Notes, packet 2 Ch. 4

CFG : context-free grammar

Context-free language

Finite terminal alphabet of tokens \(\Sigma \)
Lower-case words, like \(\text{then} \)
Assign

Finite non-terminal alphabet \(\mathcal{N} \)
Like "variables" \(\sim \) \(\text{initial-\text{op}} \)

Start symbol \(S \in \mathcal{N} \)

Productions \(A \rightarrow X_1 \ldots X_m \)
\(\begin{align*}
&\text{non-terminal} \quad \mathcal{N} \cup \Sigma \\
\end{align*} \)

Allow \(I \) (alternation)

\(A \rightarrow ab \quad \text{\parallel} \quad A \rightarrow ab \text{ } \text{c} \text{ } \text{d} \)
\(A \rightarrow cd \)

Derivation: \(S \Rightarrow D \quad S \Rightarrow \ldots \Rightarrow \)

(only terminals)

\(S \Rightarrow \) \[\quad \]

Conventions: Leftmost derivation: always expand the leftmost non-terminal in the current sentential form. \(\Rightarrow \text{lm} \)
Rightmost derivation: expands rightmost non-terminal = canonical derivation. Bottom-up parsing: parse discovered in reverse order.

Parse tree: describes a derivation

```
S
├── D
│   └── St
```

Non-terminals

Terminals [i a + b b = ...]

Both leftmost, rightmost derivations yield same parse tree.
Phrase (all terminals descending from a non-terminal)

Complexity of parsing in tokens: \(\mathcal{O}(n^3) \)

Useful CFG's (actual ones for programming langs) can be parsed in \(\mathcal{O}(n) \).

Unreduced grammar: useless non-terminals never generated by any sentence.

```
S \rightarrow A
    \rightarrow B
A \rightarrow a
B \rightarrow B b
C \rightarrow a
```

Want reduced grammars. Unreduced grammars do not naturally occur.
Ambiguous grammar: a single sentence has more than one parse tree. Does naturally occur.

Unavoidable for it.

\[E \rightarrow E - E \]
\[E \rightarrow \text{id} \]

Sentence: \(a - b - c \)

BNF (Backus-Naur Form for writing CFG)

metacharacters

\[[] \] to surround optional parts.

\[___ \] to surround parts with implicit Kleene *.

Easily converted to ordinary BNF.

\[A \rightarrow B[_c_] \quad || \quad A \rightarrow B \]
\[A \rightarrow BC \]
Parser vs. Recognizer vs. Generator
- builds a tree
- returns Boolean
- creates a valid sentence

Bottom-up vs. Top-down parsers

LR(1)
- rightmost

LL(1)
- input in order
- leftmost parse

LL(1): recursive descent

Analyze the BNF:
- Empty: Rule Derives Empty (p)
 Symbol Derives Empty (N)
- First (N)
- Follow (N)
- Predict (p)
Empty check

1) make a list L of N_s that directly derive λ.

2) For each $N \in L$, for all rules where N is in the RHS, remove N from RHS, if RHS is now empty, put LHS into L.

(use a count of RHS elements to make this step easy)

3) L is the set of N_s that derive λ. The rules that cause us to put all into L are the rules that can derive λ.

Programming hint: avoid duplicates in L.

First(α) = $\{ b \in \Sigma \mid \alpha \Rightarrow^* b\beta \}$

String of non-terminals and terminals

Hint: if BNF is written top-down: work from the end to the beginning.

Method: 1) Consider first element α of α.

 if $\alpha = \lambda$, answer is \emptyset

 if $\alpha \in T$ (terminal), answer is $\{ \alpha \}$

2) if $\alpha \in N$,

 for all productions with α as the LHS, recursively compute First(LHS),

 answer = union of all these computations.
\[E \rightarrow \text{p} \解释{E} \]
\[\text{p} \rightarrow f \]
\[T \rightarrow + E \]

\text{First}(\text{p}) = \{ f, \}
\text{First}(\text{f}) = \{ f, \}
\text{First}(\text{+}) = \{ f, \}
\text{First}(\text{E}) = \{ f, \}
\text{First}(\text{f} + E) = \{ f, \}
\text{First}(\text{+} E) = \{ f, \}
\text{First}(\text{E} +) = \{ f, \}
\text{First}(\text{E} + \text{f}) = \{ f, \}
\text{First}(\text{f} + E) = \{ f, \}
\text{First}(\text{+} E) = \{ f, \}
\text{First}(\text{E} +) = \{ f, \}
\text{First}(\text{E} + \text{f}) = \{ f, \}

\text{Follow}(\text{N}) = \text{set of terminals that can come directly after } \text{N} \text{ in a sentential form.}

\[\{ b \in \sum \mid S \Rightarrow^* \alpha \text{ N b} \beta \} \]

\text{Method: Follow(N)}

\text{for each place } \text{N} \text{ appears in a RHS of production } P

\text{answer } U = \text{First}(\text{tail})

\text{if } \text{tail} \Rightarrow \lambda

\text{answer } U = \text{Follow(LHS}(P))
Top-down parsing (LL)

1) Not as powerful as bottom-up.
 CELs that cannot be parsed top-down
2) Simple, fast, good diagnostics
3) If CFL is LL, it is unambiguous.
4) Recursive descent, table driven.
5) Recursive descent parser:

 One procedure for each non-terminal \(N \)
 That procedure has a separate case
 for each production with \(N \)
 on LHS.
 Which case to use is determined by
 lookahead and predict set.
 Each case is composed of calls to
 match() for terminals in RHS
 procedure for a non-terminal in RHS

Predict set for a production \(P \)

At least \(\text{First}(\text{RHS}(P)) \)

If \(P \) can derive empty, then also \(\text{Follow}(\text{LHS}(P)) \)

A C example:

```c
proc P (Stream <token> ts) {
    token t = ts.peek();
    switch(t) {
        case .; i; d; p; $3; $5; .; match($3);
        default: error
    }
}
```
Proc Ps (...)

token t = ts, peek();
switch (t) {
 case $f, $? : D(is); Ds(ts); break;
 case $id, p, $3 : break;
 default: error();
}

Proc E(...) {
 token t = ts, peek();
 switch (t) {
 case $+, $? : match(+); V(ts); E(ts); break;
 case $-, $? : match(-); V(ts); E(ts); break;
 case $id, p, $3 : break;
 default: error();
 }
 E();
}
proc A()
switch (peek())
 case 3: match (a); procB(); procC(); match (d); break;
 case 4: break;
 default: error(); break;

Table-driven:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Q</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Stack: S A B $

Input: $ c A $
Algorithm:

stack. initialized to start non-terminal

while stack not empty:
 t = pop(s);
 if t is terminal:
 match(t)
 else: // t is non-terminal
 p = Table[t, peek(c)]
 if p = 0:
 error()
 else:
 push RHS(p) in reverse order

Not all CFGs are LL(1)
increasing lookahead may help, may not
mod 1: factor out common prefixes

P(56) 1 S \rightarrow \text{if } E \text{ then } Ss \text{ end}
2 \quad \text{if } E \text{ then } Ss \text{ else } Ss \text{ end}
3 Ss \rightarrow Ss ; S
4 S \rightarrow S
5 E \rightarrow \text{id} + E
6 E \rightarrow \text{id}
7 X \rightarrow \text{end}
8 Y \rightarrow \text{else } Ss \text{ end}