Bitcoin
(Part I)

Ken Calvert
Keeping Current Seminar
22 January 2014

Questions

What problem is Bitcoin solving?
Where did it come from?

How does the system work?
What makes it secure?

What determines how much a Bitcoin is
worth?

Can I trust the Bitcoin system?

Background: Payments Today

* Most money movement is virtual

— Exactly where/what is the "money” in your bank
account?

« Payment types:
— Cash = physical movement of hard currency

— Check = authorizes your bank to move $X from
your account, to payee’s account

— Debit card = (ditto)
— Credit card = you — CC co. bank = merchant
* How do these transfers actually happen?

Payment Information Flow

Al, A $20,490.81

BankY _

Bob, B
Bank X

BANK

' ' ' l X/B—'Y/A:SlOO

X/B—'Y/A $100

—_—
——
L e

Various Intermediaries:
Visa/MC, Fed, ACH,
SWIFT, CHIPS, ...

Bob/X/B—Al/Y/A
$100

| D
v Al
Bob/X/B agrees to pay Al/Y/A: $100.00

Keeping Current

Payment Information Flow

Al, A $20,490.81

BankY _

Bob, B
Bank X

BANK

' ' ' X/B—'Y/A:SlOO

X/B—Y/A:5100 v

(—=

X/B—Y/A:$100 l“

—)

X/B—Y/A:$100 v

Various Intermediaries:
Visa/MC, Fed, ACH,
SWIFT, CHIPS, ...

Bob/X/B—Al/Y/A
$100

Bob | > Al
Bob/X/B agrees to pay Al/Y/A: $100.00

2014.01.22 Keeping Current

Payment Information Flow

Acct Owner, ID
Al, A $20,590.81

BankY _

Acct Owner, ID

Bob, B $721.00

Bank X

ANK]I
' ' ' X/B—Y/A:$100

X/B—Y/A:5100 v

yu—

X/B—Y/A:$100 l“

—)

X/B—Y/A:$100 v

Various Intermediaries:
Visa/MC, Fed, ACH,
SWIFT, CHIPS, ...

Bob/X/B—Al/Y/A
$100

Bob | > Al
Bob/X/B agrees to pay Al/Y/A: $100.00

2014.01.22 Keeping Current

Payment Information Flow

Acct Owner, ID Balance
Al, A $20,590.81
Acct Owner, ID
Bob, B @
Bank X
-
-

-

-~ BANK

mn

Various Intermediaries:
Visa/MC, Fed, ACH,
SWIFT, CHIPS, ...

Payments are made by
changing account balances.
Banks are trusted entities
that maintain the records.

Keeping Current

How Payments Happen

Movement of money = Movement of information

Financial System

Ledger for tracking
account balances

2014.01.22 Keeping Current

What problem is Bitcoin solving?
Where did it come from?

* Bitcoin Goals:
I. Anonymity
ii. Decentralization

» Replace banks with a peer-to-peer network
 Base trust on cryptography and proof-of-work

« Proposed in a 2008 paper
“Bitcoin: A Peer-to-Peer Electronic Cash System”
— Author Satoshi Nakamoto (pseudonym)

« Software (open source) released in 2009

Bitcoin: The Basic Idea

« Keep a record of transactions
— A “shared public ledger”
— Transaction = transfer of “bitcoin” among parties

« Maintained by a peer-to-peer network
— No single entity controls the network
— Peers communicate via Internet

— Use cryptography to secure the ledger
« Digital signatures on each ledger entry

 Proof-of-work for acceptance
— Use hash functions to create proof-of-work

2014.01.22 Keeping Current

10

How It Works — I

(conceptual view)

L o Ledger
BE‘;‘;LCOPHZ(P = |\ Address Amount (BTC)
g _ a739de01... 25.0
— |) |91a43b20.. 0.0000035
- .
2= I c91725ba... 0.5

Transaction

source of funds = ...
pay-to address = 13579bdf... —
amount = 1.0 BTC

‘/”

A8

2014.01.22 Keeping Current

How It Works — I

(conceptual view)

o . Ledger
BE‘;‘;LCOPHZ(P = |\ Address Amount (BTC)
g _ a739de01... 25.0
— |) |91a43b20.. 0.0000035
- .
2= I c91725ba... 0.5
13579bdf... 1.0

Transaction

source of funds = ...
pay-to address = 13579bdf...

amount = 1.0 BTC

‘/”

