
Should You Trust the Padlock? 
Web Security and the 
“HTTPS Value Chain” 

Keeping Current 
20 November 2013 

Ken Calvert 



Outline 

1.  What are we afraid of? 
2.  Countermeasures: Securing the Web 
3.  Public-key Crypto and Certificate Authorities 
4.  A Look at the “CA ecosystem” 
5.  Problems and Solutions 



Outline 

1.  What are we afraid of? 
2.  Countermeasures: Securing the Web 
3.  Public-key Crypto and Certificate Authorities 
4.  A Look at the “CA ecosystem” 
5.  Problems and Solutions 



Threats: 
What are we afraid of? 

Eavesdropping: sensitive information carried in 
HTTP messages can be read by intruders. 

amazon.com	  

Name=Alice
	  

CC#=4
416224

81983	  

ExpDat
e=9/20

15	  

Bad	  guy	  snoops	  
traffic	  somewhere	  
along	  the	  way,	  
records	  account	  
details.	  	  



Threats: 
What are we afraid of? 

Impersonation: Bob thinks he is talking to Amazon, 
but it’s really Trudy’s fake site. 

amazon.com	  



Threats: 
What are we afraid of? 

Impersonation: Bob thinks he is talking to Amazon, 
but it’s really Trudy’s fake site. 

amazon.com	  

Trudy can exploit Bob’s (misplaced) 
trust to compromise his system! 



Outline 

1.  What are we afraid of? 
2.  Countermeasures: Securing the Web 
3.  Public-key Crypto and Certificate Authorities 
4.  A Look at the “CA ecosystem” 
5.  Problems and Solutions 



Countermeasures 

Confidentiality:  end-to-end encryption prevents 
eavesdropping 

amazon.com	  



Countermeasures 

Confidentiality:  end-to-end encryption prevents 
eavesdropping 

amazon.com	  



Countermeasures 

Authentication:  Bob can tell if he is talking to the 
real Amazon.com.  (More precisely: his browser can.) 

amazon.com	  

“please	  prove	  you	  are	  amazon.com”	  



Securing the Web 

•  Secure Sockets Layer (Netscape) and Transport 
Layer Security (IETF) were developed (ca. 1995-6) to 
secure the channel between client and server 
–  Confidentiality: Prevent eavesdropping 
–  Authentication: Detect impersonation 

•  These are general protocols, designed for use by 
any application running over TCP 
–  HTTPS = Hypertext Transfer Protocol over SSL/TLS 

Both SSLv3 and TLSv1-3 are in common use, but only TLS is still 
being updated with new ciphersuites 

•  Both use public key cryptography to authenticate 
the server and establish confidentiality 

•  Authentication turns out to be the main challenge 



Outline 

1.  What are we afraid of? 
2.  Countermeasures: Securing the Web 
3.  Public-key Crypto and Certificate Authorities 
4.  A Look at the “CA ecosystem” 
5.  Problems and Solutions 



Public Key Cryptography 

•  Basic idea: 
–  Keys come in pairs 

•  one key is public (known to anyone) 
•  one key is private (known only to Bob) 

–  Basic operations: 
 signature = sign(message, private key) 
 verify(signature, public key) ⟶ valid | invalid 

•  Mathematics of the algorithm (plus assumptions 
about hardness of certain problems) ensures 
that a valid signature cannot be created without 
knowledge of the private key. 



Public Key Authentication 

Authentication:  Bob can tell if he is talking to the 
real Amazon.com.  (More precisely: his browser can.) 

amazon.com	  “pleas
e	  prov

e	  you	  
are	  am

azon.c
om	  

by	  sign
ing	  thi

s	  rand
om	  bit	  str

ing:	  

0xf3a7
1b094

8862e
11a79

8015b
2c20”

	  

amazon.com’s	  
public	  key	  

signat
ure	  =	  

0x371
f1c...	  

amazon.com’s	  
private	  key	  

sig	  =	  sign(string,key)	  



Public Key Authentication 

Authentication:  Bob can tell if he is talking to the 
real Amazon.com.  (More precisely: his browser can.) 

amazon.com	  

amazon.com’s	  
public	  key	  

verify(signature,pub	  key)	  

=	  valid	  	  😃	  

Key	  QuesXon:	  How	  does	  Bob	  learn	  
amazon.com’s	  public	  key?	  

amazon.com’s	  
private	  key	  



Public Key Distribution 

Ways for Bob to learn Amazon.com’s public key: 
•  Ask the server? 

–  No: This is begging the question! 
We don’t know we’re really talking to Amazon! 



Public Key Distribution 

Why Bob can’t just ask the server for its public 
key... 

amazon.com	  

“Hey	  Amazon,	  please	  tell	  me	  
your	  public	  key.”	  

“Why	  sure,	  sonny,	  
it’s	  0x119b3e...”	  



Public Key Distribution 

Ways for Bob to learn Amazon.com’s public key: 
•  Ask the server? 

–  No: This is begging the question! 
We don’t know we’re really talking to Amazon! 

•  The key comes pre-installed in the browser? 
–  No: This doesn’t scale! 

Millions of sites need HTTPS; new ones may arise every day. 



