
CS 541 — Fall 2021

Programming Assignment 5
CSX_go Code Generator

Your final assignment is to extend the AST node classes to generate JVM assembler code
for CSX_go programs. Your main program calls the CSX_go parser. If the parse is
successful, it calls the semantics checker. If the program contains no semantics errors, it
calls the code generator.
Your program takes the file name of the CSX_go source program to be compiled on the
command line, writes error messages to standard output, and places generated JVM
code in file name.j, where name is the identifier that names the CSX_go package.
Skeletons for the code generator may be found in
 ~raphael/courses/cs541/public/proj5/startup.

The Code Generator
Your program generates assembler code for the Java Virtual Machine (JVM), which is
the same machine that Java compilers target. You then assemble the symbolic JVM
instructions your compiler generates using the Jasmin assembler. Jasmin documentation
is available on its homepage, which is linked to the class homepage (under “Useful
Programming Tools”). The JVM instruction set (often called “bytecode”) is also
described in the Jasmin documentation. Jasmin produces a .class file, which can be
executed using java, just as compiled Java programs are.
Initiate code generation by calling the member function

boolean codeGen(PrintStream asmfile)

in the root of your AST (which should be a ProgramNode). The parameter is the file
into which JVM instructions are to be written. codeGen() traverses the AST,
generating JVM code into aFile.
Your code generator need only handle type-correct programs; don’t worry about
translating type-incorrect programs. If it detects any errors during code generation,
codeGen should return false; the contents of the output file need not be valid. If it
detects no errors, it returns true, and the contents of the output file should be a valid
JVM assembly program that Jasmin can assemble.

Consider the following simple CSX_go program:

package simple
 func main() {

var a int;
 read a;

 print "Answer = ", 2*a+1, '\n';
 } // main()
// package simple

This program might translate into the following JVM assembler code:

.class public simple ; This is a public class named simple

.super java/lang/Object ; The super class is Object

; JVM interpreters start execution at main(String[])
.method public static main([Ljava/lang/String;)V

invokestatic simple/main()V ; call main()
return ; then return
.limit stack 2 ; Max stack depth needed
.end method ; End of body of main(String[])

.method public static main()V ; Beginning of main()

.limit locals 1 ; Number of local variables used
invokestatic CSXLib/readInt()I ; Call CSXLib.readInt()
istore 0 ; Store int read into local 0 (a)
ldc "Answer = " ; Push string literal onto stack

; Call CSXLib.printString(String)
invokestatic CSXLib/printString(Ljava/lang/String;)V
ldc 2 ; Push 2 onto stack
iload 0 ; Push local 0 (a) onto stack
imul ; Multiply top two stack values
ldc 1 ; Push 1 onto stack
iadd ; Add top two stack values
invokestatic CSXLib/printInt(I)V ; Call CSXLib.printInt(int)
ldc 10 ; Push 10 ('\n') onto stack
invokestatic CSXLib/printChar(C)V ; Call CSXLib.printChar(char)
return ; return from main()

.limit stack 25 ; Max stack depth needed(overestimate)

.end method ; End of body of main()

Your generator stores this program in file simple.j, since the name of the CSX_go
package is simple. The following command assembles the program into
simple.class:
 jasmin simple.j

You would then execute simple.class using the command
 java simple

Extra credit

Generate correct code for variables declared within the block bodies of if and
for statements.

Generate correct code for expressions used to initialize global variables.

Translating AST Nodes
The following table outlines what your code generator is expected to do for each kind of
AST node.

Kind of AST Node Code Generator Action
ProgramNode Generate beginning of class; generate body of

main(String[]); translate variables; translate
functions.

VarDeclNode Allocate a field or local variable index for varName. If
initValue is non-null, translate it and generate code to
store initValue into varName.

ConstDeclNode Allocate a field or local variable index for constName;
translate constValue; generate code to store constValue
into constName.

ArrayDeclNode Allocate a field or local variable index for arrayName;
generate code to allocate an array of type elementType
whose size is arraySize; generate code to store a reference to
the array in arrayName’s field or local variable.

FuncDeclNode Generate the function’s prologue; translate args; translate
decls; translate stmts; generate the method’s epilogue.

ArgDeclsNode Translate all the formal declarations.
ValArgDeclNode Allocate a local variable index to hold the value of a scalar

parameter.
RefArrayDeclNode Allocate a local variable index to hold a reference to an array

parameter.
StmtsNode Translate all the statements.
AsgNode If source is an array, generate code to clone it and save a

reference to the clone in target. (This strategy implements
shallow-copy semantics as opposed to pointer-copy
semantics.) If source is a string literal, generate code to

convert it to a character array and save a reference to the array
in target. If target is an indexed array, generate code to
push a ref erence to the array (using varName), then
translate target.subscriptVal. Translate source;
generate code to store source’s value in target.