A8

2014.01.22 Keeping Current

Bitcoin Network
today: 100K nodes

-

How It Works — I1
(slightly more detail)

A i
UJ.H/E

Inputs to a Tx are
really (pointers to)
outputs of recorded Txs

tx

tx

tx

tx

tx

tx

tx

tx

tx

tx

tx

tx

tx | tx
tx | tx
tx | tx tx | tx
ix tx
/{/ tx | tx
¢ tx
’ / tx | tx (ﬁ(
tx | tx
Ledger =

Blocks of Recorded Txs

Bob

[

mput 1. U

input k: ¢

input O: Cf outpu* 0: addr=135...

dilOUurlit = Z24.U bl LC
output 1: addr=246...
amount = 1.0 BTC

A4

2014.01.22

Keeping Current

How It Works — I1
(slightly more detail)

|
)) |
Bitcoin Network tx | tx |
) tx | tx |
today: 100K nodes e tx | tx
tx | tx tx | tx
/ ' tx | tx tx | tx tx | tx | tx
) ! tx | tx tx | tx
- t t tx tx tx tx tx
i Q:‘ LS I W e x | tx
N N w tx tx
ey — P I
Network Verifies N
t.q? Ledger =

and Records

Blocks of Recorded Txs

input 0: O! output 0: addr=135...
input1: O Zmount=24.0BTC

output 1: addr=246...
input k: | amount=1.0BTC

Txs are first verified,
then recorded by
being incorporated
into a new block.

2014.01.22 Keeping Current

How It Works — I1
(slightly more detail)

Bitcoin Network

tx

tx

tx | tx

today: 100K nodes

tx

tx

tx | tx

and Records

tx

tx

tx | tx

tx | tx

tx

tx | tx
tx | tx tx | tx | tx

tx | tx

tx | tx tx | tx | tx

Tk | 4y, |

T tx [tX

N — tx | tx

Ledger =

tx | tx

x| tx | tx

Blocks of Recorded Txs

input 1: O

input k: ¢

input 0: O! output 0: addr=135...

zmount = 24.0 BTC

output 1: addr=246...

amount = 1.0 BTC

2014.01.22

Keeping Current

An output can be used
as an input to another
Tx at most once.

(No double-spending.)

15

Summary So Far

Network of peers validates transactions
transferring Bitcoins™* and creates a ledger (a
set of blocks of transactions.)

To be explained:

« What makes this secure? Anonymous?
— Short Answer: cryptography
— Longer answer: details of addresses, transactions,
blocks, “recording”

« Where do Bitcoins originally come from?

*Actually, transactions are denominated in Satoshis. One Satoshi
= 108 BTC

Background: Digital Signatures

Paired keys:
— Private key, known only to signer
— Public key, known to anyone who wants to verify

Two operations:
— sig = sign(private key, message)
— boolean = verify(signature, message, public key)

* returns true if sig was created with private key paired
with the given public key, else (w.h.p.) false

Use: prove/verify authenticity of messages

Security: infeasible to forge sig without
knowledge of public key

Background

Signer

2014.01.22

. Digital Signatures

Verifier

Keeping Curren t

18

Background: Digital Signatures

private L,
key

Signer

2014.01.22

message

@

Note: for technical reasons, almost
always sign hash(message) rather
than message itself.

Keeping Current

Verifier

19

Background: Digital Signatures

private
key

Signer Verifier

2014.01.22 Keeping Current

20

Background

Signer

2014.01.22

. Digital Signatures

Verifier

Keeping Curren t

21

Background

Forger

2014.01.22

. Digital Signatures

@

Verifier

Keeping Current

22

Background

Forger

2014.01.22

. Digital Signatures

@

Verifier

Keeping Current

23

Background

Forger

2014.01.22

. Digital Signatures

~ Verifier

Keeping Curren t

24

Background:
Cryptographic Hash Functions

» Pseudorandom function h: ‘M — D

— ‘M: set of possible messages (infinite)

— D: set of fixed-length (e.qg., 256 bits) bit strings (finite)
« Use: h(m) is an unforgeable “fingerprint” of m

» Properties:
— Noninvertible: Given X, infeasible to find m such that
h(m) = x
— Collision-resistant: Infeasible to find m and m’such
that h(m) = h(m’)
— Efficient: (relatively) easy to compute h(m), given m

