
NAVIGATING DOCUMENTS AND
TREES WITH XPATH
NEIL MOORE

KEEPING CURRENT SEMINAR

UNIVERSITY OF KENTUCKY

2022-01-19

OVERVIEW

• Background: XML and its document model

• XPath: History and basic syntax

• Examples (and demo)

• Where to go next?

OVERVIEW

• Background: XML and its document model

• XPath: History and basic syntax

• Examples (and demo)

• Where to go next?

XML: THE EXTENSIBLE MARKUP LANGUAGE

• XML is a markup language:
• For representing text with markup (“tags” or annotations”)

• …or for representing arbitrary hierarchical data

• With a human-readable syntax
• XML syntax isn’t that important in this talk: XPath focuses on the data model

• Introduced by the World Wide Web Consortium (W3C)
• First draft version in 1996, final in 1998

• Based on SGML (so a sibling of HTML)
• In fact, the XML document object model (DOM) is shared with HTML

• Supplanted for some uses by Javascript Object Notation (JSON) these days

STRUCTURE OF AN XML DOCUMENT

• An XML document is a tree consisting of nodes. Nodes may be:
• Text nodes (sequences of characters with no tags)

• Always leaves of the tree (cannot have children)

• Element nodes (<tag>content</tag>)
• Have a list of key-value attributes (which are nodes, but not “children” of the element!)

• The “content” is a sequence of child nodes (elements or text)

• A single unique document (or root) node, the root of the tree
• With a single element child

• A few other things (comments, processing instructions, CData, …)

EXAMPLE XML DOCUMENT (XML SYNTAX)
<?xml version="1.0" encoding="utf-8"?>

<books>

<book year="1969">

<title>The Left Hand of Darkness</title>

<language>EN</language>

<author>Ursula K. <surname>Le Guin</surname></author>

</book>

</books>

Elements are in orange (running from <tag> to </tag>), attributes in yellow, and text in white.
Purple can be thought of as representing the document node itself.

EXAMPLE XML DOCUMENT (AS A TREE)

document

books

book
year: “1969”

title

The…

language

EN

author

Ursula
K. Surname

Le Guin

text

element
attributes

document

KEY

OVERVIEW

• Background: XML and its document model

• XPath: History and basic syntax

• Examples (and demo)

• Where to go next?

XPATH BACKGROUND

XPath is a language for querying XML (and HTML) documents according to their
hierarchical structure

• Introduced by W3C in 1999 (XPath 1.0)
• Most recent version is 3.1, March 2017

• We’ll focus on 1.0: Most browsers don’t even support 2.0 out of the box

• Declarative query language
• Like basic SQL, it is not Turing-complete

• Most queries return a nodeset – an unordered list of nodes in the XML tree
• XPath also has strings, numbers, and booleans

XPATH QUERIES

• Queries are evaluated in a context: a node of the tree

• And, for our purposes, they return a node set.

• The most basic kind of XPath expression is a location path

• A sequence of steps indicating how to navigate from the context node to a set of other nodes.

• Each step has an axis (which direction to go; default “child”),

• …a node test (which nodes along that axis to select), and

• …zero or more predicates (additional filters to restrict the results)

• Each step is evaluated in the context(s) of the nodes selected by the previous step

LOCATION STEPS

• Location steps are separated by slashes
• A location path beginning with a slash is “absolute” (context = document)
• /books/descendant::surname/text()

• First step: axis is child (the default: select children of the context node), node test is books (only select nodes with
that name), and no predicates

• Second step: axis is descendant, node test is author

• Third step: axis is child, node test is text() (select nodes of that type)

• “.” is shorthand for “self::node()”, and “..” for “parent::node()”
• Double slash is shorthand for /descendant-or-self::node()/
• So /books//surname/text() is similar to the first query, but not exactly the same

• In particular, it has four steps, not three: This will matter later.

/BOOKS/DESCENDANT::SURNAME/TEXT()

document

books

book
year: “1969”

title

The…

language

EN

author

Ursula
K. Surname

Le Guin

The leading slash means this is an absolute
path, so the initial context node is the document

/BOOKS/DESCENDANT::SURNAME/TEXT()

document

books

book
year: “1969”

title

The…

language

EN

author

Ursula
K. Surname

Le Guin

Select children of the context node(s) named
“books”

/BOOKS/DESCENDANT::SURNAME/TEXT()

document

books

book
year: “1969”

title

The…

language

EN

author

Ursula
K. Surname

Le Guin

Select descendants of the context node(s)
named “surname”

/BOOKS/DESCENDANT::SURNAME/TEXT()

document

books

book
year: “1969”

title

The…

language

EN

author

Ursula
K. Surname

Le Guin

Select descendants of the context node(s) that
are text nodes.

