keeping Current 13



Quantum Operations (Binary)

4/20/2022Department of Computer Science - Keeping Current 14



Quantum Operations (Modifiers)

4/20/2022Department of Computer Science - Keeping Current 15



Implementation

4/20/2022Department of Computer Science - Keeping Current 16

Lexer & Parser:
Flex & Bison

AST & Semantics 
Checking:

Hand-coded

Code generation:
LLVM (Classical)
Quil (Quantum)

Preprocessing:
GCC

Linking:
GCC



Progress

• Established compilation of minimal amount of classical/quantum code
• Basically, can compile main() and make a call to a quantum function
• Can compile down to Linux object files/executables
• Can link with standard C library code

• Created a basic version of code that can communicate quantum code with a 
local simulator (QVM) over HTTP

• Next Phase
• Complete quantum operation code generation
• Handle assignment of quantum variables
• Handle generate code for multiple quantum functions in the same translation unit
• Add all/most classical constructs (if/else, for loop, etc.) to both kinds of code

4/20/2022Department of Computer Science - Keeping Current 17



Demo

4/20/2022Department of Computer Science - Keeping Current 18


	QuantC: A CUDA-Inspired Language for Quantum Computing
	Crash Course in Quantum Computing: Qubits
	Crash Course in Quantum Computing: Gates and Measuring
	Crash Course in Quantum Mechanics
	Examples of Quantum Gates
	Slide Number 6
	Design Goals
	Slide Number 8
	Storage Classifier: quantum
	Calling Quantum Functions
	Semantics of Quantum Variables
	Quantum Operations (Classical)
	Quantum Operations (Unary)
	Quantum Operations (Binary)
	Quantum Operations (Modifiers)
	Implementation
	Progress
	Demo