Public Key Distribution 

Ways for Bob to learn Amazon.com’s public key: 
•  Ask the server? 

–  No: This is begging the question! 
We don’t know we’re really talking to Amazon! 

•  The key comes pre-installed in the browser? 
–  No: This doesn’t scale! 

Millions of sites need HTTPS; new ones may arise every day. 

•  Trusted 3rd parties certify the binding between 
entity and public key (by signing the binding) 
–  Browser comes equipped with the public keys of a 

limited number of these Certificate Authorities 



Public Key Certificates 

•  A trusted 3rd party attests to Amazon’s public key 
•  Reduces the problem: 

1.  Get the CA’s public key. 
2.  Given a server’s (amazon.com’s) certificate (issued by 

that CA), verify the CA’s signature on the cert. 
3.  Use the certified public key to verify the server’s 

identity 

•  CA public key is a root of trust 
–  CA can sign keys of other CAs and/or end users 

(amazon) 
–  Scales (as usual) by adding hierarchy 



Certificate Authorities (CAs) 

•  CA Public keys are distributed out-of-band 
–  Usually in the form of a self-signed certificate 
–  Browsers come preconfigured with CA certs 

•  In general, the job of a CA is to make sure that 
it only issues certificates that are legitimate. 
–  What should you have to do to get a certificate? 

•  Tradeoff: ease of acquiring vs. ease of impersonation 



CA Public Keys in Browsers 



CA Public Keys in Browsers 



“Common	  Name”	  =	  
DNS	  name	  of	  the	  server	  

that	  uses	  HTTPS	  



If Certificate Validation Fails... 



Certificate Validation Fails...what to do? 



CA Public Keys in Browsers 

•  Firefox comes with 130+ roots of trust (CAs 
public keys) pre-installed 
–  Other browsers similar, but... 

•  Roots of trust may vary with browser and 
platform 



Trust Structures 

Basic Question: what authorities do I trust? 
•  Monopoly 

–  Single root of trust, everybody knows its key, which 
never changes 

–  Obvious problems 

•  Hierarchy of CAs 
–  Root certifies “child” CAs, which may certify other CAs 

or regular users 
–  Benefit: easier to get to a CA near you 
–  Drawback: still a single root of trust 



Trust Structures 

•  Web of Trust 
–  Individuals (Alice, Bob) sign keys of people they trust 
–  I collect public keys of people I know 
–  When presented with a new public key, try to find a chain of 

people I trust, ending with someone who signed it 
–  This is used in Zimmerman’s PGP (“Pretty Good Privacy”) 
–  Issue: scalability, reliability 

•  “Oligarchy” (name due to Kaufman, Perlman and Speciner) 
–  Multiple roots of trust, each signs certificates 
–  Trust only public keys signed by one of these CAs 
–  How to choose a CA? 



Outline 

1.  What are we afraid of? 
2.  Countermeasures: Securing the Web 
3.  Public-key Crypto and Certificate Authorities 
4.  A Look at the “CA ecosystem” 
5.  Problems and Solutions 



Levels of Certification 

Certificates come in different “levels”: 
•  Domain Validated (DV) 

–  Issuing CA verifies “control” of the domain name 
•  In practice: answer an email to the address listed in the SOA record of 

the DNS zone (WHOIS database) 
–  Process can be automated ⇒ fast turnaround 

•  Organization Validated (OV) 
–  No standards for what this means 
–  Typical: verify organization’s contact information via third party 

source (Secretary of State, telephone directory, ...) 
•  Extended Validation (EV) 

–  More extensive validation process 
–  More expensive 
–  Browser indication: “green bar” 



Who are the Stakeholders? 

Website	  
Owners	  

CerXficate	  
AuthoriXes	  

Relying	  
ParXes	  
(Users)	  

Browser	  
“Vendors”	  



Who Risks What? 

Website	  
Owners	  

CerXficate	  
AuthoriXes	  

Relying	  
ParXes	  
(Users)	  

Browser	  
“Vendors”	  

Risk:	  loss	  of	  business	  if	  users	  
don’t	  believe	  their	  site	  is	  
secure	  

Risk:	  loss	  of	  sensiXve	  
informaXon,	  	  Xme,	  $$	  if	  
they	  trust	  a	  rogue	  site	  



Who Risks What? 

Website	  
Owners	  

CerXficate	  
AuthoriXes	  

Relying	  
ParXes	  
(Users)	  

Browser	  
“Vendors”	  

Risk:	  loss	  of	  market	  share	  
if	  browser	  trusts	  a	  bad	  CA	  

Risk:	  bankruptcy	  if	  
removed	  from	  browser	  	  

trust	  chain	  



What Does the Market Look Like? [1] 

•  EFF’s SSL Observatory project (December 2010) 
–  Collected 1.5M valid certificates from around the web 
–  Identified ~1100 issuing CAs 

•  Highly concentrated 
–  3 vendors account for more than ¾ of the market 

•  Symantec (includes Verisign and Thawte) 
•  GoDaddy 
•  Comodo 

•  Widely varying prices 

[1]	  “Security	  Economics	  in	  the	  HTTPS	  Value	  Chain”	  by	  Asghari,	  van	  eeten,	  Arnbak	  &	  van	  Eijk,	  2013	  



Price Variations 

Cert	  Type	   Minimum	  Price	   Maximum	  Price	   Avg	  (Std.	  Dev.)	  