AXES AND NODE TESTS
• The axes in XPath include:

• child, parent

• self

• descendant, ancestor

• descendant-or-self, ancestor-or-self

• following-sibling, preceding-sibling

• following, preceding (in “document order”: preorder depth-first traversal)
• attribute (shorthand: “@” means “attribute::”)

• A node test may be
• The name of an element
• “*” (any element; unless the axis is attribute)
• “text()” (also “comment()” and “processing-instruction()”)
• “node()” (matches anything

PREDICATES
• A location step may end with any number of predicates to further filter results

• Written as [expression]

• The full syntax for expressions is too much to cover here, but it can include location paths,
logical operators, relational operators, arithmetic, and calls to built-in functions

• If the result of the expression is a number, only select the node whose position in the results of
this step (so far) is that number

• /descendant::book[2] (select the second “book” element in the entire document)

• /descendant::book[2][1] (the same (!): the first of the nodes selected by book[2])

• Otherwise, only select the node if the expression converted to boolean is true

• /descendant::book[position() > 2] (all books after the second; already boolean)

• Most often a node set: Empty node sets are false, non-empty are true

• //book[author/pseudonym] (books that have an author that has a pseudonym)

/DESCENDANT::*[TEXT()]/*

document

books

book
year: “1969”

title

The…

language

EN

author

Ursula
K. Surname

Le Guin

The leading slash means this is an absolute
path, so the initial context node is the document

/DESCENDANT::*[TEXT()]/*

document

books

book
year: “1969”

title

The…

language

EN

author

Ursula
K. Surname

Le Guin

Select all element descendants of the document.

/DESCENDANT::*[TEXT()]/*

document

books

book
year: “1969”

title

The…

language

EN

author

Ursula
K. Surname

Le Guin

For each selected node, find child text nodes.

/DESCENDANT::*[TEXT()]/*

document

books

book
year: “1969”

title

The…

language

EN

author

Ursula
K. Surname

Le Guin

Only keep the selected nodes where the
predicate was true (there was a text child)

/DESCENDANT::*[TEXT()]/*

document

books

book
year: “1969”

title

The…

language

EN

author

Ursula
K. Surname

Le Guin

Take the element children of the context nodes.

So this gives us all elements that have a text
node sibling: Not the only way to express that!

OVERVIEW

• Background: XML and its document model

• XPath: History and basic syntax

• Examples (and demo)

• Where to go next?

EXAMPLES AND DEMO

• We’ll start with an expanded version of the list of books

• We’ll issue various queries and discuss why they return what they do

• Using the website: xpather.com

• Could instead issue queries in your browser’s Javascript console with $x(“/blah”)

• But it’s easier to see the resualts this way.

• http://xpather.com/4gcYRTs6 (preloaded with our example document)

http://xpather.com/4gcYRTs6

OVERVIEW

• Background: XML and its document model

• XPath: History and basic syntax

• Examples (and demo)

• Where to go next?

FOR ALL THE DETAILS

• We have covered just the basics of XPath 1.0
• And occasionally simplified, perhaps over-simplified

• Online tutorials:
• https://developer.mozilla.org/en-US/docs/Web/XPath

• https://www.w3schools.com/xml/xpath_intro.asp

• Full specifications: https://www.w3.org/TR/xpath/
• Not the easiest thing in the world to read!

• Formal semantics: https://www.w3.org/TR/xquery-semantics/ (XPath 2.0)

https://developer.mozilla.org/en-US/docs/Web/XPath
https://www.w3schools.com/xml/xpath_intro.asp
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xquery-semantics/

COMPUTATIONAL COMPLEXITY

• Naïve recursive evaluation of location steps can take exponential
• Alternating sequences of descendant and ancestor axes

• Nested predicates are even harder to deal with:
/descendant:a[ancestor:b[descendant:a[ancestor:b[…]]]

• Georg Gottlob, Christoph Koch, and Reinhard Pichler. 2005. Efficient algorithms for
processing XPath queries. ACM Trans. Database Syst. 30:2 (June 2005), 444–491.
DOI: https://doi.org/10.1145/1071610.1071614

• Shows XPath can be evaluated in polynomial time (on the sizes of the expression and of the
document)

• Some useful subsets of XPath can be evaluated in linear time O(|expr| * |document|)

• The trick: evaluate predicates “bottom up” (start with the most deeply nested)

https://doi.org/10.1145/1071610.1071614

THANK YOU!

	Navigating Documents and Trees with XPath
	Overview
	Overview
	XML: the Extensible Markup Language
	Structure of an XML Document
	Example XML document (XML Syntax)
	Example XML document (as a tree)
	Overview
	XPath Background
	XPath queries
	Location Steps
	/books/descendant::surname/text()�
	/books/descendant::surname/text()�
	/books/descendant::surname/text()�
	/books/descendant::surname/text()�
	Axes and node tests
	Predicates
	/DESCENDANT::*[TEXT()]/*�
	/DESCENDANT::*[TEXT()]/*�
	/DESCENDANT::*[TEXT()]/*�
	/DESCENDANT::*[TEXT()]/*�
	/DESCENDANT::*[TEXT()]/*�
	Overview
	Examples and demo
	Overview
	For all the details
	Computational complexity
	Thank you!