IfThenNode Translate condition; generate code to conditionally branch
around thenPart; translate thenPart; generate a jump
past elsePart; translate elsePart.

ForNode Create assembler labels for head-of-loop and loop-exit. If
label is non-null store head-of-loop and loop-exit in
label’s symbol table entry. Generate head-of-loop label;
translate condition; generate a conditional branch to loop-
exit label; translate loopBody; generate a jump to head-of-
loop; generate loop-exit label.

ReadNode Generate a call to CSX_goLib.readInt() or
CSX_goLib.read Char() depending on the type of
targetVar; generate a store into targetVar; translate
moreReads.

PrintNode Translate outputValue; generate a call to
CSX_goLib.printString(String) or CSX_go
Lib.printInt(int) or
CSX_goLib.printChar(char) or
CSX_goLib.printBool(bool) or CSX_goLib.print
CharArray(char[]), depending on the type of out
putValue; translate moreDisplays.

CallNode Translate procArgs; generate a static call to procName.

ReturnNode If returnVal is non-null then translate it and generate an
ireturn; otherwise generate a return.

BreakNode Generate a jump to the loop-exit label stored in label’s
symbol table entry.

ContinueNode Generate a jump to the head-of-loop label stored in label’s
symbol table entry.

BlockNode Translate decls; translate stmts;

ArgsNode Translate argVal; translate moreArgs.

BinaryOpNode Translate leftOperand; translate rightOperand;
generate JVM instruction corresponding to operatorCode.

UnaryOpCode Translate operand; generate JVM instruction corresponding
to operatorCode.

FuncCallNode Translate functionArgs; generate a static call to
procName.

CastNode If resutltType is bool and operand is an int or char,
then if operand is non-zero, generate code to convert it to 1
(which represents true). If resutltType is char and
operand is an int, then generate code to extract the
rightmost 7 bits of operand.

NameNode If subscriptVal is null, generate code to push the value at
varName’s field name or local variable index. Otherwise,
generate code to push the array reference stored at
varName’s field name or local variable index; translate
subscriptVal; generate an iaload or baload or
caload based on var Name’s element type.

IntLitNode Generate code to push intval onto the stack.

CharLitNode Generate code to push charval onto the stack.

TrueNode Generate an iconst_1.

FalseNode Generate an iconst_0.

StrLitNode Push strval onto stack using ldc instruction.

NullNode Do nothing.
IntTypeNode Do nothing.
BoolTypeNode Do nothing.
CharTypeNode Do nothing.
IdentNode Do nothing (name or index of identifier is used by parent

nodes based on context).

How to Proceed
Start with simple constructs like read, print, assignment statements and simple
expressions. Implement harder constructs like if, for, and functions after the simpler
constructs are working. For each construct you implement, decide what JVM code you
want to generate. Try out the code you select by creating (by hand) simple Jasmin
assembler programs. Run them to verify that the code you selected really works.
Once you know the code you selected is viable, modify your code generator to generate
that code. Look at the output of your code generator (the name.j file) to verify that
what is generated looks correct. If the output looks correct, run it through Jasmin and
java to verify that it is correct.
Once you’ve implemented a few simple constructs, you’ll see how it all works. You can
then add additional features until you support all of CSX_go.
If you’re in doubt as to what JVM code to generate, here’s a useful trick. CSX_go
programs closely correspond to Java classes (with all fields and methods declared

static). Create a Java program that’s equivalent to a particular CSX_go program.
Compile the Java program using javac. Then run

javap -c -p file

where file.class is the class file created by javac. javap will show you the JVM
instructions selected by the Java compiler (in a slightly different format from that used
by Jasmin). In most cases, your compiler could generate these instructions to translate
the CSX_go program in question.
Don’t let the JVM instructions that you generate try to access operands that aren’t on the
stack. Such instructions are invalid and can cause the Java interpreter (java) to crash.

What to hand in
Test your CSX_go compiler using all the test programs included in ~raphael/-
courses/cs541/public/proj5/tests. These programs are named
test1.csx_go, test2.csx_go,.... Create a file named CSXtests that contains
the results produced by compiling, assembling and running each of these programs.
You should add tests that cover things that these tests miss.
Your compiler program should take the name of a CSX_go program to be compiled on
its command line. If the CSX_go program is invalid, your program should write
appropriate error messages to standard output. Otherwise, it should place a translation
of the CSX_go program in name.j where name is the program’s class name. name.j
should be executable using jasmin and then java. Submit a README file, a Makefile,
your CSXtests file and all source files necessary to build an executable version of your
program. Do not hand in .class files. Name the class that contains your main method
P5.java. The grader will test your CSX_go compiler by compiling and executing a
series of test programs.