DV	   $0	   $249	   $81	  (74)	  

OV	   $38	   $1172	   $258	  (244)	  

EV	   $100	   $1520	   $622	  (395)	  



Market Share 

Cer;ficate	  
Type	  

Market	  Leaders	  

DV	   GoDaddy	  (40%),	  Symantec/GeoTrust	  (36%),	  Symantec/Thawte	  (10%)	  

OV	   Symantec	  (54%),	  Comodo	  (21%),	  Entrust	  (6%),	  Network	  SoluXons	  (5%)	  

EV	   Symantec	  (68%),	  Comodo	  (7.9%),	  Godaddy	  (5.2%)	  



Observations 

•  This should be a commodity market: 
–  Browsers do not distinguish between cert providers! 

•  Certificates are “perfectly substitutable” 

–  Buyers cannot distinguish between more/less secure 
sellers (CAs)! 

–  High fixed costs, (very) low marginal costs 

•  Expect to see competition on price only 
“race to the bottom” 

•  Instead: price variability, market dominated by 
large players 
–  What gives? 



Competition Among CAs 

What are CAs’ customers buying? 
•  Brand reputation 

“Nobody ever got fired for buying Verisign [now Symantec].” 

•  Additional services 
–  E.g., certificate management services 

•  Some CAs may be “too big to fail”... 



Risks to the System - I 

The DigiNotar Incident 
•  DigiNotar, a CA in the Netherlands 

–  Served as CA for some Dutch government functions 
–  Included as trust root in  

•  Hacked in July 2011 
–  Attacker accessed root CA system and issued a wildcard 

certificate for google.com 
•  Subsequently used in a large-scale MITM attack on 300K users in Iran 
•  In the interim 531 certs for 53 domain names were issued 

–  Incident did not become public until September 2011 
–  After investigation, Dutch government took over DigiNotar 

•  Removed from browser CA lists shortly after 
–  DigiNotar declared bankruptcy 



Risks to the System - II 

Other Incidents 
•  Larger CAs have also been hacked 

–  Verisign (RSA) breach in 2010, not publically 
acknowledged until 2012 

–  Comodo has reportedly been breached several times 

•  None have been removed from browser CA lists 
–  Some CAs are likely too big to fail. 



Outline 

1.  What are we afraid of? 
2.  Countermeasures: Securing the Web 
3.  Public-key Crypto and Certificate Authorities 
4.  A Look at the “CA ecosystem” 
5.  Problems and Solutions 



Systemic Problems 

•  Any CA can issue a certificate for any site. 
That is: trustworthiness of amazon.com’s cert does not 
depend (only) on the security practices of its issuer. 

...also depends on the practices of all other CAs! 
Trustworthiness of the entire system cannot exceed the 
trustworthiness of its weakest component. 

•  Information asymmetry abounds. 
–  Security practices of CAs are not visible to the stakeholders 

who are most at risk. 
“There seems to be wide consensus that the average end-user 
cannot reasonably be expected to exert control over the HTTPS 
ecosystem.” [1] 

–  CAs have strong incentives not to reveal security incidents. 

•  Risks to some large CAs are externalized. 
[1]	  “Security	  Economics	  in	  the	  HTTPS	  Value	  Chain”	  by	  Asghari,	  van	  eeten,	  Arnbak	  &	  van	  Eijk,	  2013	  



Potential Solutions 

•  DANE: DNS-based Authentication of Named Entities 
–  Store cert-related information in DNS to increase trust 
–  E.g., name of CA authorized to issue certs for amazon.com 
–  In the limit: public key info 
–  Requires DNSSEC deployment to secure the DNS info 

•  Convergence, Perspective (convergence.io) 
–  Rely on consensus of a set of Notaries to determine 

reliability of a cert 
–  Users set their own policies on which Notaries to trust 
–  Anyone can be a trust Notary 



Summary 

•  The current architecture of trust for HTTPS (indeed, 
anything using SSL/TLS) is broken. 
–  Information asymmetry abounds 
–  Brand reputation is about the only competitive factor 
–  Incentives are unclear, even perverse 

•  E.g., browser vendors consider everything in terms of performance 
–  Some CAs are “too big to fail” 

•  Good technological solutions exist. 
–  Most involve adding new sources of info/replacing CAs 
–  But it will take a while for them to be deployed 

•  The real question is not “Should I trust the padlock?” 
but “Do I have a choice?” 



More Stuff to Keep you Up at Night 

•  What should public keys actually be bound to? 
–  Domain names? 
–  Organizations? 
–  People? 

•  Can you tell the difference between “KINKOS” 
and “KINKOS”? 

Fourth letter in the first is Unicode 0x4B, LATIN CAPITAL LETTER K; in 
the second it is 0x039A, GREEK CAPITAL LETTER KAPPA 

–  What stops me from registering the second one 
under .com? 