Background:
Cryptographic Hash Functions

01001011101010110101000010101111
00001101011010110101011101000100
01101110100110111110111100000101
11010111100001111011010000011111
11010010001110011011111000100011
10100110010110100000100010100010
00011101010001010101010100101011
01010001011011010010100101010010
10100100101101101011011010101101
10110101010101010111101010100000
11111110000100010001010101111110
10100001100110011001100101010011
11110000011100111101011110101100
00000101110101110111110100010010
11010101010011110110101010001001

Message (arbitrary length)

Bitcoin hash function:
SHA256(SHA256(msg))

0100110101100100
1110010100001011
0011100111100001
0010011010111111
1000101001100001
1010111110110011
0101000001011100
0110111011110100
0100011100000110
0010110010111000
1110011001111010
1011011111101000
0001001011011111
1001100100011010
1100001011100000
0010011101011100

hash or digest
(256 bits)

SHA-256 is (believed to be) noninvertible

2014.01.22

Keeping Current

0100110101100100
1110010100001011
0011100111100001
0010011010111111
1000101001100001
1010111110110011
0101000001011100
0110111011110100
0100011100000110
0010110010111000
1110011001111010
1011011111101000
0001001011011111
1001100100011010
1100001011100000
0010011101011100

256-bit hash value

27

Background: Merkle Hash Tree

Hashing a collection of messages

If a message changes, only that message and its ancestors need to be

re-hashed

] «—— Root
Ciind

=

2014.01.22 Keeping Current

28

Background: Merkle Hash Tree

Hashing a collection of messages

If @ message changes, only that message and its ancestors need to be
re-hashed

A\

2014.01.22 Keeping Current 29

Securing Bitcoin Transactions

Problem: verify that Tx inputs are authorized to use
the values of referenced (earlier) outputs

Solution: a simple custom stack-based (“Forth-like")
scripting system for crypto operations

— Not Turing-complete (no loops)

Typical scripts:

— To spend an earlier output requires to spender to present:
 public key that hashes to the address in the output
« a signature on the (current) transaction that verifies with that
public key
Scripting system allows more general requirements

— E.g., require multiple signatures, or sign by two out of
three keys

Securing Bitcoin Transactions

« Each output of a transaction consists of:
— Address: Derived from an ECDSA public key (anonymity)

— A script that specifies conditions to be satisified when spending
this output later

- Typically: prove knowledge of private key corresponding to address by
signing the later transaction

« Each input of a transaction consists of:

— A reference to an output in a previous transaction
« Hash of transaction + which output (index in list)

— A script (“ScriptSig’) that sets up the stack so that the output
script returns “true’

 In the typical case: public key for the address + signature on the Tx
 To verify an input:
— Execute the input script, then the output script of the referenced
transaction

— If the result is “true” = input is verified

Bitcoin Address Construction

ECDSA Private ECDSA Public Key
Key (256 bits) (264 or 520 bits)

256 bits

— o —

2014.01.22

Keeping Current

RIPEMD-
160

R @ﬂ 160 it

32

Bitcoin Address Construction

ECDSA Private ECDSA Public Key
Key (256 bits) (264 or 520 bits)

RIPEMD-
160

256 bits (———@(—n 160 bits

Checksum

— o —

56 bits

&

2014.01.22

Keeping Current 33

Bitcoin Address Construction

ECDSA Private ECDSA Public Key
Key (256 bits) (264 or 520 bits)

RIPEMD-

160
R @q 160 it
—)@—) 256 bits

Checksum

Base58Check
Encoding

[Bitcoin Address]

2014.01.22 Keeping Current 34

Transaction Verification

1. Syntactic correctness

2. Each input references an output that:

— Is in a tx recorded in a block

— Has not already been used as an input (no
double-spending) in a recorded (or pending) tx

3. Each input signature is valid
— Script returns true
4. Sum of input values > sum of outputs

Securing the “Ledger”

The problem boils down to:

How to ensure that the nodes of the network
agree on which transactions have occurred?

If different parts of the network have different
ideas of the state of the ledger, double-spending
could occur.

