CFG: context-free grammar

Context-free language

Finite terminal alphabet of tokens \(\Sigma \)
(lower-case word, like then)

Finite non-terminal alphabet \(N \)
like "variables" : (initial-op)

Start symbol \(S \in N \)

Productions \(A \rightarrow X_1 \ldots X_m \)
\(\downarrow \) non-terminal \(\in N \cup \Sigma \)

Allow / (alternative)

\(A \rightarrow ab \) \| \(A \rightarrow ab \) cd

Derivations: \(S \Rightarrow \cdots \Rightarrow \)

(only terminals)

\(S \xrightarrow{*} \)

Conventions: Leftmost derivation: always expand the leftmost non-terminal in the current sentential form.
Rightmost derivation expands rightmost non-terminal = canonical derivation. Bottom-up parsing parses discovered in reverse order.

Parse tree: describes a derivation

![Parse Tree Diagram]

Terminals: [a + b = ...]

Both leftmost, rightmost derivations yield same parse tree. Phrase (all terminals descending from a non-terminal)

Complexity of parsing in tokens: $\mathcal{O}(n^3)$ Useful CFGs (actual ones for programming langs) can be parsed in $\mathcal{O}(n)$.

Unreduced grammar: useless non-terminals: never generated by any sentence.

\[
S \rightarrow A \\
A \rightarrow a \\
B \rightarrow B b \\
C \rightarrow a
\]
Ambiguous grammar: a single sentence has more than one parse tree. Doesn’t naturally occur. Unavoidable for it.

\[E \rightarrow E - E \] \[\rightarrow \text{id} \]

Sentence: \(a - b - c \)

BNF (Backus-Naur Form for writing CFG)

metacharacters

\[[\] \] to surround optional parts.
\[\{ \} \] to surround parts with implicit Kleene \(*\).

easily converted to ordinary BNF:
\[A \rightarrow B \{c\} \quad \| \quad A \rightarrow B \]
\[A \rightarrow BC \]
\[A \rightarrow B \epsilon C D \quad | \quad A \rightarrow B X D \]
\[X \rightarrow \gamma \]
\[X \rightarrow C X \]

Parser vs. Recognizer vs. Generator
L⇒ builds a tree
⇒ returns Boolean
⇒ creates a valid sentence.
Bottom-up vs Top-down parsers

LR(1)
⇒ rightmost

LL(1)
⇒ input in order
⇒ leftmost parse

LL(1): recursive descent

Analyze the BNF:
Empty: Rule Derives Empty (p)
Symbol Derives Empty (N)
First (N)
Follow (N)
Predict (p)
Empty check

1) Make a list L of Ns that directly derive λ.

2) For each $N \in L$, for all rules where N is in the RHS, remove N from RHS, if RHS is now empty, put LHS into L.

(Use a count of RHS elements to make this step easy)

3) L is the set of Ns that derive λ. The rules that cause us to put all into L are the rules that can derive λ.

Programming hint: Avoid duplicates in L.

First (α) = \{ $b \in \Sigma$ | $\alpha \Rightarrow^* b\beta$ \}

String of non-terminals and terminals

Hint: If BNF is written top-down: work from the end to the beginning.

Method: 1) Consider first element x of α.
 - if $\alpha = \lambda$, answer is \emptyset.
 - if $x \in T$ (terminal), answer is $\exists \xi$.

2) if $x \in N$,
 - for all productions with x as the LHS, recursively compute First(\text{RHS}),
 - answer = union of all these computations.
0. Deriving Empty String

If symbol derives \(E \), compute \(\text{First}(\text{remainder of } \alpha) \)

* \(\alpha \) removing \(E \) at start

Answer = union of that as well as answer

Derives empty: \(\{ E, T \} \)

\[
\begin{align*}
\text{First}(E) &= \{ \varepsilon, f \} \\
\text{First}(T) &= \{ \varepsilon, f \}
\end{align*}
\]

\[
\begin{align*}
\text{First}(\varepsilon) &= \{ \varepsilon \} \\
\text{First}(\varepsilon + E) &= \{ \varepsilon, f \} \\
\text{First}(\varepsilon, T) &= \{ \varepsilon, f \}
\end{align*}
\]

Follow(N)

Follow(\(N \)) = set of terminals that can come directly after \(N \) in a sentential form.

\[
\{ b \in \Sigma \mid \exists \alpha N b \beta \}
\]

Start non-terminal

Strings of non-terminals and terminals

Method: Follow(\(N \))

For each place \(N \) appears in a RHS of production \(P \)

Answer \(U = \text{First}(\text{tail}) \)

\(\text{if tail} \Rightarrow \varepsilon \)

Answer \(U = \text{Follow}(\text{RHS}(P)) \)