Note: peers flood information (e.g., txs) to all
other peers as soon as it becomes available

2014.01.22 Keeping Curren t 36

Securing the “Ledger”

Solution idea:

» Recording a transaction involves proving that
a nontrivial amount of computational work
has been done
— Similar to “hashcash” (anit-spam) idea

« Group transactions into blocks = unit of proof
of work

 As long as “good guys” control most of the
compute power of the network, they will
determine what the record contains

Blocks

« Group transactions together for recording
 Block header depends on txs included + previous block
— Root of Merkle tree, hash of previous block included

» Blocks form a (backward) chain

— glhaﬂge any bit in any tx = have to change all subsequent
ocks

Hash of Previous Block Header (32 bytes)

Block
Header

target (4) nonce (4)
)

Merkle Root of Included Transactions (32 bytes) timestamp (4)

Transaction 0

Transaction 1

2014.01.22 Keeping Current 38

Recording Blocks: Proof of Work

Only blocks with hash(header) < target are added to the chain
 Bitcoin network’s job: find headers with this property

— Known as "mining” or “solving” a block

— Requires computational work

« Once a block header is found with the desired proI?]erty, the
block is forwarded to all peers, who validate and then accept it
(i.e., add it to the chain)

| Hash of Previous Block Header (32 bytes)

Block
Header

an

Merkle Root of Included Transactions (32 bytes) timestamp (4)

/ target (4) I

Transaction 0

Transaction 1

2014.01.22 Keeping Current 39

Mining
(a.k.a. "solving” a block)

» Task: Given a set of txs, latest block’s hash, current

time and target, find a block header such that
hash(header) < target

« Because hash() acts like a random function, only
approach is brute force:

h = hash(header)

while (h >= target) {
modify header; // increment nonce
h = hash(header);

y

 Target value determines probability of success

— Target is adjusted regularly (every 2016 blocks) to keep
block generation rate approximately 6 blocks/hour

Mining: Numbers
as of 2014.01.22

Target value:
0000000000000002666600

 Block header hash must start with 63 0 bits!
— Equivalent: Flip a coin 63 times — heads every time
— Probability = 263 = 10-1°

« Goal is for the network to solve a block every 10
minutes
— So: Network-wide hash rate = 1.5 x 10¢ hash/s
— With 120K nodes = 125 GHash/sec/node (!)

* Most mining nowadays uses special h/w
General-purpose servers — GPUs —ASICS

How it Works — III

Blockchain

incoming
transactions

pending (valid)
transactions

Miners

2014.01.22 Keeping Current

2014.01.22

How it Works — III

incoming
transactions

pending (valid)
transactions

Keeping Current

Blockchain

Miners

43

How it Works — III

Blockchain

. incoming

transactions

. pending (valid)

transactions .
Miners

2014.01.22 Keeping Current 44

2014.01.22

How it Works — III

incoming
transactions

i

. pending (v

transactj
7

Keeping Current

Blockchain

“H

&

B

Miners

45

Forks in the Block Chain

« The block chain may
fork if multiple blocks Blockchain
are solved at about

the same time =

 Once one branch E
necomes longer, it & : <
hecomes the main mn ant
%o box N 8§ 8

* No bound on how
long this may take!

Miners

2014.01.22 Keeping Curren t 46

Forks in the Block Chain

« The block chain may
fork if multiple blocks Blockchain
are solved at about

the same time =
 Once one branch o
necomes longer, it o :
hecomes the main mn
pranch ' '

 No bound on how

long this may take! wp@@ W

Miners

2014.01.22 Keeping Curren t 47

Forks in the Block Chain

« The block chain may
fork if multiple blocks Blockchain
are solved at about
the same time

* Once one branch iﬂ
necomes longer, it :
necomes the main
branch

* No bound on how
long this may take!

ot
=
g

Miners

£
s
"B

2014.01.22 Keeping Curren t

Remaining (Technical) Questions

» Where do Bitcoins originally come from?

* Nonce + time fields only allow a few
billion tries for a header, but several

quintillion tries required to solve a given
header!

2014.01.22 Keeping Current 49

“"Coinbase” Transaction

Transaction 0 in each block is special

— Its inputs are ignored in validation

...but do affect the Merkle root for the block, thus
expanding the space of possible hashes for a given
tx set

— Output(s) controlled by the one solving the
block

— Originally a “reward” for solving blocks

— Total outputs = reward amount + xaction fees
> Inputs — > outputs = transaction fee

“"Coinbase” Transaction

« Reward determined by formula
Reward = (50 x 100000000) >> (height / 210000)

— Decreases every 210,000 blocks

~ 4 years
— Fell to 25 BTC at block 210,000 (January 2013)
— Will fall to 12.5 BTC at block 420,000, etc.

« Becomes 0 at block 6,930,000.

— Eventual total of all coinbase transactions:
2,099,999,997,690,000 satoshi = 21M BTC

« Thereafter, mining reward exclusively from
transaction fees

